Chapter 2

Searches in graphs and digraphs

2.1 Searches and connectivity in graphs

Finding the connected component of a vertex v in a graph is not difficult. It suffices to compute
a spanning tree of this component starting from v. For this purpose, we need a list of edges to
be explored, initially containing all edges, and a list of the explored vertices, initially containing
only v. At each step, a new edge ab is explored with a already explored and b is added in the
list of explored vertices if it had not been explored yet. When all edges have been explored, we
get a spanning tree of the connected component of v.

Given a graph G and a vertex v the following algorithm return a spanning tree 7" of the
connected component of G.

Algorithm 2.1 (Search).
1. Mark v and initialize L to the set of all {v,u} € E ,V(T) :={v}, E(T) := 0.
2. If L =0, then return T'; else letab € L. L:= L\ {ab}.

3. If b is not marked, then mark it; V(T) := V(T)U{b}; E(T) := E(T)U{a,b}; add all the
elements of {bu |u € E(G)} to L.

4. Goto 2.

There are two well-known searches which correspond to two different orderings of the
edges:

- the breadth-first search (BFS) (Algorithm 2.2) explores first the neighbours of v, then the
neighbours of its children;

- the depth-first search (DFS) (Algorithm 2.3) explores first all the vertices of a branch
pending in v.
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The difference between these two approaches is that the vertices are stored either in a queue
(FIFO) or in a stack (LIFO). A queue is just a list which is updated by either adding a new
element to one end (its tail) or removing an element from the other end (its head). A stack is
simply a list, one end of which is identified as its fop; it may be updated either by adding a new
element as its top or else by removing its top element.

The following algorithms also compute the connected component C of v and a spanning tree
of C.

Algorithm 2.2 (Breadth-First Search).
1. Mark v, V(T) := {v}, E(T) := 0 and initialize a queue Q to v.
2. If F = 0 then return T'. Else, remove the first vertex u of Q.

3. For every unmarked vertex w adjacent to u, V(T) :=V(T)U{w}; E(T) = E(T) U {uw};
add w to Q and mark w.

4. Goto 2.

Algorithm 2.3 (Depth-First Search).
0. For every vertex, L(u) := N(u).
1. Mark v; V(T) := {v}; E(T) := 0 and initialize a stack P to v.
2. If P =0, then return 7. Else, let u be the top of the stack.
3. If L(u) = 0, then remove u from P and go to 2.
4. Else, remove a vertex w from L(u).

5. If wis marked go to 3. Else, V(T) :=V(T)U{w}; E(T) = E(T)U{uw}; add w to P and
mark w.

6. Go to 2.

A tree obtained by running a breadth-first search is called a breadth-first search tree or BFS-
tree. Similarly, a tree obtained by running a depth-first search is called a depth-first search tree
or DFS-tree. If the search is run from vertex v, this vertex is called the root of the search tree.

Observe that in Algorithms 2.1, 2.2 and 2.3 every edge is examined at most twice (once per
endvertex). These algorithms can be modified in order to compute all the connected components
of a graph in time so that every edge is examined at most twice. For this purpose, while some
vertex does not belong to a connected component (i.e., has not been marked), it is sufficient to
compute its connected component.
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2.1.1 Distance in graphs

A nice property of a breadth-first search tree is that is can give the distance from the root r
to all other vertices. Therefore we just have to have a value /(u) to every vertex called level
of u which corresponds to distr(r,u) and as we will show later also to distg(r,u). Hence the
following algorithm is the following:

Algorithm 2.4 (Distance from r).
1. Mark r, [(r) := 0 and initialize a queue Qtov. [[V(T):={v}; E(T) :=0;]]
2. If F = 0 then return /. Else, remove the first vertex u of Q.

3. For every unmarked vertex w adjacent to u, I(w) := I(u) 4+ 1; add w to Q and mark w.
[[V(T):=V(T)U{w}; E(T)=E(T)U{uw}; 1]

4. Goto 2.

Observe that the construction of the tree T (operation between brackets at Step 1 and 3) is
practically useless. It just help us to show that the function / has the properties we announced.
The first ones justifies our referring to [ as the level function.

Theorem 2.1. Let T be a BFS-tree of a connected graph G, with root r. Then:
(i) for every vertex v of G, 1(v) = distp(r,v);
(ii) every edge of G joins vertices on the same or consecutive levels of T ; that is

[(u)—1(v)| <1, foralluv € E(G).

Proof. The proof of (i) is left to the reader in Exercise 2.1. To establish (ii), it suffices to prove
that if uv € E(G) and [(u) < I(v), then I(u) = I(v) — 1.

we first establish, by induction on /(u), that if u and v are any two vertices such that /(u) <
[(v), then u joined Q before v. This evident if /(«) = 0 , because u is then the root r of T.
Suppose that the assertion is true whenever /(1) < k, and consider the case /(1) = k, where
k > 0. Let x be the predecessor of u, that is the vertex which is explored when we add u to
Q. Then it follows from line 3 of Algorithm 2.4 that [(x) = I(u) — 1. Similarly, if y is the
predecessor of v then /(y) = I(v) — 1. By induction, x joined Q before y. Therefore u being a
neighbour of x, joined Q before v.

Now suppose that uv € E(G) and I(u) < I(v). If u is the predecessor of v, then I(u) =
I(v) — 1, again by line 3 of Algorithm 2.4. If not, let y be the predecessor of v. Because v was
added to T by the edge yv, and not the edge uv, the vertex y joined Q before u, hence I(y) < 1(u)
by the claim established above. Therefore I(v) — 1 =1ly) <I(u) <I(v) <I(v)—1, which implies
I(u)=1(v)—1. O
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The following theorem shows that Algorithm 2.4 runs correctly.

Theorem 2.2. Let T be a BFS-tree of a connected graph G, with root r. Then:
distr (r,v) =distg(r,v), forallv € V(G).

Proof. Clearly, disty(r,v) > distg(r,v) because T is a subgraph of G.

Let us establish the opposite inequality by induction on the length of a shortest (r,v)-path,
the proposition holding trivially when the length is 0.

Let P be a shortest (r,v)-path in G, where v # r, and let u be the predecessor of v on
P. The (r,u)-subpath of P is a shortest (r,u)-path, and dg(r,u) = dg(r,v) — 1. By induction,
I(u) < dg(r,u), and by Theorem 2.1-(ii), I(v) = [(u) < 1. Therefore

distr(r,v) =1(v) <Il(u)+ 1 <dg(r,u) +1=dg(r,v).

2.2 Searches and strong connectivity in directed graphs

One can explore digraphs in much the same way as graphs, but by growing arborescences rather
than (rooted trees). An arboresence is an orientation of a rooted tree in which all the arcs are
directed from the root to the leaves. It can be seen as a digraph in which every vertex has
indegree 1 except one called the root which has indegree 0. As with search in graph, search in
digraph may be refined by restricting the choice of the arc to be added at each stage. In this
way, we obtain directed versions of breadth-first search and depth-first search. We now discuss
how search can be applied to find the strongly connected components of a digraph.

To test if a digraph D = (V, E) is strongly connected, one has to check for every pair u, v of
vertices if there is a (u,v)-dipath. Checking if such a path exists can be done by performing a
search, so running ('V(QD )‘) searches will do the job. However running a search from a vertex u
finds all the vertices v that can be reached from u. So, in fact, one just need to run at most |V|
searches (one per vertex) yielding a total time O(|V||E|).

The following proposition will yield an algorithm that test if a digraph is strong by running
only two searches.

Proposition 2.3. Let D be a digraph and v a vertex of D. D is strongly connected if and only if,
for every u # v, there are a (u,v)-path and a (v,u)-path.

Proof. If D is strongly connected, by definition, for every u # v, there are a (u,v)-path and a
(v, u)-path.

Let us assume now that for every u # v, there are a (u,v)-path and a (v, u)-path. Let us show
that D is strongly connected. Let u and w be two distinct vertices of D. There are a (u,v)-path
P and a (v,w) path Q the concatenation of which is a (u,w)-walk. By Proposition 1.3, there is a
(u, w)-path. O
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We now describe an algorithm that computes the strongly connected components of a vertex
v of a digraph. It is based on two searches starting from v, the first one in D and the reverse
D of D. During the first search, the vertices u reachable from v are marked 1. During the
second search the vertices u from which v can be reached marked 2 and included in the strongly
connected component of v if they are already marked 1 (See Figure 2.1).

Algorithm 2.5 (Strongly connected component).
1. Search D starting from v marking the vertices with 1.
2. Search D starting from v marking the vertices with 2.

3. Return the vertices marked with 1 and 2.

Digraph D State after one search State after second search

v

m  Vertices in the strongly connected
component of v.

Figure 2.1: Execution of Algorithm 2.5

Contrary to Algorithm 2.1, Algoritm 2.5 does not give all strongly connected components
of D in a single search examining each edges twice. Indeed, let us consider the digraph D with
V(D) = {vi,v2,...,va} andE(D) = {(v;,v;) | i < j}. The components consist of each {v;}.
Hence, |V | executions of Algoritm 2.5 must be done. Moreover, at each execution, all edges are
considered.

2.2.1 Computing strongly connected components in one search

We now describe an algorithm that computes all strongly connected components of a digraph in
time O(|E|). It is a modified depth-first search in which two extra values are stored and updated.
When a vertex is explored u it becomes active and is associated to two values /() and b(u). The
first one /(u) called label of u corresponds to the order of appearance of u during the search. It
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will never change. A vertex w such that I(w) > I(u) is called a successor of u. A key ingredient
of the algorithm is that as long as u is active, there is a (u, w)-path to each of its successors w.
The second value b(u) corresponds to the smallest label of a vertex reachable from u.

Algorithm 2.6 (All Strongly Connected Components).
0. Initialize i to 0.
1. If all vertices are marked, then terminate.
2. Let s be an unmarked vertex.
3. i:=i+1; initialize [(s), b(s) to i and u to 5. s becomes active.
4. If at least one arc leaving u, say (u,v), is not marked, then do

4.1 Mark (u,v).

42 If v has already been explored and is active, then update b(u) : b(u) :=
min(b(u),b(v)).

4.3 Else v is a new vertex. v becomes active; i := i+ 1;1(v) :=i; b(v) :=1(v); u:=v.

4.4 Goto 4.
5. Else, all arcs leaving u are marked, the exploration of u is over:

5.1 If b(u) = I(u) then all active successors of u induce a strongly connected component
: return it and all its vertices become inactive; Goto 1.

5.2 Else b(u) < I(u). Let w be the vertex from which u has been explored. Update b(w) :
b(w) := min(b(w),b(u)); u := w; Goto 4.

Correctness of Algorithm 2.6: We will show by induction the following three points.
1) If I(u) < I(v), and if u and v are active, then v is a successor of u;

2) At every step, for any active vertex v, there is a path from v to the vertex w with label
I(w) =b(v).

3) When the exploration of u terminates (Step 5), all the active vertices of S(u) = {v active | b(u) <
I(v) <I(u)} are in the same strongly connected component as u.

4) b(u) =1(u) if and only if S(u) is a strongly connected component.

1) and 2) Let to the reader.
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Figure 2.2: A run of Algorithm 2.6. The vertex in a circle is the current vertex u. At each
step, (I(u),b(u)) is represented close to every active vertex u. Finally, once a vertex becomes
inactive, it is depicted by a square.
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3) From Proposition 2.3, it is sufficient to show that, for every v in S(u), there is a (u,v)-path
and a (v,u)-path. Let v be a vertex in S(u).
Let us assume first that /(v) < I(u). Then, by 1), there is a (v,u)-path. let w be the vertex such
that /(w) = b(u). By 2), there is a (u,w)-path, and by 1) there is a (w, v)-path. The concatenation
of both these paths is a (u,v)-walk. By Proposition 1.3 (i), there is a (u,v)-path.
Let us now assume that /(v) > I(u). By 1) there is a (u,v)-path. Moreover, b(v) < I(v), oth-
erwise, the vertex v would have become inactive at Step 5. Let v; be the vertex with label
I(vi) =b(v). By 2), there is a (v,v;)-path P;. If [(v;) < [(u), then, by 1), there is a (v;,u)-path,
the concatenation of which with P; is a (v,u)-walk. Hence, a (v,u)-path exists from Proposi-
tion 1.3 (i). If [(vy) > I(u), then b(v;) < I(vy), for otherwise, the vertex v; (and also v) would
have become inactive at Step 5. Let v, be the vertex such that /(v2) = b(v;). Using similar
arguments, while /(v;) > [(u), we have [(v;) > b(v;) and we set v, such that [(v;, 1) = b(vi).
Since the label of v; strictly decreases, the sequence of the v;s is finite. Hence, v = vg,vy,..., v
et [(vg) < I(u). Using 2), for every 1 <i <k, there is a (v;_1,v;)-path. Moreover, by 1), there
is a (vg,u)-path. The concatenation of all these paths is a (v,u)-walk, and then, by Proposi-
tion 1.3 (i), there is a (u,v)-path.

4) Now, if b(u) = I(u), the arcs leaving S(u) have their heads inactive (vertices in a distinct
strongly connected component, by the induction hypothesis 3). Hence, S(u) is a strongly con-
nected component.

If b(u) < I(u), the vertex labelled b(u) is active. So it is a predecessor of u. Hence, u and v are
in the same component.

2.3 Bipartite graphs

A bipartition of a graph G is a partition (A, B) of V(G) into two stable sets. Hence, every edge
of G has an endvertex in A and the other in B. We often write G = ((A,B),E) for a bipartite
graph with bipartition (A, B).

Bipartite graphs satisfy some properties.

Proposition 2.4. Let G = ((A,B),E) be a bipartite graph.

(i) for any two vertices u and v, all the (u,v)-walks have the same length parity.
(ii) if G is connected then it has only two bipartitions (A,B) and (B,A).

Proof. (i) Without loss of generality, we may assume that u is in A. Let (vo,vy,...,v;) be a
(u,v)-walk (so vop = u and v = v). Since G is bipartite and Vy € A then v € B and so v, € A.
And so on by induction, if i is even then v; € A and if i is odd v; € B. Thus if v € A then k is
even and if v € B k is odd.

(i1) Let u be a vertex. Let Ag (resp. A1) be the set of vertices at even (resp. odd) distance
to vo in G. By (i), in any bipartition of G, Ay is included in the part containing u and A; in the
other. AgUA| = V(G) since the graph is connected then there are only two possible partitions
of G: (A(),Al) and (Al,A()). O
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There are graphs which are not bipartite. For example, the odd cycles. Indeed in the cy-
cle (vo,vi1,-.., vk, vo) the path (vo,vox) and (vo,vi,...,vox) are two (vo, vy )-paths of different
length parity. Hence if a graph is bipartite, it contains no odd cycles. This easy necessary
condition to be bipartite is in fact sufficient.

Theorem 2.5. A graph G is bipartite if and only if it has no odd cycle.

Proof. Clearly, it suffices to prove it for connected graphs. Let G be a connected graph. If G
contains an odd cycle, it is not bipartite.

Conversely, assume that G contains no odd cycle. Let vg be a vertex of G. Let Ag (resp.
A1) be the set of vertices at even (resp. odd) distance to v in G. Let us now show that (Ag,A;)
is a bipartiton of G. Let uv be an edge of G and P, (resp. P,) be a shortest (u,vp)-path (resp.
(v,vo)-path). The concatenation P,, P, and (v, u) is a closed walk. By Proposition 1.3, this walk
has even length otherwise G would contain an odd cycle. Hence P, and P, have different length
and so uv has an endvertex in each of the A;, i =0, 1. ]

The above proof may be translated into an algorithm which, given a connected graph G,
returns either a bipartition if G is bipartite or G is not bipartite” otherwise. Basicallly, it runs
a Breadth-First Search from a vertex and check if there is no edge between vertices of levels
of differents parity. Hence instead of marking the vertices with their level number as for the
distance (see Subsection 2.1.1), we mark them with the parity of their level and thus we just
need two marks, O and 1.

Algorithm 2.1 (Finding a bipartition).
1. Pick a vertex x and mark it with m(x) := 0; N := {x}.
2. If N is non-empty, then remove a vertex v of N and do the following.

For all neighbour w of v do
- If m(w) = m(v), return “G is not bipartite”;

- Otherwise if w is unmarked, mark it with m(v) + 1 mod 2 and put w in N; Go to
2.

3. If N is empty, let A;,i = 0,1 be the set of vertices marked i and return “G is bipartite with
bipartition” (Ag,A1).

Algorithm 2.1 may be easily modified to return an odd cycle when G is not bipartite. See
Exercise 2.10.

2.4 Exercises

Exercise 2.1. Show Theorem 2.1-(i).
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Exercise 2.2 (Entriger, Kleitman and Székely).
For a connected graph G, define 6(G) = Y., ,cv (g) dist (u,v).

1) Let G be a connected graph. For v € V(G), let T, be a BFS-tree of G rooted at v. Show
that ¥,y () 0(Ty) = 2(n — 1)6(G).

2) Deduce that every connected graph G has a spanning tree 7 such that 6(7) < 2(1 —
2)0(G).

n

Exercise 2.3 (Tuza). Let G be a connected graph, let x be a vertex of G, and let T be a spanning
tree of G that maximizes the function Y,y ) distr (x,v). Show that T is a DFS-tree of G.

Exercise 2.4 (Chartrand and Kronk). Let G be a connected graph in which every DFS-tree is
a path (rooted at the start). Show that G is a cycle, a complete graph, or a complete bipartite
graph in which both parts have the same number of vertices.

Exercise 2.5 (Pésa). A chord of acycle C in a graph G is an edge in E(G) \ E(C) both of whose
endvertices lie on C. Let G be a graph such that |[E(G)| > 2|V(G)| —3 and |V(G)| > 4. Show
that G contains a cycle with at least one chord.

Exercise 2.6. Let a be a connected graph G. Prove that G is bipartite if and only if dist(a,b) #
dist(a,c) for all edge bc.

Exercise 2.7.
1) Show that every tree is bipartite.
2) Prove that every tree has a leaf in the largest part of its bipartition.

Exercise 2.8. Prove that a bipartite graph G has at most |V (G)|>/4 edges and give a graph
attaining this bound.

Exercise 2.9. Show that a graph is bipartite if and only if each of its subgraph H has a stable
set of size at least |V (H)|/2.

Exercise 2.10. Give an algorithm that, given a connected graph G, returns either a bipartition if
G is bipartite or an odd cycle if G is non-bipartite.

Exercise 2.11. Describe an algorithm based on a breadth-first search for finding a shortest odd
cycle in a graph.

Exercise 2.12. Let G = ((A,B),E) be a bipartite graph without isolated vertices such that
d(x) > d(b) for all xy € E, where a € A and b € B. Prove that |A| < |B|, with equality if
and only if d(a) =d(b) for all ab € E.




