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Abstract 

Let G be the digraph consisting of two oppositely-directed 

rings on the same set of n nodes. We provide a polynomial- 

time algorithm which, given a list of demands-each requir- 

ing a path from a specified source node to a specified tar- 

get node-routes the demands so as to minimize the largest 

number of paths through any of the 2n directed links of G. 

The algorithm makes use of a partial linear relaxation and 

rounding technique which together, somewhat surprisingly, 

produce an exact solution. 

The problem arises in an optical communications net- 

work with wavelength division multiplexing (WDM), con- 

figured as a ring. Such a network features a fixed number 

of wavelengths, each of which (at the optical level) can sup 

port a single path of high bandwidth through a given link. If 

there is no “wavelength translation” available, so that each 

demand is restricted to a single wavelength, then the com- 

bined routing and wavelength assignment problem is NP- 

complete. Our results imply, however, that the presence of 

even a single wavelength translator (at any node) guarantees 

both full capacity and polynomial-time optimizabihty. 

Single-translator sufficiency in the ring is a special case 

of a simple criterion which, given a set of nodes in an 

arbitrary WDM network, determines whether wavelength 

translators on those nodes allow the network to run at 

maximum capacity. Although the problem of minimizing 

the cardinahty of this set is NP-complete (even in the 

planar case), the high cost of wavelength translators can 

be expected to make the criterion a useful tool. 

1 Introduction 

Defining multiple channels simultaneously across an op- 
tical link by using a different wavelength for each chan- 
nel is a technique called wavelength-division multiplex- 
ing (WDM) [12]. I n a WDM network, in order to es- 
tablish a logical connection from one node to another, a 
route is chosen (that is, a sequence of links leading from 
the initial node to the terminal node) and an assign- 
ment of a wavelength to the connection from each link 
in the route is made. The wavelength assignments must 
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be made so that there are no conflicts; that is, no two 
connections whose routes share a link can be assigned 
the same wavelength along that link. 

Typically, WDM networks have been thought of in 
two broad categories. In a wavelength selective (WS) 
network the links in the route assigned to a connection 
must all allocate the same wavelength to that connec- 
tion [3] whereas in a wavelength interchanging (WI) net- 
work the links in the route assigned to a connection may 
allocate different wavelengths to the connection [17]. 
Clearly the nodes in a WI network require some sort 
of hardware that takes incoming signals on the differ- 
ent wavelengths and permutes them for the outgoing 
signals. We call such a device a wavelength translator. 
Since each wavelength translator adds cost to the net- 
work, it may seem that a WS network is preferable to 
a WI network. However a WS network may have lower 
capacity for a fixed number of wavelengths since there 

are situations where a connection in the WS network 
is impossible because no single wavelength is available 
along any route for the connection even though there are 
different wavelengths available along a route. Another 
way to state the difference is that a WS network may re- 
quire more wavelengths to establish a set of connections 
than a WI network of the same topology. There has 
been a good deal of study of the relationship between 
WS and WI network wavelength requirements such as 
[l, 3, 5, 15, 16, 18, 20, 231. 

We begin by considering such problems for a ring 
network. Even in a ring, the simplest 2-connected net- 
work, the problem of assigning routes and wavelengths 
in response to connection requests is not trivial. In con- 
sidering this problem we make the following definitions. 
For any given routing and any fixed directed link of the 
ring, the number of paths routed through that link is 
called its link load and the maximum of this value over 
all the links is the ring load. 

If each connection path must employ the same 
wavelength on every link, then what is needed is a 
routing which minimizes the chromatic number of a 
corresponding directed circular-arc graph. We consider 
this case in Section 3 below, showing that the number 
of wavelengths required could be as much as twice 
the minimum ring load minus one, and is NP-hard to 
determine exactly. 
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If, on the other hand, the wavelength of a connec- 
tion path may change from link to link, then there is no 
coloring problem and the object is merely to route so 
as to achieve the minimum ring load LOPT. We study 
this case in Section 2. This is a special case of inte- 
ger multi-commodity flow; luckily, it turns out to be a 
tractable case. The usefulness of our algorithm is much 
enhanced by the fact that only one node of the ring 
needs to be able to change the wavelengths of paths, in 
order to be able to route with just Lops wavelengths. 
The sufficiency of one wavelength translator may be im- 
portant since wavelength translators currently require 
optoelectronic conversion and are likely to be expensive 
even when new technology obviates this requirement. 

In a general WDM network, we give a simple char- 
acterization of those sets of nodes which, when supplied 
with wavelength translators, permit valid wavelength 
assignments for any routing and no more wavelengths 
are required than if wavelength translators had been 
placed at every node. In all such cases, a valid assign- 
ment can be made in polynomial time. However, finding 
a minimum cardinality set of such nodes is shown to be 
NP-complete. Results for general WDM networks are 
covered in Section 4. 

2 Ring Routing With Wavelength Translation 

In this section we are primarily concerned with deter- 
mining the minimum ring load Lops, given a list of 
demands for directed paths. We remark that the undi- 
rected case, where demands and link loads are bidirec- 
tional, is of particular interest for SONET (Synchronous 
Optical NETwork) rings. This “ring loading problem” 
was studied by Cosares and Saniee [4], Schrijver, Sey- 
mour and Winkler [21], Khanna [14], and Carpenter, 
Cosares and Saniee [2]. 

In the usual formulation SONET demands are 
equipped with non-negative weights representing 
amount of traffic. When these weights are (0, l}, as 
in our WDM problem, Frank [7] showed using a result 
of Okamura and Seymour [19] that the undirected prob- 
lem is solvable in polynomial time. Both the (0, 1) case 
(with parity conditions) and the linear relaxation of the 
SONET ring loading problem enjoy a nice “cut” prop- 
erty which fails in our directed-path setting. 

To distinguish the problem considered in this work 
from that of [21] we add the word “directed” and 
change “loading” to “routing”, reflecting the fact that 
in a WDM setting we need not consider different-sized 
demands; or, putting it another way, multiple demands 
for the same nodes can be routed differently. We wish 
to find a routing which achieves the minimum ring load 
LOPT. 

We begin by noting that only one wavelength trans- 

lator is necessary. Henceforth R will always be the ring 
on nodes {O,l,..., n- 1) modulo n, labeled clockwise. 

THEOREM 2.1. Suppose node 0 of the ring R has the 
capability of permuting the wavelengths of its travers- 
ing paths in any desired manner. Then any routing 
with ring load L can be reali.zed with L wavelengths, and 
moreover such a realization can be found in time poly- 
nomial in n and the number of paths. 

Proof. Let us note first that we may assume every 
node is an endpoint for at least one path; for, otherwise, 
we may sort the nodes which do occur as endpoints 
(in time polynomial in logn and the number of paths) 
and relabel them by consecutive integers beginning with 
0. The resulting collapse of links has no effect on the 
problem. 

Open the ring at node 0 to form a linear network 
on nodes O,l,..., n- l,O; paths through 0 will now be 
broken into two pieces. Since interval graphs are perfect 
(see e.g. [S]), the rightward directed paths (paths which 
were routed clockwise in R) can be colored with L colors 
(wavelengths) in such a way that no two paths which 
share a link have the same color. In fact, colors can be 
assigned greedily: the paths are ordered left to right by 
source node, then each path is assigned the least color 
not already assigned to an intersecting path. A similar 
argument applies to the leftward directed paths. 

Paths which were cut in two will generally get 
two different colors, but these can be reconciled by 
permuting the colors at node 0. n 

We now proceed to the question of finding a routing 
which achieves the minimum ring load Lops. It will be 
useful to deal with intervals (arcs) of nodes around the 
ring R; hence, for nodes s and t we define [s, t] to be 
{u : s 5 ti 5 t} when s _< t and [s,n-l] U[O,t] 
otherwise. Also, all arithmetic involving nodes will be 
done implicitly using modulo n operations. 

The problem is formally stated as follows. 

DIRECTED RING ROUTING 

INSTANCE: Positive integers n and m, and ordered pairs 
(sl,tl), . . .,(sm,trra) from the set (0,. . ., n- 1}2 with 
Si # ti. 

QUESTION: Find values ~1,. . . ,z, E (0, 1) which 
minimize L, where: 

L = max m;xAk, m;xBs 
> 

and 
Ak = ]{i : k E [si,ti-l] and cd = l}] 
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and and 

Bk = I{i : k E [ti, si-l] and pi = O}l . 

Tomake DIRECTED RING ROUTING a decision prob- 
lem, as in [lo], we append a target value T to the in- 
stance and ask whether there are 21,. . . ,z, E (0, 1) for 
which L 5 T. 

The parameter n is known as the ring size and 
(si,ti) is the ‘th z demand, di. Setting xi = 1 amounts 
to routing a path from si to ti clockwise around the 
ring; xi = 0 indicates the counterclockwise choice. The 
number of demands routed through the clockwise link 
k ---f rE+ 1 is its “link load” Ah, and similarly for the 
counterclockwise link k+l + k and Bk. The maximum 
of the link loads is the ring load L, and the object is to 
choose a routing x = x1, . . , xm which minimizes L. 

The decision form of DIRECTED RING ROUTING 
is clearly in the class NP since the routing provides 
an economical certificate. In fact, DIRECTED RING 
ROUTING is an integer multicommodity flow problem 

‘(see e.g. Section 8, p. 159 of the survey [S]). General 
such problems are NP-complete, but we are dealing here 
with a very special case which turns out to be in the 
class P. 

THEOREM 2.2. DIRECTED RING ROUTING is solvable in 
polynomial time. 

Proof. We may assume that every node of the ring 
occurs as si or ti in at least one demand, hence n 5 2m; 
thus we need not be concerned that n contributes only 
its logarithm to the instance size. 

We begin by considering a “relaxed” version of DI- 
RECTED RING ROUTING, in which demands may be split 
(that is, sent partly clockwise, partly counterclockwise). 

RELAXED DIRECTED RING ROUTING 

INSTANCE: Positive integers n and m, and ordered pairs 
(sl,tl), . . . ,(sm,ttra) from the set (0,. . .,n-1}2 with 
Sj # ti. 

QUESTION: Find reals x1, . . . , x, E [0, l] which mini- 
mize L*, where: 

and 

B; = C (l-xi) . 
i: kE[ti,3*-1] 

Since this is now a linear programming problem, it 
is solvable in polynomial time [13]; and of course its 
optimal ring load L&,, satisfies LG,T 5 LOPT, where 
Lops is the optimal ring load in the original problem, 
thus also [LbpT1 5 Lops. 

Our strategy will be to obtain a real routing x’ = 
Cd,.. . , XL) with two special properties, but whose ring 
load L’ still satisfies L’ 5 Lops. We will then modify 
x’ to obtain a (0, 1}-routing x whose ring load is strictly 
less than L’+ 1. It will then follow that x is an optimal 
routing for the original problem. 

We say that a routing x’ is j7ush if its sum cz”=, xi 
is an integer. 

PROPOSITION 1. Given an instance of RELAXED DI- 
RECTED RING ROUTING, a flush routing x’ with L’ 5 
Lops can be found in polynomial time. 

Proof. Such a routing certainly exists since any 
(0, 1}-routing, in particular an optimal routing for the 
original problem, is flush. Thus we can consider each 
possible value F = 0, 1, . . ., m in turn, adding the 
equality Cr=“=, xi = F to the conditions for RELAXED 
DIRECTED RING ROUTING and solving the resulting 
linear programming problem to obtain a minimal ring 
load LF. The routing among these m + 1 solutions 
achieving the least LF is then taken and so the resulting 
ring load is no more than Lops. 

In fact, we can do better. Observe that the function 
Lf (where f is now an arbitrary real in [0, m]) is concave 
down, since if a routing x yields ring load L and x’ 
yields L’ then Ax + (l-X)x’ yields a ring load of at most 
XL + (l-X)L’. 

(Note also that LJ is piecewise linear with slopes 
bounded by 1 in absolute value, since any routing x’ 
with xi > xi for each i satisfies L’ 5 L + Cz”=, X: - 
x7=“=, xi. Thus our flush ring load L’ cannot be more 
than L&,, + $, but conceivably exceeds [L;)pT] .) 

It follows that if LJ is minimal at f = r then one 
of the values IrJ and [Al must achieve the minimum of 
the discrete function LF. Hence, if T is not already an 
integer, we can just check those two values and take the 
better one. n 

It is handy to think of demands geometrically, as 

L* = max m;xA;, m;xB; 
> 

A; = c xi 
i: kE[S,,l.-1] 

ilirected chords in a circle representing the ring. Two 
,;nands (si, ti) and (sj , tj) are said to be parallel if the 

intervals [si, ti] and [tj, sj], or the intervals [ti, si] and 
[sj, tj], intersect at most at their endpoints. There are 
essentially four ways that this can happen, illustrated 
in Fig. 1; it may even be that si = sj and ti = tj. 
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G-:3 

63 
Figure 1: Parallel pairs of demands 

Regarding a link also as a chord, we see that that a 
demand is parallel to a link just when the demand can 
be routed through that link. Any link partitions the 
demands into those which are parallel to it, and those 
which are parallel to its reverse. 

A real routing x’ is said to split the ith demand if 
o< xi < 1. 

PROPOSITION 2. Given an instance of RELAXED DI- 

RECTED RING ROUTING and a flush routing x with ring 
load L, a flush routing xi can be found in polynomial 
time with ring load L’ 5 L, having the additional prop- 
erty that no two parallel demands are both split. 

Proof. We can immediately ensure that in any set of 
identical demands at most one is split, sp let us suppose 
that there is a pair of unequal, parallel demands di and 
dj with 0 < pi < 1 and 0 < xj < 1. We will re- 
route these demands in such a way that one of them 
is no longer split, but their collective contribution to 
every link load is either maintained or reduced, and the 
routing sum CyZ1 xi remains unchanged. 

Since the demands are distinct we may assume that 
the intervals [sa, ti] and [tj, sj] intersect in at most one 
node and do not cover the ring. Suppose first that 
xi 5 1 - zj ; then define a new routing X' by 

X: = xi + X? and ~(i = 0 

with xi = xk for /? @ {i, j}. Then links in [si, ti] and 
[tj, sj] enjoy th e same load as before and other links 
have the same or reduced loads. 

If xi > 1 - xj then we let 

X: = 1 and XI = xi + xj - 1 
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Figure 2: Untangling routings of split parallel demand 
pairs 

with a similar effect. These two methods of “untan- 
gling” routings of parallel demand pairs are illustrated 
in Fig. 2, in the case where the demands have distinct 
endpoints. 

Since each untangling reduces by one (or two) 
the total number of split demands, at most m such 
procedures will produce the desired routing. n 

Henceforth we will assume that we have obtained 
a flush routing I’ with link loads Ai, Bf and ring load 
L’ 5 Lops , satisfying the condition that no two parallel 
demands are both split. Since in particular two non- 
parallel demands cannot share a source, the number of 
demands split by x is at most the ring size n. 

We may assume that the demands are numbered 
so that S = {dl,...,d,} is the set of split demands. 
Moreover, since no two are parallel, we may order them 
clockwise simultaneously by source si and by target ti, 
as in Fig. 3. Then for any clockwise link k + k+l there is 
an interval [ik , jk] C { 1, . . . , q}, interpreted if necessary 
“around the corner” modulo Q, which contains exactly 
the indices of the demands in S which are parallel to the 
link. For its counterclockwise mate k+l + k, the indices 
of the parallel links are just those in the complement of 
[ik, jk], namely the interval Ijk + 1, ik - 11. 

It is the unsplitting of the demands parallel to a link 
which affects the load on that link. Suppose x’ is a flush 
routing with link loads AJ, and Bi and x is the {O,l}- 
valued routing with link loads Ak and Bk resulting from 
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3 Ring Routing Without Wavelength 
Translation 

We now consider the case where all links in a path must 
be assigned the same wavelength, and no two paths 
assigned the same wavelength can share a (directed) 
link. Since we know that we can calculate the number 
of wavelengths required when translation is available, 
namely the minimum ring load LopT, we are in a good 
position to bound the value of wavelength translation. 

Figure 3: Split demands; split demands parallel to a THEOREM 3.1. ~~~ any positive integer L there is an 
link instance of DIRECTED RING ROUTING with minimum 

ring load L, in which routing without wavelength trans- 

some unsplitting of the split demands of x’. Then we lation requires 2L - 1 wavelengths. 

have 
Al, = A; + c (xi - xi) 

iE[ik,jkl 

and 
Bk = B6 + C (Xi - Xi) . 

ig[ik ,jkl 

Let us now define an unsplitting x recursively by 
putting 

Xj = 
1 

1 if -X~+C{=~(Xi-X~)< -$ 
0 otherwise. 

Then every partial sum Ci=,(x; - xi) lies in the half- 
open real interval [-$, 3). If ik 5 jk , we have 

Ak -A’, = e(xi - xi) -‘c(xi - x:) < ; - (-!.) = 1 
i=l i=l 

as desired. 
If ik > jk then 

Ak - Ak = $JXi - Xi) + c(Xi - Xi) - *g(X; - Xi) 

i=l i=l i=l 

which lies in the interval [-;, $), seemingly not good 
enough. But x’ is flush and x is integral, therefore 
Cf=l(Xi - xi) is an integer; namely 0, since it lies in 

L-f, $1. 
Thus Ak - A’, < 1 as before, and a symmetric 

argument for the counterclockwise links shows that 
Bk - Bi < 1 as well. Hence the ring load L induced by 
x satisfies L < L’ + 1 where L’ is the ring load induced 
by x’. 

Since L is integral we conclude thst L 5 ; G’] 2 
Lops, and the proof of Theorem 2.2 is complete. n 

Proof. The theorem is in effect proved for fixed 
routings in [22], where it is observed that a set of 2L - 1 
arcs can be pairwise overlapping yet no point of the 
circle is contained in more than L of the arcs. We only 
need to select demands so as to force such a pattern of 
paths in each direction. 

Assume L 2 2 (there is nothing to prove for L = 1). 
Let n = 4(2L - 1) and for each i, 0 5 i < 2L - 1, we 
introduce a demand di from node 4i to node 4i+2(2L- 
1)-l and a demand ei from 4i-1 to 4i+2(2L-1). If the 
di’s are routed clockwise and the ei’s counterclockwise, 
then the maximum link load is L. 

However, any routing must contain 2L - 1 demands 
in one direction (say, clockwise) since there are 2(2L- 1) 
demands altogether. It remains only to observe that the 
clockwise paths for the di’s are pairwise intersecting, 
and that for each i the clockwise path for ei contains 
the clockwise path of di. Hence 2L - 1 wavelengths are 
required. n 

THEOREM 3.2. Let x be a routing achieving the min- 
imum ring load L in an instance of DIRECTED RING 
ROUTING. Then there is a polynomial time algorithm 
which will realize the routing with at most 2L - 1 wave- 
lengths, without wavelength translation. 

Proof. We may assume that at least one demand has 
node 0 as its source. Then we open the ring as in the 
proof of Theorem 2.1, cutting paths through 0 in two, 
and assign wavelengths greedily as before, using at most 
L distinct wavelengths. Since there are at most L - 1 
paths cut, there are at most L - 1 paths that have links 
of two different wavelengths. Thus we can choose an 
entirely new wavelength for each of these and still use 
only 2L - 1 wavelengths in all. n 

We note that the proof of Theorem 2.2 shows also One consequence of Theorem 3.2, already noted 
that Lops 5 1 + [L;)pTl and Lops < Lb,, + $. We in [20] and [18], is that there is a polynomial time 
have no example, however, in which Lops > rL;)PT1. algorithm which will solve the routing and wavelength 



assignment problem using no more than twice the 
optimum number of wavelengths. 

Existence of an efficient algorithm for optimal as- 
signment of wavelengths to paths is unlikely in view of 
the result of Garey, Johnson, Miller and Papadimitriou 
[ll], that it is NP-hard to determine the chromatic num- 
ber of a circular arc graph. It is not immediate from this 
result that the combined problem of routing and wave- 
length assignment is NP-hard, but that is indeed the 
case. 

THEOREM 3.3. The DIRECTED RING ROUTING prob- 
lem, without wavelength translation, is NP-complete. 

Proof. It is straightforward to check that the DI- 
RECTED RING ROUTING problem is in NP. In order to 
show that the problem is NP-hard, it suffices to con- 
vert an instance of CHROMATIC NUMBER OF CIRCULAR 
ARC GRAPH UNDIRECTED RING ROUTING in such away 
that for the latter to have any chance of realization with 
the specified number of wavelengths, the routing would 
have to match the circular arc graph. 

Consider an instance of CHROMATIC NUMBER OF 
CIRCULAR ARC GRAPH consisting of the collection of 
arcs (.q,tl),..., (s,, tm) and a positive integer T < m 
where si is the counterclockwise and ti the clockwise 
endpoint of the ith arc. Note that the si’s and ta’s can 
be assumed to be non-negative integers. Let n 5 2m be 
the number of distinct si’s and ti’s and hence without 
loss of generality we can further assume that each si and 
ti is a non-negative integer less than R. From such an 
instance, an instance of DIRECTED RING ROUTING can 
be defined consisting of ring size (T + 1)” and capacity 
T and the demands dl = ((T+l)si, (T+l)ti), . . . , d, = 

((T+l)sm, (T+l)tm) on a ring R’ on (T + 1)n nodes, to 
which we add T “short” demands of the form (j, j - 1) 
for every node j of R’, 0 5 j < (T + 1)n. 

If the given circular arc graph is T-colorable then 
the long demands can be routed clockwise and colored 
accordingly, while the short demands can be routed 
counterclockwise and colored arbitrarily subject to each 
set of T identical short demands being assigned all T 
colors. 

Suppose, on the other hand, that the circular 
arc graph is not T-colorable, but the DIRECTED RING 
ROUTING instance can nonetheless be realized with T 
wavelengths. Then at least one of the long demands, 
say (si, tl) must be routed counterclockwise; hence for 
eachlink(T+l)si-i+(T+l)si--i-l, 05 i<T+l, 
at least one short demand must be routed the long 
way (clockwise) around the ring. This adds T + 1 
to the clockwise load of any other link, contradicting 
the assumption that T wavelengths sufficed for the 
DIRECTED RING ROUTING instance, thus proving the 

theorem. n 

We remark that minor modifications to this proof 
obviate the need for multiple demands between the same 
pair of nodes. Independently, Erlebach and Jansen [5] 
have shown that the problem is NP-hard by a somewhat 
more complicated transformation. 

4 Translators in General WDM Networks 

One consequence of the work in Section 2 is that in a 
ring, a single wavelength translator at any node suf- 
fices, and the resulting wavelength assignment problem 
is solvable in polynomial time. Hence, with our poly- 
nomial time routing algorithm of Section 2, we can do 
optimal wavelength assignment in any ring with at least 
one wavelength translator. 

In this section we consider similar questions for gen- 
eral WDM networks. That is, we consider the question 
of where wavelength translators should be placed in a 
WDM network so that any collection of demands for di- 
rected paths can be satisfied using no more wavelengths 
than if there were wavelength translators at every node. 

Let G = (V,E) b e an undirected connected graph 
and define a network NG to be the directed graph with 
vertex set V and where for each edge e = {u, v} E E 
there correspond two directed links (u, v) and (v, U) of 
the network. A routing R is a collection of directed 
paths. As before we define the load for R on a link in 
G to be the number of paths routed over the link and 
the load of R, denoted by L(R), is the maximum load 
of any link. 

A wavelength assignment for R associates a wave- 
lengthfrom{l,..., L(R)} to each link of each path such 
that no link gets the same wavelength for two different 
paths which pass through it. 

Let S & V be the set of nodes equipped with 
wavelength translators. A wavelength assignment is 
valid with respect to S if for every node v @ S, every 
path containing links (u,v) and (v, w) has the same 
color assigned to both links. S is said to be suficient 
for G if every admissible routing allows a wavelength 
assignment which is valid with respect to S. 

The natural questions are: (1) which choices of S 
are sufficient? and (2) with such an S in place, is the 
assignment problem tractable? 

To answer the former we first need to determine 
which networks require no wavelength translators at all. 
A graph is said to be a “spider” if it is a tree with at 
most one node of degree greater than 2. 

THEOREM 4.1. The empty set is suficient for G if and 
only if G is a spider. 

Proof. (Sketch) Suppose G is a spider; if it is a 
path then sufficiency follows from the fact that interval 
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graphs are perfect. Otherwise G consists of k 2 3 “legs” Proof. Omitted. n 

attached to the unique vertex u of degree greater than 
2. In the special case where G is a ring, we have that 

We define a bipartite multigraph H on two copies a single wavelength translator at any node is sufficient, 

of the set of legs by including an edge from leg i on the justifying our earlier claim that the routing algorithm 

left to leg j on the right for each path (through U) from leads to optimal wavelength assignment in this case. 

leg i to leg j; in an admissible routing, H has maximum We now consider the main question of this section. 

degree at most w. Namely, given a graph G = (V, E) the goal is to find 

By Gabow’s theorem [9] there is a proper edge- a (weakly) sufficient set S 2 V for G of minimum 

coloring of H with w colors that can be computed in cardinality. By the results above, this means that the 

polynomial time, and this provides a valid wavelength goal is to find a minimum cardinality set S such that 

assignment for the paths through U. The rest of the each Gi(S) is a spider graph. We consider the decision 

paths are confined to single legs, and can be assigned version Of this problem’ “Given integer k 2 0 and graph 

colors on a greedy basis from the body on out. G = (V,E) is th ere a subset S E V with IS] = k 

Suppose on the other hand that G is not a spider; such that each resulting Gi(S) is a spider graph?” This 

if it contains a cycle, let x, y and z be three nodes in problem will be called the MINIMUM SUFFICIENT SET 

clockwise order around the cycle and let R consist of problem and will be shown to be NP-complete. 

clockwise paths from x to z, y to z and z to y. This 
is an admissible routing for w = 2 wavelengths, but no THEOREM 4.4. The problem of determining whether, 

valid wavelength assignment is possible since any two of for given G and k, there is a suficient set of nodes of 
the paths have at least one common link. size k, is NP-complete-even if G is planar. 

If G is a tree but contains two nodes of degree at 
least 3, then it contains a path with two pendant edges Proof. For a graph G = (V, E) it is easy to check in 
attached to each end. An example of an admissible rout- polynomial time if S s V is sufficient for G since all 
ing in this graph for which there is no valid wavelength this requires is checking that no Gi(S) contains a cycle 
assignment is given in [18]. n or more than one node with degree greater than 2. In 

For a subset S s V, define the graph G(S) as order to shown that MINIMUM SUFFICIENT SET is NP- 

follows. The nodes V(S) of G(S) are the nodes in hard, we reduce PLANAR QSAT [lo] to it. That is, given 

V \ S together with pairs (s, e) for each s E S and an instance 1 of PLANAR 3SAT we show how to construct 

each edge e incident to s in G. The edges of G(S) an instance MI of MINIMUM SUFFICIENT SET that has 

consist of the edges {u, v} of G where U, v $ S, together a solution if and only if 1 does. The construction of MI 

with {(s,e),v} h w enever e = {s,v} and {(s,e),(t,e)} will be polynomial in the size of I. As a reminder, 1 is 

whenever s and t are adjacent nodes of S. an instance of PLANAR 3SAT means that the bipartite 

We may think of G(S) as the result of “exploding” graph with a node for each variable and a node for each 

each node s of S into degree-of-s-many copies, each of clause with edges between a variable node x and a clause 

which becomes a pendant node to one of s’s old neigh- node K exactly when z or z is in the clause Ii is a planar 

bors. We let Gl(S), . . . , G,(S) denote the connected graph. 
components of G(S). The following is now a straight- Let I be an instance of PLANAR 3SAT with m clauses 

forward observation: Kl,K2,..., Ii’, on n variables x1, x2,. . . ,x,. Each 
clause iii is a disjunction of three literals ‘ua,l, ui,2 and 

THEOREM 4.2. S is sufficient for G if and only if every ui,s. Each ui,j is some 21, or zk. In the definition 
component G;(S) is a spider. of a graph that follows we are going to have distinct 

One may reasonably ask whether we have made the 
nodes labeled Ui,j, xk and 2k even though Ui,j = 21, or 

“sufficiency” condition rather stronger than necessary, 
Ui,j = Zk. We will use the notation XUi,j to mean the 

by forbidding reroutings. Given a graph G, suppose that 
node labeled by zk if Ui,j is xk or the node labeled by 
2k otherwise. 

for every set of connection demands D and routing R To define an instance Of MINIMUM SUFFICIENT SET 
of D, there is some routing R’ of D and assignment of we need to define an integer k and a graph G = (V, E). 
L(R) wavelengths for R’ which is valid with respect Define ~~ as follows~ Let k = 2m + n. Define 
to S; then we say that S iS weakly SUficient for G. 
However, 

G = (v, E) to be the graph with node set 

THEOREM 4.3. If S is weakly suficient then it is suA;- 
V= 

cient. 
(j{xi,%ai,bi,c,,4) ij{ui,1,ui,2,ui,3] 
i=l a=1 
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Figure 4: Gadget for clause Ki = (Xj V ?k V zs). 

and edge set 

U (j{{Xi, ai), {Xi 

( 
7 bi}, {zitci}, {z~i, 4)) 

i=l ) 

u 
( 

(j {{Ui,l, Ui,2), 
i=l 

fm 

” 

L 

U{C”i,l, x”i,l), {%,2, XW,2}, {Ui,3, X%,3}} 
i=l ) 

(See Figure 4.) Thus each clause Ki of I becomes a 
triangle of nodes ui,i, ui,z and ui,s with an edge from 
each such node to the node labeled by its corresponding 
variable or negated variable. In addition, each node 
labeled by a variable x; has an edge to the node labeled 
by its negation and to the dummy nodes ai and bi. 
Similarly, the node labeled by Zi also has edges to 
dummy nodes ci and di. Clearly the size of G is 
polynomial in the size of 1. Also, the graph G is 
obviously planar since the instance I was an instance 
Of PLANAR %AT. 

We claim that I has a satisfying assignment if and 
only if MI has a sufficient set of size k = 2m + n. 

v: 

(i) exactly one of Xi or Zi is in S, 1 5 i 5 12 

(ii) exactly tW0 Of Ui,l, Ui,2, Iii,3 are in S, 1 5 i 5 m 

(iii) if Ui,j is not in S then xui,j is in S 

(iv) ai, bi,ci,di are not in S, 1 5 i 2 n 

It will be shown that a set S satisfies conditions (i), (ii), 
(iii) and (iv) if and only if S is a sufficient set of size 
2m+n. 

Suppose S is a sufficient set of size 2m + n. Note 
that each node labeled by some Ul,j , xk or zcl, has degree 
at least 3 in G and so none of them can be in the same 
Gi(S) since G;(S) must be a spider graph. Then for 
each clause Ki at least two of ui,l,ui,2 and ui,s must 
be in S. Also at least one of xj or Zj must be in S. 
But since ISI = 2m + n this means that exactly two of 
ui,i,ui,2 and ui,s must be in S and exactly one of xj 
and Zj must be in S and no other nodes are in S. Thus 
conditions (i), (ii) and (iv) are satisfied. Similarly due 
to the edges {ui,j, xui,j}, if ui,j is not in S then xui,j 
must be in S else Ui,j and xUi,j are in the same Gk(S) 
and both have degree at least 3 in Gk(S) contradicting 
the claim that ‘S is sufficient and hence Gk(S) is a spider 
graph. Thus condition (iii) is satisfied. 

Suppose on the other hand that S satisfies condi- 
tions (i), (ii), (iii) and (iv). Clearly then ISI = 2m + n 
by conditions (i), (ii) and (iv). Consider some Gj(S). 
Notice that nodes of Gj(S) that result from the explod- 
ing of a node in S have degree 1 in Gj (S). Thus if 
Gj(S) is not a spider graph then it must have at least 
one node labeled by some xi, & or u,,t that is not in 
S. Suppose the node labeled xi is in Gj(S) and not in 
S. (A similar argument holds if the node labeled Zi is 
in Gj(S).) Then the node is adjacent to ai, ba, Fi and 
some number of nodes labeled by some u,,t where zu,,t 
is xi. By definition ai and bi have degree 1. By con- 
dition (i), & must be in S and hence has degree 1 in 
Gj(S) and by condition (iii) the other nodes adjacent to 
xi are also in S. Thus Gj(S) must be a spider graph (in 
fact, it is a star since each arm has length 1) contradict- 
ing our assumption. Suppose the node labeled u,,t is in 
Gj(S) but not in S. Then conditions (ii) and (iii) show 
that it is adjacent in Gj(S) only to nodes with degree 1 
in Gj(S) and again this implies that Gj(S) is a spider 
graph (again it is actually a star). Thus it must be that 
S is a sufficient set. 

We wish now to show that a satisfying assignment 
A for I can be found if and only if there is a sufficient 
set of size 2m + n. Let A be a satisfying assignment.for 
I. For 1 5 i 5 n, define ti to be xi or Zi depending 

Consider the following four conditions on a subset S C on whether xi is true or not respectively according to 



the assignment A. Define SA to be the set of nodes of 
G containing those nodes labeled by each td and for 
each j, 1 5 j < m, two of those nodes labeled by 
uj,r,uj>z and uj,s SO that the one that is not placed in 
SA evaluates to true according to A. (There is always 
one such node since A is a satisfying assignment.) Hence 
lS’~l = 2m + n. Clearly SA satisfies conditions (i), (ii) 
and (iv). Suppose the node labeled ua,j is not in SA. 
Then it must be that ui,j is true according to A since 
it is not in SA. Therefore the node labeled zui,j is true 
and hence in 5’~ thus satisfying condition (iii). Thus SA 
satisfies all the conditions and hence is a sufficient set 
of size 2m+n. 

Suppose S is a sufficient set of size 2m + n. Then S 
satisfies conditions (i), (ii), (iii) and (iv). Consider the 
truth assignment As that assigns true to each variable 
xi such that the node labeled xi is in S. Consider any 
clause Ki of 1. Since S satisfies condition (ii) we know 
that exactly one of the nodes labeled by the literals 
ui,r,ui,2 and ui,s is not in S. Suppose that literal is 
Ui,j. Then by condition (iii), the node labeled by zud,j 
is in S and hence is assigned true by 5’~ and so ui,j is 
true according to As. Thus in Ki there at least one true 
literal and so As is a satisfying assignment. n 

5 Conclusions 

We have given a simple characterization of those WDM 
networks which have enough wavelength translators to 
operate at maximum capacity, and an efficient algo- 
rithm to assign wavelengths once a routing is fixed. In 
the case of a ring, one wavelength translator suffices, 
and in this case the problem of finding an optimal rout- 
ing is also solvable in polynomial time. 
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