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Abstract—We develop on-line routing and wavelength assign-
ment (RWA) algorithms for WDM bidirectional ring and torus
networks with nodes. The algorithms dynamically support all
k-allowable traffic matrices, where k denotes an arbitrary integer
vector [ 1 2 . . . ], and node , 1 , can transmit
at most wavelengths and receive at most wavelengths. Both
algorithms support the changing traffic in a rearrangeably non-
blocking fashion. Our first algorithm, for a bidirectional ring, uses
(

=1
) 3 wavelengths in each fiber and requires at most

three lightpath rearrangements per new session request regardless
of the number of nodes and the amount of traffic k. When all the

’s are equal to , the algorithm uses 3 wavelengths, which
is known to be the minimum for any off-line rearrangeably non-
blocking algorithm. Our second algorithm, for a torus topology,
is an extension of a known off-line algorithm for the special case
with all the ’s equal to . For an torus network with

nodes, our on-line algorithm uses 2 wavelengths
in each fiber, which is the same as in the off-line algorithm, and is
at most two times a lower bound obtained by assuming full wave-
length conversion at all nodes. In addition, the on-line algorithm
requires at most 1 lightpath rearrangements per new session
request regardless of the amount of traffic . Finally, each RWA
update requires solving a bipartite matching problem whose time
complexity is only ( ), which is much smaller than the time com-
plexity ( 2) of the bipartite matching problem for an off-line
algorithm.

Index Terms—Graph theory, routing and wavelength assign-
ment, WDM networks.

I. INTRODUCTION

I N A WAVELENGTH-DIVISION multiplexed (WDM) net-
work, the fiber bandwidth is divided into multiple frequency

bands often called wavelengths. Using reconfigurable optical
switches at the network nodes, some wavelengths can be se-
lected at each node for termination and electronic processing,
and others selected for optical bypass. In an all-optical network
architecture, each traffic session optically bypasses electronic
processing at each node on its path other than the source node
and the destination node. One important benefit of this architec-
ture is the cost saving resulting from using fewer and/or smaller
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elctronic switches in the network. We focus our attention on
all-optical networks in this paper.

Without optical wavelength conversion, routing of traffic ses-
sions is subjected to the wavelength continuity constraint, which
dictates that the lightpath corresponding to a given session must
travel on the same wavelength on all links from the source node
to the destination node. Using wavelength converters potentially
allows the network to support a larger set of traffic. However,
such converters are likely to be expensive. Hence, we focus
on the problem of routing and wavelength assignment (RWA)
without wavelength converters.

A large body of literature investigates the RWA problem
under the wavelength continuity constraint. We can categorize
existing results into two groups based on whether static or
dynamic provisioning of routes and wavelengths is performed.
For static provisioning, the traffic to be supported is assumed
known and fixed over time. The goal is often to minimize
the number of wavelengths used in the network [1], [2], or to
maximize the number of supported traffic sessions for a fixed
number of wavelengths [3]–[6]. These problems are known to
be NP-complete [3]. Consequently, bounds on the optimal costs
have been derived [4], [7], and several RWA heuristics have
been developed [1], [4]–[6], [8], [9].

For dynamic provisioning, we allow the traffic to change
over time through session arrivals and session departures. To
model dynamic traffic, session arrivals can be assumed to form
stochastic processes [10], [11]. In addition, session lifetimes
are stochastic. The goal is usually to develop an on-line RWA
algorithm which minimizes the average blocking probability
for a new session request given a fixed number of wavelengths
in the network. We refer to this type of problem formulation as
the blocking formulation. Due to the complexity in computing
blocking probabilities, some approximations are made to sim-
plify the analysis. For example, session arrivals on different
links are assumed to be independent [10], [12], or correlated
among adjacent links in the same fashion throughout the net-
work [11]. Based on such approximations, several dynamic
RWA heuristics have been developed [13], [14].

Another type of problem formulation, referred to as the non-
blocking formulation, assumes prior knowledge of the set of all
the traffic matrices, or equivalently the traffic demands, to be
supported [15]–[17], [19], [20]. In [15], the set of traffic ma-
trices is characterized by the maximum link load in the network.
In [16], [17], the set of traffic matrices is characterized by the
numbers of tunable transmitters and tunable receivers at each
node. A new session is said to be allowable if its arrival results in
a traffic matrix which is still in the set of supportable traffic. The
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goal is usually to develop an on-line RWA algorithm which does
not block any allowable session and uses the minimum number
of wavelengths.

If we allow some existing lightpaths to be rearranged in
order to support a new session, the corresponding RWA al-
gorithm is said to be rearrangeably nonblocking. If we allow
no rearrangement of any existing lightpath in order to support
a new session, the corresponding RWA algorithm is said to
be wide-sense nonblocking. Note that if a RWA algorithm is
wide-sense nonblocking, it is also rearrangeably nonblocking.
Thus, for the same set of traffic matrices, the required number
of wavelengths can be no smaller for a wide-sense nonblocking
RWA algorithm than for a rearrangeably nonblocking RWA
algorithm.

We shall adopt a rearrangeably nonblocking formulation of
the RWA problem. As in [16], [17], the supportable traffic set
is defined by the number of tunable transmitters and tunable
receivers at each end node. We model the traffic as a ses-
sion-by-session arrival and departure process in which sessions
arrive and depart one at a time, and each session utilizes a full
wavelength. Our goal is to design an on-line RWA algorithm
which is rearrangeably nonblocking, uses the minimum number
of wavelengths, and requires few rearrangements of existing
lightpaths in order to support each new and allowable session.
While our ultimate goal is to perform RWA in an arbitrary mesh
topology, we shall focus on a bidirectional ring topology and a
torus topology in this paper. In the future, we aim to extend our
analytical techniques to obtain a tractable RWA algorithm for
arbitrary mesh topologies.

The main contribution of our work is the development of
on-line RWA algorithms for supporting dynamic traffic. While
there are several results on efficient static RWA algorithms, less
is known about efficient dynamic RWA algorithms. For each
topology, our on-line algorithm uses the same number of wave-
lengths as the best-known off-line algorithm and is advanta-
geous in two ways. First, the on-line algorithm guarantees that,
for each RWA update due to a traffic change, only a small frac-
tion of existing lightpaths are rearranged. Second, for each RWA
update, applying the on-line algorithm instead of the off-line al-
gorithm yields lower computational complexity.

This paper is organized as follows. In Section II, we define
the set of -allowable traffic based on the number of tunable
transmitters and tunable receivers at each end node, and for-
mulate the RWA problem for -allowable traffic. In Section III,
we describe our on-line RWA algorithm for a bidirectional ring
topology. Section IV contains our on-line RWA algorithm for a
torus topology. Finally, we summarize the results and point out
future research directions in Section V.

II. PROBLEM FORMULATION

Consider an all-optical WDM network with no wavelength
conversion. Adjacent nodes are connected by two fibers, one in
each direction. In addition, all fibers contain the same number
of wavelengths. Assume that each traffic session has a rate of
one wavelength. At a given time, only one session can use a
specific wavelength in a fiber, but multiple sessions can travel
through the same node. Let be the number of nodes in the

Fig. 1. Bidirectional ring and torus topologies.

network. Node , , is equipped with fully tunable
transmitters and fully tunable receivers. Consequently, at any
time, node can transmit at most wavelengths and receive at
most wavelengths. Such a traffic matrix is said to belong to a
set of -allowable traffic, where .

We model dynamic traffic as a session-by-session arrival and
departure process in which sessions arrive and depart one at a
time. In other words, a transition from one traffic matrix to an-
other is a result of either a single arrival or a single departure. A
new session request is allowable if the resultant traffic matrix is
still in the set of -allowable traffic. The definition implies that,
for each new and allowable session request, there is a free trans-
mitter at the source node and a free receiver at the destination
node. For convenience, throughout the paper, a new session is
assumed to be allowable unless it is explicitly stated otherwise.

We want to design an on-line RWA algorithm which supports
-allowable traffic in a rearrangeably nonblocking fashion, uses

the minimum number of wavelengths, and requires few rear-
rangements of existing lightpaths in order to support each new
session request. Our algorithm will be centralized in nature. We
assume that traffic does not change too frequently and the al-
gorithm always has correct knowledge of the current RWA in
the network. In addition, we assume there is sufficient time for
lightpath rearrangements between consecutive transitions of the
traffic matrix.

We shall consider two regular topologies, a bidirectional ring
topology and a torus topology. Fig. 1 illustrates the two topolo-
gies. In either topology, each node is considered an end node,
i.e., it sources and/or sinks traffic as well as passes intermediate
traffic. Since a bidirectional ring topology is widely used, its
investigation is an important practical problem. Although the
torus topology may not be implemented in practice, its investi-
gation should give us better understanding of the RWA problem
for dynamic traffic in a more densely connected network.

III. BIDIRECTIONAL RING TOPOLOGY

In this section, we present an on-line RWA algorithm for -al-
lowable traffic in an -node bidirectional ring. Let denote
the minimum size of a set of wavelengths such that if each
wavelength is provided in each fiber, we can support -allow-
able traffic with no wavelength conversion. Note that is the
number of wavelengths used to support any traffic matrix in the

-allowable set. Thus, for a specific traffic matrix, we may need
fewer wavelengths than in the worst case. In [17], it was shown
that, if all the ’s are equal to , then for .
In addition, an off-line RWA algorithm that uses at most
wavelengths in each fiber, or equivalently in each ring direction,
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Fig. 2. Adjacent sessions share a directed wavelength.

was developed. In general, we can show that, if all the ’s are
equal to , then [18]

.

We shall present an on-line RWA algorithm that uses
wavelengths in each fiber to support -allow-

able traffic. Note that, for , when all the ’s are equal
to , the algorithm uses the minimum number of wavelengths
found in [17]. In all the other cases, the algorithm yields the
upper bound .

Define a directed wavelength as a wavelength in either the
clockwise or the counterclockwise ring direction. Given
wavelengths in each fiber, there are directed wavelengths
in the clockwise ring direction, and directed wavelengths
in the counterclockwise ring direction. Note that any traffic
session can be supported on a directed wavelength in either
ring direction. Two sessions are said to be adjacent if the
destination node of one session is the source node of the other.
The main idea behind our algorithm involves sharing a directed
wavelength between two adjacent sessions, as suggested by the
following known lemma in [17].

Lemma 1: In a bidirectional ring, lightpaths corresponding to
any pair of adjacent sessions can either share a directed wave-
length in the clockwise ring direction or the counterclockwise
ring direction.

The proof of Lemma 1 is immediate from Fig. 2, where if
two lightpaths overlap in one direction, they do not overlap in
the other. In particular, the lightpaths corresponding to sessions
(1,4) and (4,2) overlap in the clockwise direction, but do not
overlap in the counterclockwise direction.1 In what follows,
when the lightpaths associated with a pair of adjacent sessions
share a directed wavelength, we simply say that the adjacent
session pair share a directed wavelength.

The main idea of our algorithm is to maintain the following
two RWA conditions at all times: 1) only adjacent sessions share
a directed wavelength, and 2) at most two adjacent sessions
share a directed wavelength.

To give some intuition on the main idea of our algorithm,
consider the special case with all the ’s equal to 1. In this case,
our algorithm uses wavelengths in each fiber. We next
describe informally how to use wavelengths to support
the traffic. We ignore integer rounding in the informal discussion
below.

1Session from node i to node j is denoted by session (i; j).

Fig. 3. Adjacent session pairs, common nodes, and free nodes.

Given a traffic matrix, form as many adjacent session pairs
as possible up to pairs in a greedy fashion, i.e., it does
not matter if we end up with less than the maximum possible
number of pairs. Let denote the number of adjacent session
pairs formed. Consider two cases.

Case 1: . In this case, we support adjacent
session pairs containing sessions on directed wave-
lengths in the required ring directions. This is always possible
since there are directed wavelengths available in each ring
direction. Having done so, there are at most
remaining sessions each of which we support on one directed
wavelength in either ring direction. Thus, the total number of
directed wavelengths required is at most .
It follows that wavelengths in each fiber, i.e., each ring di-
rection, are sufficient.

Case 2: . In this case, we support adjacent session
pairs containing sessions on directed wavelengths in the
required ring directions. This is always possible since there are

directed wavelengths available in each ring direction. Note
that we cannot form any more adjacent session pairs in this case.

Consider only the sessions in the adjacent session pairs
formed above. Define a common node to be a node which trans-
mits a wavelength and receives a wavelength. Observe that each
adjacent session pair has at least one common node. For ex-
ample, Fig. 3 shows two adjacent session pairs (7,4)
and (4,3) together with (1,8) and (8,7). The pair (7,4) and (4,3)
has node 4 as a common node, while the pair (1,8) and (8,7) has
node 8 as a common node. In addition, sessions (8,7) and (7,4)
make node 7 a common node. In general, given adjacent ses-
sion pairs, there are at least common nodes.

Define a node which is not a common node as a free node. A
free node still has a free transmitter and/or a free receiver. For
example, in Fig. 3, nodes 1, 2, 3, 5, and 6 are free nodes. Since
there are at least common nodes, there are at most free
nodes.

Consider the remaining sessions which are not in the adja-
cent session pairs formed above. Observe that each free node ter-
minates, i.e., either transmits or receives, at most one remaining
session. To see this, note that each free node cannot transmit
more than one remaining session since it only has one trans-
mitter. By the same argument, each free node cannot receive
more than one remaining session. Moreover, each free node
cannot transmit a remaining session and receive a remaining ses-
sion simultaneously, or else we could form another new adjacent
session pair, i.e., have more than pairs. Thus, each remaining
session is terminated at two distinct free nodes. For example, in
Fig. 3, the remaining session (2,1) is terminated at free nodes 1
and 2. No other remaining session is terminated at either node
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1 or node 2. Since there are at most free nodes, there
are at most remaining sessions. We support each
remaining session on one directed wavelength in either ring di-
rection. Thus, the total number of directed wavelengths required
is . It
follows that wavelengths in each fiber are sufficient.

We shall later prove by similar arguments that
wavelengths are sufficient to support -allowable traffic. We
now describe our on-line RWA algorithm which is rearrangeably
nonblocking, uses wavelengths in each fiber,
and requires at most three lightpath rearrangements per new ses-
sion request. We shall refer to this algorithm as the ring RWA
algorithm.

Ring RWA Algorithm: (Use wavelengths in
each fiber.)

Session termination: When a session terminates, simply re-
move its associated lightpath from the ring without any further
lightpath rearrangement.

Session arrival: When a session arrives and the resultant
traffic matrix is still -allowable, proceed as follows.

Step 1: If there is a nonsharing session, i.e., a session which
does not share its directed wavelength with any session, and it
is adjacent to and can share its directed wavelength with the
new session, assign the two sessions to share that directed wave-
length. In this case, no lightpath rearrangement is required. Oth-
erwise, proceed to step 2.

Step 2: If there is a free directed wavelength in either ring
direction, assign a free directed wavelength to the new session.
In this case, no lightpath rearrangement is required. Otherwise,
proceed to step 3.

Step 3: Among the nonsharing sessions and the new ses-
sion, we claim and shall prove shortly that there must exist a
pair of adjacent sessions. Form such an adjacent session pair
by searching through all pairs of sessions in some order, e.g.,
from sessions terminating at node 1 to sessions terminating at
node . Once an adjacent session pair is found, there are two
possibilities.

(3a) If the adjacent session pair can share the directed wave-
length of one session in the pair, assign the adjacent session pair
to share that directed wavelength. In this case, the adjacent ses-
sion pair does not include the new session since step 1 would
have otherwise applied. Therefore, one existing lightpath must
be rearranged. Sharing of the directed wavelength by the ad-
jacent session pair will free one directed wavelength on which
the new session can be supported. Fig. 4(a) illustrates this sce-
nario. In particular, existing sessions (1,5) and (5,2) form an
adjacent session pair which can be supported on the directed
wavelength of session (5,2). After the lightpath of session (1,5)
is rearranged, the new session (1,4) is supported on the directed
wavelength previously used by session (1,5).

(3b) If the adjacent session pair cannot share the directed
wavelength of either session in the pair, we claim and shall prove
shortly that there must exist a directed wavelength with a non-
sharing session in the opposite ring direction, i.e., the ring direc-
tion in which the adjacent session pair can share a directed wave-
length. Remove the lightpath of that nonsharing session from
its directed wavelength, and assign the adjacent session pair to
share that directed wavelength. When the adjacent session pair

Fig. 4. Step 3 of the ring RWA algorithm: (a) step 3a: one rearrangement;
(b) step 3b case 1: two rearrangements; (c) step 3b case 2: three rearrangements.

includes the new session, the new session will now be supported,
and sharing of the directed wavelength by the adjacent session
pair will free one directed wavelength on which the removed
nonsharing session can be supported. In this case, a total of two
lightpath rearrangements are made. Fig. 4(b) illustrates this sce-
nario. In particular, existing session (1,5) and the new session
(5,2) form an adjacent session pair which can be supported on
the directed wavelength of existing session (3,8). After the light-
paths of sessions (1,5) and (3,8) are rearranged, the new session
(5,2) shares a directed wavelength with session (1,5) on the di-
rected wavelength previously used by session (3,8), while ses-
sion (3,8) is supported on the directed wavelength previously
used by session (1,5).

When the adjacent session pair does not include the new ses-
sion, sharing of the directed wavelength by the adjacent session
pair will free two directed wavelengths on which the removed
nonsharing session and the new session can be supported. In
this case, a total of three lightpath rearrangements are made.
Fig. 4(c) illustrates this scenario. In particular, existing sessions
(1,5) and (5,2) form an adjacent session pair which can be
supported on the directed wavelength of existing session (3,8).
After the lightpaths of sessions (1,5), (5,2), and (3,8) are rear-
ranged, the adjacent session pair (1,5) and (5,2) are supported
on the directed wavelength previously used by session (3,8),
session (3,8) is supported on the directed wavelength previously
used by session (1,5), and the new session (1,4) is supported on
the directed wavelength previously used by session (5,2).
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Before proving the correctness of the ring RWA algorithm, we
establish two useful lemmas related to step 3 of the algorithm. In
what follows, let be the number of adjacent session pairs which
share a directed wavelength before the new session request. Let

be the number of nonsharing sessions before the new session
request. The two lemmas give upper bounds on and , respec-
tively. In addition, let be the number of wavelengths in use
before the new session request. Note that . For con-
venience, define .

Lemma 2: In step 3 of the ring RWA algorithm, .
Proof: Since the total number of sessions is at most in

-allowable traffic, it follows that before the new
session request. Thus, is bounded by

In step 3, since there is no free directed wavelength for the new
session, it follows that the number of wavelengths in use
is equal to the total number of directed wavelengths .
Therefore, , yielding the desired rela-
tion, i.e., .

Lemma 3: In step 3 of the ring RWA algorithm, if no adjacent
session pair can be formed among the nonsharing sessions and
the new session, then

Proof: Note that node , , is equipped with
tunable transmitter/receiver pairs. Overall, we have a total of
transmitter/receiver pairs. Each pair of adjacent sessions which
share a directed wavelength utilizes one transmitter/receiver pair
at some node, one transmitter, and one receiver elsewhere.

Let be the number of adjacent session pairs which share a
directed wavelength and have node as a common node. Since
an adjacent session pair may have more than one common node,

. Let denote the number of trans-
mitter/receiver pairs which are not used by those adjacent
session pairs at node . In addition, let and denote the num-
bers of nonsharing sessions transmitted and received at node ,
respectively. It is clear that and .

Since no new adjacent session pair can be formed among the
nonsharing sessions, it follows that, at each node , either
or . Thus, . Because each nonsharing session
uses one transmitter and one receiver, it follows that

Since is an integer, .
Proof of algorithm correctness: From the algorithm descrip-

tion, it is clear that we always keep the two desired RWA con-
ditions, i.e., 1) only adjacent sessions share a directed wave-
length, and 2) at most two adjacent sessions share a directed
wavelength. In addition, it is clear that at most three lightpath
rearrangements are made to support each new session request.

It remains to prove the two claims in step 3. The first claim
states that there always exists a new adjacent session pair. We
proceed by contradiction. Suppose that no new adjacent session
pair can be formed among the nonsharing sessions and the new
session. From Lemma 3, . Since there is no free
directed wavelength for the new session in step 3, it follows that

the number of wavelengths in use is equal to the total number
of directed wavelengths . Therefore,

It follows that

or equivalently, , which contradicts the fact that
in step 3 from Lemma 2. Hence, a new adjacent session

pair always exists in step 3.
We now prove the second claim in step 3 that if we need to find

a nonsharing session in the opposite ring direction, i.e., the ring
direction in which the new adjacent session pair can share a di-
rected wavelength, one always exists. The claim is a direct con-
sequence of Lemma 2, i.e., in step 3. In other words,
the number of sharing session pairs is less than the number of
directed wavelengths in each ring direction. Since step 2 was not
taken, all the other directed wavelengths are taken
by nonsharing sessions. Therefore, in either ring direction, a di-
rected wavelength with a nonsharing session exists.

The construction of the ring RWA algorithm yields the
upper bound . We now derive a simple
lower bound on . Let denote the minimum number
of wavelengths which, if provided in each fiber, can support

-allowable traffic given full wavelength conversion at all
nodes. For a ring network, any pair of links correspond to a
cut, denoted by , which separates the nodes into two sets,
denoted by and . The maximum possible traffic, in
wavelength units, across the cut from one set of nodes to the
other is equal to . Since there are
two fibers across the cut from one set of nodes to the other, one
fiber must contain at least
wavelengths. The maximum possible traffic over all the cuts
yields the lower bound on given below.

Lemma 4: For a bidirectional ring with
nodes and -allowable traffic, is bounded by

.
Since , we can use the lower bound on in

Lemma 4 as a lower bound on . However, this lower bound
is not tight in general. For example, when and all the

’s are equal to , we know from [17] that , but
the lower bound from Lemma 4 is . Note
that this lower bound is obtained from the cut which separates
any consecutive nodes from the other nodes.

We summarize the results of this section in the theorem
below.

Theorem 1: For a bidirectional ring with nodes and -al-
lowable traffic
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In addition, there exists, by construction, an on-line RWA algo-
rithm which uses wavelengths in each fiber and
requires at most three lightpath rearrangements per new session
request.

We have pointed out that, when and all the ’s are
equal to , the upper bound in Theorem 1 is tight but the lower
bound is not. An interesting example in which the upper bound
is not tight but the lower bound is tight is an -node bidi-
rectional ring which contains one hub node, say node 1, with

, and the other nodes each with .
In this case, the lower bound in Theorem 1 corresponds to the
cut which separates the hub node from all the other nodes, and
is given by . In the next subsection, we
construct a specialized on-line RWA algorithm to show that

, yielding the following lemma.
Lemma 5: For an -node bidirectional ring with

and , .
Proof: The above discussion shows that .

The proof of is in the next subsection.

A. Single-Hub Ring RWA Algorithm

Consider a bidirectional ring with nodes. In particular,
node 1 acts as a hub node with . In addition, for

, . Note that the nonhub nodes can directly
transmit and/or receive wavelengths among themselves.

We shall first give an informal argument to show that
. Afterwards, we shall present a formal proof

based on an on-line RWA algorithm which uses
wavelengths.

As in the ring RWA algorithm, the main idea in this section
involves sharing of a directed wavelength by an adjacent session
pair. As a reminder, two sessions are said to be adjacent if the
destination node of one session is the source node of the other.
Two sessions are said to be mutually adjacent if the destination
node of one session is the source node of the other and vice
versa. For convenience, we shall call two sessions which are
adjacent but not mutually adjacent a nonmutual adjacent ses-
sion pair. While a nonmutual adjacent session pair can share a
directed wavelength in only one ring direction, a mutual adja-
cent session pair can share a directed wavelength in either ring
direction.

We shall refer to an adjacent session pair which has the hub
node as a common node as an adjacent session pair at the hub.
Our RWA is based on the following two RWA conditions:
1) only adjacent session pairs at the hub share a directed
wavelength, and 2) all mutual adjacent session pairs at the hub
share a directed wavelength. We first give an informal proof
that wavelengths are sufficient to support the
traffic. We ignore integer rounding in the informal discussion
below.

Given a traffic matrix, form all the mutual adjacent session
pairs at the hub, but do not assign directed wavelengths for them
at this point. Then form all the nonmutual adjacent session pairs
at the hub in a greedy fashion. Let and denote the numbers of
mutual and nonmutual adjacent session pairs at the hub, respec-
tively. Let be the number of the remaining sessions. Note that
we cannot form another adjacent session pair at the hub among
these sessions.

We first support the nonmutual adjacent session pairs at the
hub on directed wavelength in the required ring directions.
We now show this is always possible. Observe that each nonhub
node terminates, i.e., transmits or receives, at most one session
in these adjacent pairs. To see this, note that each nonhub
node cannot transmit more than one session since it only has
one transmitter. By the same argument, each nonhub node
cannot receive more than one session. Moreover, each nonhub
node cannot transmit a session and receive a session in these

adjacent pairs simultaneously, or else we can form another
mutual adjacent session pair at the hub. It follows that each
nonmutual adjacent session pair at the hub is terminated at two
nonhub nodes, and no other nonmutual adjacent session pair
at the hub is terminated at any of these two nodes. Since there
are nonhub nodes, it follows that . Since
there are directed wavelengths available in each
ring direction, there are enough wavelengths to support the
session pairs.

We next support the mutual adjacent session pairs at the hub
on any unused directed wavelengths. We now show this is al-
ways possible. Note that each mutual adjacent session pair at the
hub is terminated at one distinct nonhub node. From the above
discussion, each nonmutual adjacent session pair at the hub is
terminated at two distinct nonhub nodes. Since there are
nonhub nodes, it follows that , or equivalently

. Since there are unused directed
wavelengths left for this step, the inequality
implies that there are enough directed wavelengths to support
the session pairs.

In the final step, we support the remaining sessions on any
unused directed wavelengths. We now show this is always pos-
sible. Since we cannot form any adjacent session pair at the hub
from these sessions, the hub node can either transmit or re-
ceive some or all of these sessions but not both. Without loss
of generality, assume that the hub node transmits none of these

sessions. Consider the transmitters at the nonhub nodes. Each
of the mutual adjacent session pairs at the hub uses one trans-
mitter at some nonhub node. Similarly, each of the nonmutual
adjacent session pairs at the hub uses one transmitter at some
nonhub node. Since the hub node does not transmit any of the
remaining sessions, each of the sessions uses one transmitter at
some nonhub node. Since there are nonhub nodes, it fol-
lows that , or equivalently .
Since there are unused directed wavelengths left
for this step, there are enough directed wavelengths to support
the remaining sessions.

Based on the above discussion, we now formally present an
on-line RWA algorithm which uses wavelengths
in each fiber, is rearrangeably nonblocking, and requires at most
four lightpath rearrangements per new session request. We shall
refer to this algorithm as the single-hub ring RWA algorithm.

Single-Hub Ring RWA Algorithm: (Use wave-
lengths in each fiber.)

Session termination: When a session terminates, simply re-
move its associated lightpath from the ring without any further
lightpath rearrangement.

Session arrival: When a session arrives and the resultant
traffic matrix is still -allowable, proceed as follows.
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Step 1: If the new session, denoted by , can form a mutual
adjacent session pair at the hub with some existing session, de-
noted by , there are two possibilities.

(1a) If is not sharing its directed wavelength, assign
the mutual adjacent session pair and to share this di-
rected wavelength. In this case, no lightpath rearrangement is
required.

(1b) If is sharing a directed wavelength with another ex-
isting session, denoted by , then and are not mutually ad-
jacent at the hub, or else and cannot be mutually adjacent
at the hub. Remove from its directed wavelength and assign
the mutual adjacent session pair and to share the directed
wavelength of .

If there is a free directed wavelength, use it to support . In
this case, one lightpath rearrangement is made. Otherwise, we
claim and shall prove shortly that can form another adjacent
session pair at the hub with some nonsharing session, denoted
by . Note that and cannot be mutually adjacent at the hub,
or else they would have shared a directed wavelength.

If the directed wavelength of can support , assign and
to share this directed wavelength. In this case, one lightpath

rearrangement is made. Otherwise, we claim and shall prove
shortly that there must exist either a nonsharing session or a
mutual adjacent session pair in the opposite ring direction. In
the case of a nonsharing session in the opposite ring direction,
we remove that nonsharing session and support and on its
directed wavelength. The removed nonsharing session can then
be supported on the directed wavelength of . In this case, a
total of three lightpath rearrangements are made. In the case of
a mutual adjacent session pair in the opposite ring direction,
we remove that mutual adjacent session pair and support and

on their directed wavelength. The removed mutual adjacent
session pair can then be supported on the directed wavelength
of . In this case, a total of four lightpath rearrangements are
made.

Step 2: If cannot form a mutual adjacent session pair at
the hub with any existing session and there is a free directed
wavelength, use a free directed wavelength to support . In this
case, no lightpath rearrangement is made.

Step 3: If cannot form a mutual adjacent session pair at the
hub with any existing session and there is no free directed wave-
length, we claim and shall prove shortly that, among nonsharing
sessions and , a nonmutual adjacent session pair at the hub can
be formed. Denote this session pair by and . There are two
possibilities.

(3a) If is in the session pair, i.e., or , assume
without loss of generality that . If the directed wavelength
of can support , assign and to share this directed wave-
length. In this case, no lightpath rearrangement is required. Oth-
erwise, we claim and shall prove shortly that there must exist
either a nonsharing session or a mutual adjacent session pair in
the opposite ring direction. In the case of a nonsharing session in
the opposite ring direction, we remove that nonsharing session
and support and on its directed wavelength. The removed
nonsharing session can then be supported on the directed wave-
length of . In this case, a total of two lightpath rearrangements
are made. In the case of a mutual adjacent session pair in the
opposite ring direction, we remove that mutual adjacent session

pair and support and on their directed wavelength. The re-
moved mutual adjacent session pair can then be supported on
the directed wavelength of . In this case, a total of three light-
path rearrangements are made.

(3b) If is not in the session pair, then and . If the
directed wavelength of either or can support the session pair,
assign and to share this directed wavelength. This sharing
frees one directed wavelength on which can be supported. In
this case, one lightpath rearrangement is made. Otherwise, we
claim and shall prove shortly that there must exist either a non-
sharing session or a mutual adjacent session pair in the opposite
ring direction. In the case of a nonsharing session in the opposite
ring direction, we remove that nonsharing session and support
and on its directed wavelength. The removed nonsharing ses-
sion and the new session can then be supported on the directed
wavelengths of and . In this case, a total of three lightpath
rearrangements are made. In the case of a mutual adjacent ses-
sion pair in the opposite ring direction, we remove that mutual
adjacent session pair and support and on their directed wave-
length. The removed mutual adjacent session pair and the new
session can then be supported on the directed wavelengths of
and . In this case, a total of four lightpath rearrangements are
made.

Proof of algorithm correctness: From the algorithm descrip-
tion, it is clear that we always keep the two desired RWA condi-
tions, i.e., 1) only adjacent sessions at the hub share a directed
wavelength, and 2) all mutual adjacent sessions at the hub share
a directed wavelength. In addition, it is clear that at most four
lightpath rearrangements are made to support each new session
request. We shall prove the two claims in step 1, and the other
three claims in step 3.

The first claim in step 1 and the first claim in step 3 are essen-
tially the same. We shall prove the two claims at the same time.
The claims state that if a session to be supported, denoted by ,
is not mutually adjacent to any existing session at the hub and
there is no free directed wavelength to support it, then there ex-
ists among nonsharing sessions and an adjacent session pair
at the hub, denoted by and .

We proceed by contradiction. Assume that an adjacent ses-
sion pair at the hub cannot be found. Let be the number of
mutual adjacent session pairs at the hub. Let be the number of
nonmutual adjacent session pairs at the hub which share a di-
rected wavelength. Let be the number of nonsharing sessions
including session . We argue that . To
see this, define and , , to be the number of
nonsharing sessions transmitted and received at node , respec-
tively. Since there is no adjacent session pair at the hub (node 1)
among these sessions, we have that either or .
Without loss of generality, assume . Note that each of
the sharing session pairs which are adjacent at the hub
uses one transmitter at a nonhub node. There are in total
transmitters at nonhub nodes. Thus, the number of transmitters
used for nonsharing sessions at nonhub nodes are bounded by

. It follows that
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Since we have a total of directed wavelengths,
the number of directed wavelengths available to support non-
sharing paths is , which is at least the
number of nonsharing paths . This contradicts the
assumption that there is no free directed wavelength to support

. Thus, we have shown that an adjacent session pair at the hub
must exist.

The second claim in step 1 and the last two claims in step 3
are essentially the same. We shall prove them all at the same
time. The claim states that if a nonmutual adjacent session pair
at the hub, denoted by and , cannot fit on a directed wave-
length of either or and there is no free directed wavelength in
the opposite ring direction, then there exists either a nonsharing
session or a mutual adjacent session pair on a directed wave-
length in the opposite ring direction. As defined above, let be
the number of mutual adjacent session pairs at the hub. Let be
the number of nonmutual adjacent session pairs at the hub in-
cluding sessions and . Note that each of these session pairs
may or may not share a directed wavelength. We first show that

. Define the following quantities for node ,
. Let and denote the number of sessions in those

session pairs which are transmitted and received at node , re-
spectively. It is clear that and . By definition,
each of these session pairs is not a mutual adjacent session
pair at the hub. Thus, at each nonhub node , either or

. It follows that . Because each of the
session pairs uses one transmitter and one receiver at nonhub
nodes, it follows that

Since is an integer, we have shown that .
The claim is now apparent from the fact that .

In other words, the number of supported nonmutual adjacent
session pairs at the hub is strictly less than the number of
directed wavelengths in each ring direction . Given
that there is no free directed wavelength, it follows that, in either
ring direction, either a nonsharing session or a mutual adjacent
session pair exists.

B. On-Line RWA for Bidirectional Sessions

In this subsection, we discuss the special case in which ses-
sions are bidirectional. More precisely, for each node pair and
, if there are sessions from to , there are also sessions

from to .
We define a special kind of adjacent session pairs as follows.

Two sessions form a mutual adjacent session pair if the source
node of one session is the destination node of the other and vice
versa. Note that each pair of bidirectional sessions form a mu-
tual adjacent session pair. In addition, a mutual adjacent session
pair can share a directed wavelength in either ring direction, as
shown in Fig. 5 for the pair (2,4) and (4,2).

The number of mutual adjacent session pairs in -allowable
traffic with bidirectional sessions is at most .
Since each mutual adjacent pair can be supported on one
directed wavelength in any ring direction, it follows that

wavelengths are sufficient to support -al-

Fig. 5. Supporting a mutual adjacent session pair on a directed wavelength.

lowable traffic with bidirectional sessions. In addition, if we
assume that each traffic matrix change is a result of arrivals
or departures of a pair of bidirectional sessions, then, with

wavelengths, new arrivals can use any free
directed wavelength and require no rearrangement of existing
sessions.

Notice that Lemma 4 is still valid for bidirectional sessions
since the cut that corresponds to the lower bound can have bidi-
rectional sessions travel across it. Therefore, we have the fol-
lowing bounds on and .

Lemma 6: For a bidirectional ring with nodes and -allow-
able traffic with bidirectional sessions,

In addition, if sessions arrive and depart in bidirectional pairs,
there exists a wide-sense nonblocking on-line algorithm that
uses wavelengths in each fiber.

Note that, when all the ’s are equal to , the bounds
in Theorem 6 are rather tight, i.e.,

. For the one-hub ring with and
for all other , the bounds in Theorem 6 coincide and

.

IV. TORUS TOPOLOGY

In this section, we present an on-line RWA algorithm for -al-
lowable traffic in a torus network. We shall consider only the
cases in which all the ’s are equal to some integer . For con-
venience, we refer to the -allowable traffic in which all the ’s
are equal to as symmetric -allowable traffic.

Consider an torus network with nodes, where
and . If , we can reverse the roles of columns

and rows and the following discussion remains valid. Let and
be the minimum number of wavelengths which, if provided

in each fiber, can support symmetric -allowable traffic with and
without wavelength conversion, respectively. Note that and

are the numbers of wavelengths used to support any traffic
matrix in the symmetric -allowable set. Thus, for a specific
traffic matrix, we may need fewer wavelengths than in the worst
case. In [20], it was shown that and are bounded by
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Fig. 6. Sessions from distinct source columns to distinct destination rows can
share a directed wavelength under column first routing.

The lower bound on was derived by finding the cut with
the maximum traffic per fiber across it. The upper bound on
was derived by constructing an off-line RWA algorithm based
on a bipartite matching problem formulated in [19] and [20].2

We shall extend the results in [19] and [20] to develop an on-line
RWA algorithm that uses the same number of wavelengths and
provides two advantages. First, for each RWA update due to
a traffic change, our algorithm guarantees that at most
existing lightpaths are rearranged. Second, for each RWA up-
date, our algorithm needs to solve a simple bipartite matching
that requires the running time . As will be seen shortly,
if the off-line algorithm is used for each RWA update, the as-
sociated bipartite matching problem requires the running time

.
We first explain the off-line algorithm in [19] and [20]. Define

a directed wavelength in a torus network as follows. Each wave-
length consists of an upward directed wavelength and a down-
ward directed wavelength. An upward directed wavelength is
directed upwards along any column and to the right along any
row. A downward directed wavelength is directed downwards
along any column and to the left along any row.

We apply column-first routing where each lightpath travels
along the source column and then along the destination row.
In addition, each lightpath is supported by no more than one
directed wavelength, i.e., if it travels upwards along the source
column, then it must travel to the right along the destination
row. Under column-first routing, a set of sessions from distinct
source columns to distinct destination rows can all be supported
on a single directed wavelength, which can be either upward or
downward directed [20], as shown in Fig. 6.

We can view the set of sessions from distinct source columns
to distinct destination rows as a matching in a bipartite
graph [19]. For a given traffic matrix, we can construct the
column-to-row bipartite graph, denoted by , as
follows. The set of abstract nodes contains nodes corre-
sponding to the source columns. The set of abstract nodes

contains nodes corresponding to the destination rows.
In the set of edges , an edge between node in and node
in corresponds to a session from a source in column to a
destination in row .

Since the sessions belonging to a matching in the
column-to-row bipartite graph are transmitted from distinct

2Several other resource allocation problems can be casted into bipartite
matching problems, e.g., [21].

source columns to distinct destination rows, these sessions can
be supported on one directed wavelength using column-first
routing. The off-line algorithm in [19] and [20] assigns a single
matching to a single directed wavelength. Since the bipartite
graph has the maximum node degree , the edges can be
partitioned into disjoint matchings [22]. It follows that,
directed wavelengths, i.e., wavelengths, are sufficient.

The complexity of the off-line RWA algorithm is due largely
to finding disjoint bipartite matchings. The best known al-
gorithm for finding a maximum bipartite matching in [23] has
the running time , where is the maximum node degree
and is the number of edges in the bipartite graph. For our pur-
pose, this algorithm finds matching in time .

We now present our on-line algorithm. The algorithm keeps
disjoint bipartite matchings of directed wavelengths

such that each traffic session corresponds to an edge in one
matching. When a session departs, we simply remove its
corresponding lightpath from the network. When a new ses-
sion, say , arrives, we find one directed wavelength
which is not used by any source in column , and one directed
wavelength which is not used by any destination in row . If
the two directed wavelengths are the same, we can support the
new session without any lightpath rearrangement. Otherwise,
we rearrange some existing lightpaths on the two directed
wavelengths to support the new session. The following lemma
makes the above discussion concrete and states an upper bound
on the number of lightpath rearrangements.

Lemma 7: In a bipartite graph with
, given a new edge , , , a matching
of directed wavelength which is not incident on , and

a matching of directed wavelength which is not incident
on , there exist two disjoint bipartite matchings which cover
all the edges in and as well as the new edge .

In addition, these two disjoint matchings can be assigned to
and so that the number of lightpath rearrangements is at

most .
Proof3: Consider the bipartite graph whose set of

edges contains all of the edges in and as well as the
new edge . Observe that each node has degree at most 2.
It follows that can be partitioned into two disjoint matchings
[22], denoted by and , respectively.3

Without loss of generality, assume that belongs to
. Let set contain the edges in assigned to and

the edges in assigned to . Let set contain the edges
in assigned to and the edges in assigned to .
Notice that and cover all the edges in and . Since
there are at most edges in and , it follows that

.
If , assigning to and to yields

the desired result that the number of lightpath rearrangements,
which is equal to the sum of the number of edges in as-
signed to and the number of edges in assigned to ,

3As an alternative proof, we can map this lightpath rearrangement problem
into a problem of connection rearrangement in a three-stage Clos network of
switches [24]. The switches in the first and third stages correspond to the nodes
in C and R, respectively. The switch in the second stages correspond to wave-
lengths. It follows that Paull’s Theorem on the number of rearrangements can
be applied to obtain the result of Lemma 7. The proof above is simpler and more
direct.
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is at most . Otherwise, it is true that . In
this case, assigning to and to yields the desired
result.

Below is our on-line RWA algorithm which we shall refer to
as the torus RWA algorithm.

Torus RWA Algorithm (Use wavelengths in each
fiber.)

Session termination: When a session terminates, simply re-
move its associated lightpath from the network without any fur-
ther lightpath rearrangement.

Session arrival: When a session arrives and it is allowable,
proceed as follows. Let and denote the source column and
the destination row of the new session.

Step 1: If there is a directed wavelength, denoted by , which
is used by neither a source in column nor a destination in row ,
then assign the new session to , and use column-first routing.
In this case, no lightpath rearrangement is required. Otherwise,
proceed to step 2.

Step 2: Find a directed wavelength, denoted by , which is
not used by any source in column , and another directed wave-
length, denoted by , which is not used by any destination in
row . Since the new session is assumed allowable, and
exist.

Modify the RWA of only the sessions on and . Construct
the column-to-row bipartite graph in which the set
of edges contains the bipartite matchings of and as well
as the new edge . Notice that and
each abstract node has degree at most 2. From Lemma 7, the set

can be partitioned into two disjoint matchings. In addition,
Lemma 7 tells us that the two matchings can be assigned to
and such that at most existing lightpaths need to be
rearranged.

We now argue that each RWA update in the torus RWA algo-
rithm requires solving a bipartite matching problem whose time
complexity is only using the following edge coloring pro-
cedure with two colors.

In the beginning of each coloring step, we select any uncol-
ored edge and assign any color to it. We then iteratively proceed
to its adjacent uncolored edge and assign the different color.
Since we have a bipartite graph with maximum node degree 2,
when the step terminates, we either have a path or a cycle of
even length that never visits the same node more than once. In
either case, it is clear that two colors are sufficient. At this point,
we start the next coloring step until all the edges are colored.
Since each node belongs to a single path or cycle, the edges col-
ored in different steps are never adjacent and can thus be colored
separately. It is clear that the edges with the same color form
a matching. Since each edge is visited once and the number of
edges is bounded by in a bipartite graph with maximum node
degree 2, the running time of this algorithm is .

For an torus network with , we can obtain
similar results by reversing the roles of columns and rows. We
summarize the results in this section in the following theorem.

Theorem 2: For an torus network with symmetric -al-
lowable traffic, there exists, by construction, an on-line RWA al-
gorithm which uses wavelengths in each fiber
and requires at most lightpath rearrangements
per new session request.

V. CONCLUSION

We developed an on-line routing and wavelength assignment
(RWA) algorithm a for WDM bidirectional ring with nodes
to support -allowable traffic in a rearrangeably nonblocking
fashion. The algorithm uses wavelengths in each
ring direction and requires at most three lightpath rearrange-
ments per new session request regardless of the number of nodes

and the amount of traffic .
The developed algorithm implies the upper bound on , i.e.,

. The bound is tight for the case in which
and all the ’s are equal to some positive integer .

In addition, we observed that, for and a fixed value of
equal to for some positive integer , the case in

which all the ’s are equal yields the maximum value of .
We extended the off-line RWA algorithm in [19] and [20]

to obtain an on-line algorithm for an torus topology
to support -allowable traffic, where all the ’s are equal to
some positive integer , in a rearrangeably nonblocking fashion.
Our on-line algorithm uses wavelengths in
each fiber and requires at most lightpath rear-
rangements per new session request regardless of the amount of
traffic .

Each of the above on-line RWA algorithms uses the same
number of wavelengths as the best-known off-line algorithm,
and is advantageous in two ways. First, each on-line algorithm
guarantees that, for each RWA update due to a traffic change,
only a small fraction of existing lightpaths are rearranged.
Second, for each RWA update, applying our on-line algorithm
instead of the off-line algorithm yields lower computational
complexity.

We observe from the two algorithms that the number of light-
path rearrangements per new session request is related to the
number of lightpaths supported on a single directed wavelength.
For a bidirectional ring, up to two lightpaths are supported on
a single directed wavelength. Since the ring RWA algorithm
modifies only the RWA of the sessions on at most three di-
rected wavelengths, it follows that the number of lightpath re-
arrangements depends on neither the number of nodes nor
the amount of traffic . For a torus topology, up to light-
paths are supported on a single directed wavelength. Since the
torus RWA algorithm modifies only the RWA of the sessions
on at most two directed wavelengths, it follows that the number
of lightpath rearrangements depends on the dimension of the
network but not on the amount of traffic . It is interesting
to find out whether we can design an on-line RWA algorithm
for an arbitrary mesh topology to have a similar property re-
garding lightpath rearrangements. We hope that our analytical
approaches in this paper can be used in future development of
such an algorithm.
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