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Abstract. We first introduce a generic model for discrete cost multicommodity network optimization,
together with several variants relevant to telecommunication networks such as: the case where discrete
node cost functions (accounting for switching equipment) have to be included in the objective; the case
where survivability constraints with respect to single-link and/or single-node failure have to be taken into
account. An overview of existing exact solution methods is presented, both for special cases (such as the
so-called single-facility and two-facility network loading problems) and for the general case where arbitrary
step-increasing link cost-functions are considered. The basic discrete cost multicommodity flow problem
(DCMCF) as well as its variant with survivability constraints (DCSMCF) are addressed. Several possible
directions for improvement or future investigations are mentioned in the concluding section.

1. Introduction

Network optimization problems which, among other issues, include topological opti-
mization and optimum network loading (or dimensioning), arise in many important areas
of applications, such as telecommunications, transportation systems, distribution and lo-
gistics, see for instance [13,20,21,29,36,38,43]. Among existing surveys covering a wide
variety of network optimization models, we refer to [3,19,36,41,43]. In these models,
the cost functions to be minimized are in most cases linear, linear with fixed costs, or
nonlinear but continuous. In the latter case, apart from a few very specially structured
problems (see, e.g., [18]) exact solution algorithms can only be expected when convexity
is present.

We are concerned here with a very general model for network optimization ex-
pressed in terms of minimum cost multicommodity flows, with discrete (nonconvex,
discontinuous, step increasing) cost functions on the links (also, as will be seen in the
paper, discrete costs of switching equipment may easily be taken into account within the
same model). Investigations of (simplified versions of) this class of network optimiza-
tion problems have started only a few years ago with the work by [32] and [4] on the
so-called “single-facility network loading problem”; and by [34] and [6] on the so-called
“two-facility network loading problem”. Contrary to the above-mentioned contributions,
the general model discussed in the present paper does not assume any special structure of
the link cost functions, besides the fact that they are discontinuous and step-increasing,
therefore appropriate to capture two major aspects of actual cost structure in telecom-
munication network engineering:
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• the discreteness of capacity and cost increase on the links (transmission equipment)
as well as at the nodes (switching equipment),

• the so-called “economy of scale” phenomenon, which is basically that the cost per
unit capacity installed is decreasing with the maximum capacity provided by an
equipment.

The purpose of the present paper is twofold. First we illustrate the flexibility of the
generic model proposed by showing various possible applications (including the single-
facility and two-facility versions of the problem). This will be the subject of section 2.
The second objective is to provide an overview of the currently available exact solution
algorithms which have been proposed so far, with a discussion of the computational
results obtained. This will be the subject of section 3. Finally, in section 4, several
possible directions for improvement or future investigations are mentioned.

2. Modeling discrete cost network optimization problems

2.1. Single-commodity and multicommodity flow models

We assume here familiarity with the basic concepts and tools from graph theory, network
flow theory and linear programming, for which numerous textbooks are available.
A network optimization problem will be specified as follows.
First, we are given a graph G = [N ,U ] where:

• N is the set of nodes representing the various sources or destinations of traffic (cor-
responding, for instance, to customers, switching centers, etc.) which have to be
interconnected through communication links; we denote N = |N |;

• U corresponds to the set of possible physical links on which transmission equipment
(cables, optical carriers, etc.) may be installed in order to allow traffic to be flowed
through the network. Each possible transmission equipment which is eligible for
capacity augmentation on a given link is characterized by its capacity (expressed in
a given unit, e.g., Mb/sec) and its cost. (At this stage we do not consider switching
equipment at the nodes; we will show later how they may be handled.) We denote
M = |U |.

Note that in this paper we will refer to G as an undirected graph (U will therefore be a
set of edges) which corresponds to considering, on each link (i, j) the global flow on the
link without distinguishing that part of traffic flowing from i to j from that part of traffic
flowing from j to i. Obviously, all the models discussed here would readily extend in
case of an application requiring a distinct representation for the traffic flow from i to j

and for the traffic flow from j to i. In such a case, G would have to be assumed directed
(U being a set of arcs).

In addition to the graph G representing all possibilities for capacity installation or
capacity augmentation, a set of traffic requirements between some (or all) pairs of nodes
has to be specified. Thus a list of requirements between pairs of nodes will be assumed to
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be given in the following form: K denoting the number of pairs, for each k = 1, . . . , K,
dk will denote the required amount of flow to be sent through the network between the
nodes s(k) (“source”) and t (k) (“destination”).

Remark. Again, we consider here an undirected model, where, for any given pair of
nodes in the list, say k, dk represents the total amount of communication needs from
s(k) to t (k) and from t (k) to s(k). The model discussed below would readily extend to
a context of application where it would be necessary to distinguish the traffic flows from
s(k) to t (k) from the traffic flows from t (k) to s(k).

A natural basic model of communication needs between nodes of a telecommu-
nication network is in terms of network flow theory [1,12]. In particular, the so-called
single-commodity flow (SCF) model allows one to represent the use of resources (trans-
portation or communication facilities) when there is only one flow requirement between
two nodes, a source s and a sink t . The flow through the network is then represented as
a vector ϕ = (ϕ1, ϕ2, . . . , ϕM) where:

• M is the number of links,

• |ϕu| (1 � u � M) is the amount of resource used on link (or edge) u,

• having chosen an (arbitrary) orientation on link u = (i, j) (e.g., ϕu > 0 if the flow
runs from i to j and ϕu < 0 if it runs from j to i), then Kirchhoff’s conservation law
holds at each node i (i �= s, i �= t), i.e.,

∀i ∈ N , i �= s, i �= t :
∑

u∈ω+(i)
ϕu −

∑
u∈ω−(i)

ϕu = 0, (1)

v(ϕ) =
∑

u∈ω+(s)
ϕu =

∑
u∈ω−(t)

ϕu, (2)

ω+(i) and ω−(i) denote, respectively, the subsets of arcs originating at i and termi-
nating at i. v(ϕ) is nothing but the total amount of flow leaving node s (source) or
entering note t (sink) and is called the value of flow ϕ. (In our model below, v(ϕ)
will be constrained to be equal to the prescribed flow requirement between s and t in
the network.)

Let G̃ denote the directed graph deduced from G by choosing, on each edge u =
(i, j) the orientation from i to j if i < j and from j to i if i > j (here an arbitrary
ordering of the nodes is used). The basic relations (1) and (2) defining a flow with
source s and sink t can be rewritten in matrix notation as:

(SCF) A · ϕ = v(ϕ) · b (3)

where A is the N × M node-arc incidence matrix of graph G̃ and b is an N-vector with
all components 0, except bs = +1 and bt = −1.

Now, in the network problems we want to solve, there are several distinct traffic
requirements to be flowed simultaneously on the network, and these have to share the
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common capacity resources on the links. To represent such a situation, we need the
concept of a multicommodity flow.

In algebraic form, a multicommodity flow can be viewed as a M-vector � =
(�1,�2, . . . , �M) (each component corresponding to an edge or an arc of the network)
defined by the following linear system:

(MCF)

{ ∀u ∈ U : �u = ∑K
k=1

∣∣ϕk
u

∣∣,
∀k = 1, 2, . . . , K: A · ϕk = dk · bk,

where ϕk denotes the M-vector representing the kth single-commodity flow (between
s(k) and t (k)) and, ∀k, bk is the N-vector with all components 0, except bks(k) = +1 and
bkt(k) = −1 and dk the amount of flow to be sent from s(k) to t (k).

On each edge or arc of G, �u thus denotes the sum of the amounts of resources
(transmission or communication facilities) used by the various constitutive single-
commodity flows.

Later on, in the paper, we will denote by X ⊂ R
M+ the polyhedron representing the

set of all feasible multicommodity flows:

X = {
x ∈ R

M | x � � for some � satisfying (MCF)
}
.

Thus x = (xu)u∈U belongs to X if and only if a feasible multicommodity flow exists
when, on each edge u ∈ U , the total capacity installed is xu (of course xu � 0 on each
edge u).

Several linear representations of X (as a system of linear equality and inequality
constraints involving the x variables and possibly other variables) are known, including
the so-called node-arc formulation and arc-chain formulation (for an overview, see, e.g.,
Assad [2], Kennington [30], Minoux [43]).

Later in the paper we will use the following representation of X involving the x
variables only. For any λ = (λ1, . . . , λM) ∈ R

M+ , let θ(λ) denote the quantity

θ(λ) =
K∑
k=1

dk × l∗k (λ),

where l∗k (λ) is the length of the shortest chain joining s(k) and t (k) in G, when each
edge u ∈ U is given length λu � 0 (note that θ(λ) may be interpreted as the value of the
minimum cost multicommodity flow solution when, on each edge u, the cost function
�u(xu) is linear of the form λuxu).

Then x = (xu)u∈U belongs to X if and only if, for all λ ∈ R
M+ , we have∑

u∈U
λuxu � θ(λ) (4)

(see, e.g., [48] or [24, chapter 6]). The above inequalities (4) are often referred to as
“metric inequalities”.
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2.2. A general min-cost multicommodity flow model

Suppose we are given a set of nodes N = {1, 2, . . . , N} and a set of edges U repre-
senting all the existing and possible links between the nodes in N (one of the expected
results of the optimization model is to specify on which links capacity should be installed
in order to minimize the total cost criterion). Moreover, we are given multicommodity
flow requirements, i.e., a list of source-sink pairs s(k)t (k) (k = 1, . . . , K) with corre-
sponding prescribed flow values dk (k = 1, . . . , K), each dk representing, for instance,
the amount of commodity which should be sent between s(k) and t (k) in the network to
be built. Associated with each possible link u ∈ U , we shall assume that we are given
a cost function �u giving, for any value xu of the total (multicommodity) flow on u, the
cost �u(xu). We assume here that the cost function �u on each link is a discrete discon-
tinuous step-increasing function of the total flow on link u defined on a given interval
[0, βu] as follows:

Let Vu = {v0
u, v

1
u, . . . , v

q(u)
u } be a finite set of values representing the discontinuity

points of the �u function and denote

γ 0
u =�u

(
v0
u

)
,

γ 1
u =�u

(
v1
u

)
,

γ 2
u =�u

(
v2
u

)
,

...

γ q(u)
u =�u

(
vq(u)u

)
,

with 0 = v0
u < v1

u < v2
u < · · · < v

q(u)
u = βu and 0 = γ 0

u < γ 1
u < γ 2

u < · · · < γ
q(u)
u .

With this notation we have:

�u(xu) = 0 if xu = 0 and ∀i = 1, . . . , q(u): �u(xu) = γ i
u

for all xu ∈ ]
vi−1
u , viu

]
.

Figure 1 shows a typical cost function of this kind. Note here that the cost function
�u(xu) is not defined for values of xu greater than βu = v

q(u)
u , therefore our model will

include bound constraints of the form: 0 � xu � βu.
Using the algebraic model introduced in section 1.2, finding a minimum cost mul-

ticommodity flow with the above cost functions is equivalent to the following mathemat-
ical programming problem:

(DCMCF)



Minimize �(x) =
∑
u∈U

�u(xu)

subject to

xu =
K∑
k=1

∣∣ϕk
u

∣∣ (∀u ∈ U),

A · ϕk = dkb
k (k = 1, . . . , K),

∀u: 0 � xu � βu
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Figure 1. A typical cost function on one link u ∈ U .

(“minimum discrete cost multicommodity flow” problem).
An equivalent formulation using the feasible multicommodity flow polyhedron X

is:

(DCMCF′)


Minimize �(x) =

∑
u∈U

�u(xu)

subject to
∀u: 0 � xu � βu,

x ∈ X.

We note that assuming, as above, upper bound constraints on the total capacity which
may be installed on the links is actually not restrictive. Indeed, setting these upper
bounds to the value

∑
k dk is equivalent to imposing no actual restriction on the way

flows are routed on the network.

2.3. Versatility of the model: known special cases and new applications

The general problem (DCMCF) introduced above includes as special cases a number of
network optimization problems studied in the literature.

(a) The so-called single-facility capacitated network loading problem, where capacity
expansion on any given link u can be done by installing an integer number of units of
a given basic facility characterized by its capacity C and its cost γu (see, e.g., [4,7]).
Figure 2 shows a typical link cost function corresponding to the single-facility case.

(b) The so-called two-facility capacitated network loading problem, which generalizes
the previous model in that, on each link u, capacity expansion can be achieved by
means of two types of facilities, one “small” facility with capacity C1 and cost γ 1

u

and a “large” facility with capacity C2 and cost γ 2
u with γ 1

u /C
1 > γ 2

u /C
2 (to comply
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Figure 2. Link cost function for the single-facility network loading problem.

Figure 3. Link cost function for the two-facility network loading problem.

with the economy of scale phenomenon) (see [6,34]). Figure 3 shows a typical link
cost function corresponding to the two-facility case.

Note, however, that the cost function shown in figure 3 may still not correspond
well to the needs of practical applications for various reasons.

One of the reasons is that, in practice, due to the rapid increase of communication
needs, once a big capacity system has been installed on a link, the smaller capacity
system should not be considered anymore. This constraint is not easy to handle within a
two-facility model, since it significantly alters the mathematical structure of the problem.
However, in the framework of our general model, such a constraint is readily taken into
account by changing the cost function of figure 3 by the cost function shown in figure 4.
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Figure 4. Link cost function for the two-facility case with the additional constraint that the smaller facility
is no longer used, once the larger facility has been used.

Figure 5. A typical link cost function corresponding to the case of three facilities (C1, γ 1), (C2, γ 2),

(C3, γ 3) with the constraint that, once a facility has been installed, smaller facilities are not installed any
more.

Another reason which restricts the applicability of the single-facility or two-facility
models is that, in practice, the number of available types of equipment may be signifi-
cantly larger than 2. Considering our general model with arbitrary step increasing cost
functions induces no limitation of this kind and enables proper handling of a huge va-
riety of situations, such as the one shown in figure 5 (which corresponds to the case of
3 facilities with the additional constraint that, once a facility has been installed, smaller
facilities are not installed any more).

2.4. Including node costs (switching equipment) in the model

In this section, we show that our model (DCMCF) remains essentially unchanged if
discrete (step-increasing) node costs (representing installation of switching equipment)
have to be taken into account.
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The cost of switching equipment at each node i ∈ N essentially depends on the to-
tal volume of traffic, say yi , transiting through node i. As for link capacity increases, we
will consider that node capacity augmentations may be performed by discrete amounts,
corresponding to various available equipment types, each of which is specified by a
(capacity, cost) pair. Thus we will assume that, for each i ∈ N , we are given a step-
increasing function #i(yi ) representing total switching cost at i as a function of yi .

We note that the yi variables may easily be expressed in terms of the variables ϕk

involved in the formulation (DCMCF) given above. Indeed, for the kth commodity, at
any node i �= s(k), i �= t (k) the total flow of that commodity through node i is equal
to 1

2

∑
u∈ω(i) |ϕk

u| where ω(i) denotes, as usual, the set of arcs in G̃ which have i as an
endpoint (whether initial or terminal endpoint).

We therefore obtain:

yi = 1

2

∑
k/s(k) �=i
t (k) �=i

∑
u∈ω(i)

∣∣ϕk
u

∣∣
which leads to the following statement of the problem

(DCMCF1)



Minimize
∑
u∈U

�u(xu) +
∑
i∈N

#i(yi )

subject to

∀u ∈ U : xu =
K∑
k=1

∣∣ϕk
u

∣∣, (5)

∀i ∈ N : yi = 1

2

∑
k/s(k) �=i
t (k) �=i

∑
u∈ω(i)

∣∣ϕk
u

∣∣, (6)

∀k = 1, . . . , K: Aϕk = dkb
k, (7)

∀u ∈ U : 0 � xu � βu. (8)

It is seen above that equations (6) are quite similar to equations (5) and, indeed, it is easy
to check that (DCMCF1) may be reformulated as a problem of type (DCMCF) on a new
graph deduced from G̃ by essentially splitting each node i into two distinct nodes i′ and
i′′ and adding news arcs (i′, i′′) and (i′′, i′) along which the flow values are exactly the
values of the flow transiting through node i in G̃.

Thus (DCMCF1) and (DCMCF) appear to be essentially equivalent: any algorithm
solving (DCMCF) can be used to solve (DCMCF1).

3. Overview of exact solution methods and computational results

We first provide in section 3.1 an overview of recent results obtained on some important
special cases, mainly the single-facility and two-facility versions of the problem.

We next discuss available solution methods and computational results for (DCMCF)
in the general case of arbitrary step-increasing cost functions (with no extra constraint).
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The version of the problem with arbitrary step-increasing cost functions and survivabil-
ity constraints (later on denoted (DCSMCF)) is discussed in section 3.3.

In this section, please keep in mind that the notation xu, yu indeed have a meaning
different from xu, yi used in the previous section.

3.1. Solution algorithms for special versions: single-facility and k-facility cases
(k � 3)

The main stream of research directed towards obtaining exact solutions relies on the so-
called “branch and cut” approach. More precisely, starting from an integer (or mixed-
integer) LP formulation, valid inequalities and/or facet-defining inequalities are identi-
fied for strengthening the initial formulation, and possibly those corresponding to sub-
problems generated in the course of a branch and bound process.

One justification for such an approach is that, as noted by many authors, the bounds
provided by LP relaxations are usually weak, and strengthening the formulations prior
to applying branch and bound is compulsory.

To our knowledge, one of the first published work dealing with k-facility network
optimization problems (k � 3) is the paper by Magnanti and Mirchandani [32] which
is restricted to the case of single-origin-destination. (Note that the above draws however
from previous work [33,45].)

It is shown in [32] that, in the single-facility case, the problem reduces to a shortest
path problem between s and t (origin and destination of the flow) and that this property
is intimately related to an integrality property (with respect to the design variables) of
the polyhedron obtained by adding to the flow equations and upper bounding constraints
the set of so-called s − t cut inequalities which are obtained as follows.

Let C denote the capacity of one module of the facility to be installed and, on each
arc u = (i, j) of the network, let yu ∈ N denote the number of modules installed on
link u. For any s − t cut forming a partition of N into S and S = N \S with s ∈ S,
t ∈ S, denote ω(S) the set of edges having an endpoint in S and the other in S and
y(S, S) = ∑

u∈ω(S) yu. Then the corresponding cutset inequality reads:

y
(
S, S

)
�
⌈
d

C

⌉
, (9)

where d is the flow requirement between s and t and �d/C� denotes the “smallest integer
greater than or equal to d/C”.

It is shown in [32] that the cut inequalities (9) above may be extended to the two-
and three-facility versions of the problems. In the two-facility case, for instance, with
two types of modules having capacity 1 and C, respectively, the extended cut inequalities
read

x
(
S, S

)+ ry
(
S, S

)
� r

⌈
d(S, S )

C

⌉
, (10)
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where d(S, S) is the total flow requirement between nodes in S and nodes in S; r =
d(S, S) mod C; and xu (respectively yu) is the number of low capacity (respectively
medium capacity) modules installed.

But, unfortunately, the nice result of the single-facility case does not extend to
these more general versions of the problem (which turn out to be strongly NP-hard)
and it can only be shown that (10) are typically facets of the associated integer polyhe-
dron.

Further facet-defining inequalities are also derived in [32] for the three-facility
case.

As suggested in [32] the various types of inequalities above (in particular, inequali-
ties (10)) may be extended to the multicommodity case (where several single-commodity
flow requirements between a given set of origin-destination pairs have to be simultane-
ously met).

A more detailed study of the multicommodity case for the two-facility version of
the problem is provided in [34], where a polyhedral approach is described based on the
cutset inequalities (10) (which are shown to be facet-defining if d(S, S) > 0 and the
subgraphs induced by S and S are both connected), and two other classes of inequalities:
the so-called “arc-residual capacity” inequalities and “3-partition” inequalities.

The “arc-residual capacity” constraints are deduced from the polyhedral structure
of the constraints of the subproblems arising when applying the Lagrangian relaxation
principle to the individual flow conservation equations. (Indeed this Lagrangian sub-
problem decomposes into many subproblems, one for each arc in the network.)

Again, xu (respectively yu) denoting the number of low capacity (respectively
medium capacity) modules installed, such an inequality for arc u ∈ U typically reads:∑

k∈L

∣∣ϕk
u

∣∣− xu − rLyu � DL − µLrL, (11)

where L ⊂ {1, 2, . . . , K} is any subset of the commodities,

DL =
∑
k∈L

dk, µL =
⌈
DL

C

⌉
and rL = DL mod C.

The “3-partition” inequalities are obtained by partitioning the node set into three
(nonempty) subsets S1, S2, S3.

For any i, j , 1 � i � 3, i � j � 3, i �= j , we denote d(Si, Sj ) the sum of all
requirements between Si and Sj . Similarly we denote x(Si, Sj ) (respectively y(Si, Sj ))
the sum of the values xu (respectively yu) for all edges having one endpoint in Si and the
other endpoint in Sj . For all distinct i, j, k ∈ {1, 2, 3} denote:

qi =
⌈
d(Si, Sj ) + d(Si, Sk)

C

⌉
,

ri =
(
d(Si, Sj ) + d(Si, Sk)

)
mod C
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and r = min{r1; r2; r3}. Then the corresponding 3-partition inequality reads:

x(S1, S2) + x(S1, S3) + x(S2, S3) + r
(
y(S1, S2) + y(S1, S3) + y(S2, S3)

)
�
⌈
r(q1 + q2 + q3)

2

⌉
. (12)

Computational results on a series of 126 test problems are reported in [34]. They involve
graphs with up to 15 nodes 34 arcs and 21 commodities (thus the requirement matrices
have densities less than 20%). Exact solutions are obtained for instances with up to 10
nodes. For all instances, including the larger ones, the various cuts introduced appear to
significantly reduce the integrality gaps.

The work of Barahona [4], which is limited to the single-facility version of the
problem, is essentially based on the use of the same cutset inequalities (9) and some
special version of multicut inequalities aimed at ensuring connectivity of the constructed
network. The separation problem for the cutset inequalities (9) is shown to reduce to the
well known (NP-hard) max-cut problem.

Computational results on three small instances (13 nodes, 7 nodes and 10 nodes,
respectively) taken as subgraphs (“backbone networks”) of larger network design prob-
lems are mentioned. Only approximate solutions (to within small gaps) are obtained.
Note that in these experiments (due to the small sizes of the problems addressed), the
separation subproblem for the cutset inequalities (9) is solved exactly.

Polyhedral results and computational experiments on the single-facility version of
the problem have been presented in [7]. Two formulations of the problem are compared.
Formulation F1 is based on the node-arc formulation of the multicommodity flow prob-
lem (this is referred to in the paper as “the multicommodity formulation”). It involves
both design variables and flow variables. Formulation F2 is based on metric inequalities
of the form (4) (this is referred to in the paper as “the capacity formulation”).

The valid inequalities proposed in connection with F1 are basically the cut in-
equalities (9), the 3-partition inequalities (similar to those in [34]) and the “flow-cut-set”
inequalities previously described in [6].

The valid inequalities proposed in connection with F2 are essentially the “rounded
metric inequalities” and a special subclass of these referred to in the paper as “partition
inequalities”. We first explain the idea of “rounded metric inequalities”. We know (see
section 2.1) that a metric inequality is obtained by assigning to each link u ∈ U , a
“length” λu � 0 and reads

∑
u∈U

λuyu � θ(λ) =
K∑
k=1

dk+
∗
k(λ),

where yu denotes the number of modules of capacity 1 installed on link u, and where
∀k = 1, . . . , K, +∗

k(λ) is the length of the shortest chain joining s(k) and t (k) in G

with respect to the “lengths” λu on the edges. Also we know that we may assume all
λu’s rational, therefore we may restrict to the case of integral λu values. Since, in the
model considered, the requirement values dk may be fractional numbers, θ(λ) may be
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fractional. In such a case, in view of the integrality of the y variables, the following
inequality is valid: ∑

u∈U
λuyu �

⌈
θ(λ)

⌉
(13)

and is called a rounded metric inequality.
Partition inequalities (as defined in [7]) form a special class of the above which

corresponds to choosing in any possible way, a partition of the node set N into p sub-
sets V1, V2, . . . , Vp, imposing λu � 0 for any edge having its endpoints in two distinct
subsets of the partition and choosing λu = 0 for any other edge. Conditions are given
under which partition inequalities are facet-defining.

Computational results on both formulations F1 and F2 are provided in [7] on two
series of data sets, one corresponding to a basic network (“New York”) with N = 15 and
M = 22 (44 arcs when each edge has been replaced by two opposite arcs); the second
one corresponding to a network with N = 27 and M = 51 (102 arcs).

Note that in the first data set, the requirement matrix is fully dense, but in the
second one, it is quite sparse (20 pairs of nodes only have traffic to exchange, thus the
density is less than 6%).

Exact optimal (integer) solutions to basic instances of the problem and some of
their variants (obtained by drawing random requirement matrices while restricting to
single source traffic patterns) are obtained within reasonable computing time (they typi-
cally range between 1′ and 45′ CPU) with both formulations using branch and cut.

However, the variants obtained by drawing random requirements while allowing
multiple sources could not be solved exactly with either formulation within reasonable
time limits (5 hours CPU for F2 and 1 hour CPU for F1) but the gaps obtained are always
small (less than 3.5%) with an average of about 2.5% for the capacity formulation and
less 1.0% for the multicommodity formulation (thus formulation F1 happened to perform
significantly better on these instances).

Recent polyhedral investigations of the two-facility version of the problem have
been presented by Bienstock and Günlük [6] and Günlük [28]. The results obtained
in [6] include the use of cutset inequalities and 3-partition inequalities similar to those
(independently) obtained in [34], but also a new type of facets referred to as “flow-
cut-set facets” involving both the design variables x and y and the flow variables. The
branch-and-cut algorithm presented in [28] uses various known types of inequalities
(metric inequalities, spanning-tree inequalities, see [47]) together with a new class of
inequalities (called “mixed partition inequalities”) obtained by combining bipartition
and three-partition inequalities.

Computational results in [6] are provided for a few instances involving two dis-
tinct network structures (one with 15 nodes and 22 links, the other with 16 nodes and
49 links). The traffic requirement matrices are fully dense, and, for the instances cor-
responding to the first network structure, there are existing capacities on each link (ex-
isting capacities can be used without extra cost) and a linear flow cost. It is shown that
the strengthened formulation using all three classes of valid inequalities leads to reduced
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integrality gaps (0.4% within about 10 minutes CPU for data set 1, and about 20% for
data set 2). In the case of data set 1, the times needed to obtain exact optimal integer
solutions by using branch and bound on the strengthened formulation is between 10 to
15 seconds CPU, while applying branch and bound on the initial formulation takes much
more time (hours for some of the instances).

The computational results reported in [28] involve three data sets, the first two cor-
responding to those in [6]. Most instances of these two data sets are solved to optimality,
however no comment on how these results compare with those in [6] is provided. The
third data set is borrowed from [7] and corresponds to a 27 node 51 link network. Apart
from the two instances with very sparse traffic matrices, the other instances could not be
solved exactly within 3 hours CPU (the final integrality gaps being quite small).

3.2. Solution algorithms for the general case of arbitrary step-increasing cost
functions

We now turn to describe the available exact solution methods for the general model
(DCMCF) introduced in section 2.2. The relevant references on this subject are Stoer
and Dahl [51], Dahl and Stoer [11], and Gabrel, Knippel and Minoux [16] (see also
[14,15] for previous related work).

The first two references also include discussion of a variant of the problem where
survivability constraints are considered, in addition to the basic constraints of (DCMCF),
but of course most of the polyhedral results stated there apply to both variants, with and
without survivability constraints. The variant of the problem with survivability con-
straints will be discussed in more detail in section 3.3.

The first class of valid inequalities proposed in [51], called “band inequalities”, are
facet-defining inequalities for a relaxation of the problem composed of a single metric
inequality of the form ∑

u∈U
λuxu � θ(λ)

which is rewritten as: ∑
u∈U

q(u)∑
t=1

gt
uy

t

u
� θ(λ), (14)

where the yt

u
variables are 0–1 variables satisfying the following “ordering constraints”:

∀u ∈ U : 1 � y1
u

� y2
u

� · · · � yq(u)

u
(15)

and where, for all u, the total capacity xu installed on link u is expressed, in terms of the
yt

u
variables as:

xu =
q(u)∑
t=1

yt

u

(
vtu − vt−1

u

)
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(hence, the gt
u values are the coefficients of the yt

u
variables after substituting the above

expression of xu in the metric inequality).
The set of integral solutions to (14), (15) may be viewed as a knapsack polytope

with additional ordering constraints.
Denote by I the set of all pairs of indices (u, t) for all u ∈ U and t = 1, 2, . . . , q(u)

and, for any subset of edges S ⊂ U , I (S) the set of all pairs (u, t) for u ∈ S, t =
1, 2, . . . , q(u).

Let F ⊂ U denote the support of the metric inequality considered, i.e., F = {u |
u ∈ U , λu > 0}. A band B of F is a subset of I (F ) containing one and exactly one
element of the form (u, t̄u) with t̄u ∈ {1, 2, . . . , q(u)}, for each u ∈ F .

Given a band B ⊂ I (F ), for all u ∈ F , the corresponding index t̄u will be de-
noted tBu . We say that a band B is valid if g(B<) < θ(λ) where:

g
(
B<
) =

∑
u∈F

∑
t<tBu

gt
u.

A band B ′ of F is said to be above a band B of F if tBu � tB
′

u for all u ∈ F , and strict
inequality holds for at least one u ∈ F .

Given a band B on F , the associated band inequality is defined as:

y(B) =
∑
u∈F

ytBu
u

� 1. (16)

It is shown in [51] that, whenever B is a valid band, the associated band inequality (16)
is valid for the problem. Moreover if |F | � 2, (16) defines a facet of the convex hull
of the integer solutions to (14), (15) if and only if there is no valid band above B. Note
that, in the computational experiments, the band inequalities used are most often derived
from cut inequalities of the form x(S, S) � d(S, S), a special case of metric inequality.

Other types of valid inequalities and facets are also described in [51], including
partition inequalities (which are used to express connectedness conditions), and other
inequalities specific to the version of the problem where survivability constraints are
considered (the so-called strengthened band inequalities, cut inequalities and the lifted
two-cover inequalities, see section 3.3 below for more details).

The computational results described in [11] include instances of both versions of
the problem with and without survivability constraints.

The results shown have been obtained using cut inequalities and band inequalities
derived from cut inequalities. A heuristic procedure (based on an LP duality approach)
is proposed for the separation of band inequalities. Testing feasibility of the solutions
obtained is carried out by using a continuous LP solver (CPLEX) based on an arc-chain
formulation of the feasible multicommodity flow problems. CPLEX is also used to solve
the successive continuous LPs in the process of generating valid inequalities.

Results are shown in [11] for 4 instances: two instances corresponding to test set C
(37 nodes, 44 edges and cost functions with up to 4 steps) and two instances corre-
sponding to test set D (45 nodes, 53 edges and cost functions similar to those in test
set C). Computation times are short (typically a few seconds) and an optimal solution
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is obtained for one of the instances of test set D. However for the other three instances
large integrality gaps are obtained (54,5%, 66,8% and 22,7%, respectively). As indi-
cated by the authors, other types of inequalities would be needed to reduce the gap for
such instances of the problem.

It should be noted here that the above-mentioned test sets feature very sparse re-
quirement matrices (less than 4% density for test set C and less than 7% density for D).

Gabrel, Knippel and Minoux [16] describe a constraint-generation (BENDERS-
type [5,35,40]) approach for exact solution of the same general min-cost multicom-
modity flow problem with arbitrary step-increasing cost functions. This exploits the
description of the feasible multicommodity flow polyhedron X as a large set of metric
inequalities of type (4) as recalled in section 2.1. When only a few metric inequalities are
used, a relaxation of the problem is obtained, which is eventually tightened by adding
new metric inequalities violated by the optimal solution to the relaxed subproblem. The
process stops when the (exact) optimal solution x̄ to the current relaxed subproblem sat-
isfies all possible metric inequalities (even those not explicitly stated in the subproblem),
i.e., when x̄ ∈ X.

At the current iteration k of the constraint-generation approach, let J k be the index
set of metric inequalities generated so far corresponding to λj , j ∈ J k. The current
relaxed subproblem to be solved reads

(Rk)



Minimize
∑
u∈U

�u(xu)

subject to∑
u∈U

λjuxu � θ
(
λj
) ∀j ∈ J k,

xu ∈ Vu ∀u ∈ U

(we recall that Vu = {v0
u, v

1
u, . . . , v

q(u)
u } denotes the set of discontinuity points of the cost

function on edge u, see section 2.2).
(Rk) is reformulated as a pure 0–1 integer linear program by introducing, for each

link, u, the q(u) 0–1 variables y1
u
, y2

u
, . . . , yq(u)

u
satisfying the ordering constraints (15)

and expressing the xu variables as:

∀u ∈ U : xu =
q(u)∑
t=1

yt

u

(
vtu − vt−1

u

)
(17)

and the objective function as:

z =
∑
u∈U

q(u)∑
t=1

yt

u

(
γ t
u − γ t−1

u

)
. (18)
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Thus (Rk) reduces to the following 0–1 integer linear programming problem
(ILPk):

(ILPk)



Minimize z =
∑
u∈U

q(u)∑
t=1

yt

u

(
γ t
u − γ t−1

u

)
subject to∑
u∈U

λju

(
q(u)∑
t=1

yt

u

(
vtu − vt−1

u

))
� θ

(
λj
) ∀j ∈ J k,

∀u ∈ U , ∀t = 2, . . . , q(u): yt
u

� yt−1
u

,

∀t = 1, . . . , q(u): yt

u
∈ {0, 1}.

(In the computational experiments reported in [16], (ILPk) is solved by using a standard
commercial LP-software, namely CPLEX 4.0 in MIP mode.)

In order to solve the separation subproblem, the criterion proposed in [16] to select
the metric inequalities violated by the current optimal integer solution x̄ to (Rk) is taken
to be the ratio:

ρ = θ(λ)
/∑

u∈U
λux̄u

(ρ > 1 thus corresponding to a violated inequality). The problem of finding one “most
violated” inequality (maximizing ρ) in the general class of metric inequalities, may then
be stated as the “auxiliary problem”

(AP)


Find λ maximizing θ(λ)

under the constraints∑
u∈U

λux̄u = 1,

λ � 0

which is solved (approximately) by using a subgradient-type algorithm.
However, in order to improve the computational efficiency of the procedure, (AP)

is not systematically solved at each step, but only when attempts at generating violated
bipartition inequalities have been unsuccessful (bipartition inequalities correspond to
setting λu = 1 for all edges u separating two subsets of nodes in the network and λu = 0
for all other edges). The problem of finding a bipartition inequality maximizing the ratio
θ(λ)/

∑
u∈U λux̄u may be stated as finding S ⊂ N and S = N \S maximizing the ratio:

ρ = d(S, S)/x̄(S, S), where d(S, S) denotes the sum of all requirements crossing the
cut (S, S) and x̄(S, S) = ∑

u∈ω(S) x̄u is the sum of capacities on the edges of the cut in
the solution x̄. This problem is NP-hard (since max-cut is a special case) but is solved
approximately via a fast local search algorithm inspired from Kernighan and Lin [31].
The procedure implementing this algorithm to find a near-optimal cut ω(S, S) containing
a specific edge (i0, j0) ∈ U and maximizing ρ is denoted MAX-RATIO-CUT[i0, j0].
Using this device, several violated bipartition inequalities are systematically looked for
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at each step (multiple constraint generation) by running MAX-RATIO-CUT[i0, j0] for
all possible (i0, j0) ∈ U , to obtain a set of near-optimal cuts covering all the edges (in
practice, it is observed that O(N) cuts are thus computed).

Of course, among the resulting bipartition inequalities, only those achieving ρ > 1
are actually added to the current relaxed subproblem. The comparison carried out be-
tween single constraint generation and the multiple constraint generation scheme above
shows clear superiority of the latter (with multiple constraint generation, the total num-
ber of main iterations does not exceed 14 for all the instances solved and appears to
increase quite slowly with problem size). Moreover, the necessity of solving the auxil-
iary problem (AP) occurs only very rarely (in only two instances over 50).

Systematic computational testing of the procedure on a series of 50 instances for
networks up to 20 nodes and 37 edges is reported in [16]. In these instances, the link cost
functions have an average number of 6 steps. Also an important feature of the instances
considered, as opposed with the test problems in [11,51], is that the requirement matrices
are fully dense (the practical difficulty of (DCMCF) seems to be much increased for
larger values of the density parameter).

The average total number of generated constraints is about 60 for 12-node net-
works, 90 for 15-node networks, and 150 for 20-node networks.

The computation times necessary to reach exact optimality (using CPLEX 4.0 in
MIP mode to solve the relaxed subproblems (ILPk)) increase quite rapidly with prob-
lem size: about 500 sec on average for 12-node instances; 4400 sec on average for
15-node instances; 22000 sec on average for 20-node instances. Also worth pointing
out in these results is the variability in the computation times, which lie in the range
[22 sec–1471 sec] for 12-node networks, [565 sec–13473 sec] for 15-node networks,
and [2139 sec–51644 sec] for 20-node networks.

In all cases, the time taken by the (multiple) constraint generation process appears
to be quite negligible (less than 1% of total time for the larger problems).

3.3. Solution algorithms for the case of arbitrary step-increasing cost functions and
survivability constraints

We address here an important extension of our basic general model (DCMCF) to handle
situations where survivability constraints have to be imposed. Such constraints tend to
arise more and more frequently in applications, due to the very high capacities provided
by modern transmission equipment, such as optical carriers.

Survivability constraints express the fact that, in addition to meeting the given mul-
ticommodity requirements, the network to be designed should remain feasible with re-
spect to the given requirements in case of any failure situation out of a given list of
possible failure situations. In practice, a typical failure situation is when one link or one
node in the network fails. Simultaneous failure of several links or nodes having very
small probability, most practical applications only require survivability with respect to
single-link and/or single-node failure. Until recently, previous work on the optimum sur-
vivable network design problem has concentrated on the case of linear cost functions.
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This gives rise to large scale linear programs with special structure which can be tack-
led via various kinds of LP decomposition techniques, see [23,39,44] and the surveys in
[27,43].

Also various simplified ways of handling survivability constraints, e.g., by con-
sidering various types of connectivity constraints have been extensively studied, see
[9,25,26,46].

Handling survivability constraints in the single-facility network loading problem
has been addressed in [8]. Various ways of strengthenning a given cutset inequality (of
type (9)) are suggested there, through a polyhedral investigation of some basic polytopes
arising when stating the inequalities expressing the survivability conditions for the given
cut. However no computational result with this approach is reported in [8].

Here we concentrate on the extended version of (DCMCF) to include survivability
constraints while keeping completely general step-increasing link cost functions. For
simplicity, we restrict to the case of link failures only, since including node failures in
the model would only result in making the notation slightly more intricate.

Again, let the network structure be represented by the (undirected) graph G =
[N ,U ] and suppose that the multicommodity flow requirements are given by the asso-
ciated list of K source-sink pairs s(k) and t (k) (for k = 1, . . . , K) with corresponding
requirement values dk. In order to express survivability of the network with respect to
any single link failure, we introduce, for each link v ∈ U , the operator πv defined as
follows. For any vector x ∈ R

M (where ∀u ∈ U , xu represents total flow through link u

in the network) πv(x) = x′ where:

∀u �= v, x′
u = xu,

x′
v = 0

(πv is thus the projection operator of R
M onto R

M−1 spanned by coordinates
1, 2, . . . , v − 1, v + 1, . . . ,M).

With this notation, the survivability constraint corresponding to failure of link
v ∈ U may be easily expressed as: πv(x) ∈ X. In view of this, the discrete minimum
cost survivable multicommodity flow problem to be solved may be formulated as:

(DCSMCF)


Minimize

∑
u∈U

�u(xu)

subject to
∀v ∈ U : πv(x) ∈ X,

∀u ∈ U : xu ∈ Vu.

(19)

(“Discrete cost survivable multicommodity flow problem”.)
Note that, in the above, the condition x ∈ X has not been stated, since it is implied

by each of the conditions (19) (this is so because x′ = πv(x) � x and x′ ∈ X, x′ � x ⇒
x ∈ X).

The only previous references we are aware of dealing with this problem (when
arbitrary step-increasing cost functions are considered) are the already mentioned works
by [11,51] and also [17]. In order to deal with (DCSMCF), several valid inequalities



38 MINOUX

specific to the survivability case have been proposed in [51] and [11]. Only the so-
called “strengthened band inequalities” derived from cut inequalities have been used
in the experiments. They are obtained as follows. Consider a metric inequality of the
form (14) which is valid for the nominal state of the network (i.e., when no edge failure
occurs), F its support, and B a band of F .

If, ∀v ∈ F : ∑
u∈F\{v}

∑
t<tBu

gt
u < θ(λ)

then it can be shown that the inequality

y(B) � 2 (“strengthened band inequality”) (20)

(see equation (16) in section 3.2) is valid and defines a facet under rather weak condi-
tions.

As illustrated by the numerical results reported in [11], these inequalities appear
very efficient at reducing the integrality gap. Experiments on 23 instances drawn from
4 test sets involving survivability constraints have been tried (test set A concerns a 27
node 51 edge network with six step link cost functions; test set B a 118 node 134 edge
network with 5 step cost functions; test sets C and D have already been mentioned in
section 3.2). For most of these instances (18 over 23) the integrality gaps are reduced
(less than 3%) and exact optimal integer solutions are obtained on 8 of the instances, the
computing times being always less than a few minutes.

As already pointed out for test sets C and D, in all these test problems the re-
quirement matrices are very sparse (6% for test set A, and less than 2% density for test
set B).

The constraint-generation approach described in [16] has also recently been ex-
tended to the version of (DCMCF) with survivability constraints in [17]. Several
constraint-generation strategies described below have been proposed and compared
computationally.

Under strategy A, at each step and for each of the failure cases, the multiple con-
straint generation procedure of [16] is applied (see section 3.2). Thus all the violated
bipartition inequalities which are determined by applying the procedure MAX-RATIO-
CUT[i0, j0] for all possible (i0, j0) ∈ U are added to the current problem. Since, for
each failure case, the number of resulting inequalities is approximately O(N), the total
number of constraints generated using strategy A is O(MN), and this will tend to reduce
the total number of main iterations. However, having a large number of constraints in the
subproblems may result in increased computational effort in solving the subproblems,
therefore the other two strategies B and C described below aim at reducing the number
of generated bipartition inequalities.

Strategy B consists in considering only one bipartition inequality for each failure
case, namely the one achieving largest value of the ratio ρ. Among the M possible
candidates, only those achieving ρ > 1 are actually added to the subproblem. Thus
clearly at most M inequalities may be generated, at each step, under strategy B.
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Table 1
Average computation times in seconds (over the 20-node in-
stances) as reported in [16] for solving (DCMCF) and in [17]

for solving (DCSMCF).

(DCMCF) results from [16] using CPLEX 4.0 22159 sec

(DCSMCF) results with strategy A 7949 sec
from [17] using with strategy B 8702 sec
CPLEX 6.0 with strategy C 6687 sec

Under Strategy C, the same bipartition inequalities as those computed by strategy A
are first determined. However only a few of them are actually selected to be added to the
current subproblem, according to the following selection procedure. First, all the violated
bipartition inequalities found are sorted according to decreasing values of the ratio ρ.
Next, the subset S of selected inequalities is determined as follows. The first inequality
in the ordered list (the one achieving largest ratio) is put in S. Then the inequalities
having rank i (for i = 2, 3, . . .) are examined in turn. The ith inequality in the list is
selected (added in S) if at least one edge in the associated cut does not belong to any
of the cuts corresponding to the previously selected inequalities. In this way, at most M
inequalities may be generated at each step under strategy C.

From the computational results provided in [17], none of the above strategies come
up with a clear superiority as compared with the other two. For 15-node networks, from
a series of 10 test problems, the best strategy in terms of computing times required to
get an exact optimal solution is A for 5 of the instances and C for 5 of the instances. For
20-node networks, A is best for 7 instances, B for 1 instance and C for 4 instances.

In terms of total number of main iterations (i.e., total number of subproblems
solved) strategy A clearly outperforms B and C. For 20-node networks, for instance,
the average number of main iterations is 4.5 for strategy A, 12.4 for B and 10.1 for C.

The main conclusion, however, to be drawn from the results in [17] is that the
computing times necessary to find exact optimal solutions to the version of the problem
with survivability constraints (DCSMCF) appear to be comparable to those reported in
[16] for the problem without survivability constraints (DCMCF). For 20 node instances,
we indicate in table 1 above the average computation times reported in [16] for solving
(DCMCF) (using CPLEX 4.0 in MIP mode to solve the subproblems) and those reported
in [17] for solving (DCSMCF) (using CPLEX 6.0 for the subproblems) with strategies
A, B, C, respectively.

4. Possible improvements and directions for future investigations

From the various contributions mentioned in section 3, it appears that both the dis-
crete cost multicommodity flow problem (DCMCF) and its variant with survivability
constraints (DCSMCF) are extremely difficult combinatorial optimization problems for
which only fairly small instances can be solved exactly with currently available tech-
niques. For the general case (arbitrary step-increasing cost functions) and 100% dense
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requirement matrices, which corresponds to the most difficult cases, instances with about
20 nodes, 40 links and cost functions featuring on average 6 steps per link, are typical of
the current upper limits if guaranteed exact optimal solutions are expected.

Being able to solve exactly significantly larger instances (50 nodes, 100 links, say)
represents a real challenge which is not likely to be met without major improvements in
the currently available techniques. In this section, possible improvements and directions
for future research are discussed. In section 4.1 the possibility of strengthening the for-
mulation of the subproblems (Rk) considered in [16,17] is discussed and a method for
building a strengthened formulation is proposed. In section 4.2 other directions for fu-
ture investigations are discussed in connection with the approaches based on polyhedral
results.

4.1. Strengthened metric inequalities for (DCMCF) and (DCSMCF)

We consider here the possibility of strengthening the formulation of each subprob-
lem (Rk) used in the approach proposed in [16] and recalled in section 3.2. The con-
straints in (Rk) are all the metric inequalities (most of them being bipartition inequalities)
generated so far. Each metric inequality reads:∑

u∈U
λjuxu � θ

(
λj
)

(21)

for some λj ∈ R
M+ and

θ
(
λj
) =

K∑
k=1

dk × +∗
k

(
λj
)
.

Since, in (Rk), each variable xu is constrained to belong to the finite discrete set Vu =
{v0

u, v
1
u, . . . , v

q(u)
u }, the left-hand side of (21) cannot be smaller than the minimum value

θ∗(λj ) of the knapsack-like subproblem:

SP
[
λj
]



θ∗(λj ) = min
∑
u∈U

λjuxu

subject to∑
u∈U

λjuxu � θ
(
λj
)
,

∀u ∈ U : xu ∈ Vu

which may be equivalently rewritten as:

SP
[
λj
]



θ∗(λj ) = min
∑
u∈U

αu

subject to∑
u∈U

αu � θ
(
λj
)
,

∀u ∈ U : αu ∈ {λjuv0
u, λ

j
uv

1
u, . . . , λ

j
uv

q(u)
u

}
.
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Once the optimal value θ∗(λj ) has been computed, it is seen that the inequality:∑
u∈U

λjuxu � θ∗(λj) (22)

is a valid inequality for (Rk). Of course, from the definition, one always has θ∗(λj ) �
θ(λj ), but, apart from exceptional cases, strict equality holds, in which case (22) is
stronger than (21). We call it a strengthened metric inequality.

We note that SP[λj ] can be solved by applying, e.g., a dynamic programming al-
gorithm as classically done for solving knapsack problems in pseudopolynomial time
(see, e.g., [50, chapter 16] or [42, chapter 7]). Of course, such a procedure may not
be very efficient in the case of general metric inequalities where most λju are arbitrary
positive real numbers. But this is not the case of bipartition inequalities for which most
λ
j
u are 0 and only a few λ

j
u are 1, those corresponding to the edges of a cut. Even for

a 50-node 100-edge network with average node degree 4, the average cardinality of a
cut will usually be well below 50 (this is because telecommunication networks usually
correspond to almost planar graphs and, if we apply Euler’s formula to a planar graph
G with N = 50, M = 100, the number of nodes in the topological dual graph G∗ is
2 − N + M = 52, an upper bound for the cardinality of any cut in G).

In view of the above, it is seen that it will be possible to efficiently compute the
θ∗(λj ) values for bipartition inequalities therefore leading to a strengthened subproblem:

(
R∗
k

)


Minimize
∑
u∈U

�u(xu)

subject to∑
u∈U

λjuxu � θ∗(λj) ∀j ∈ J k,

xu ∈ Vu, ∀u ∈ U .
Clearly, since in most cases θ∗(λj ) > θ(λj ), the lower bounds derived from the linear
relaxation of (R∗

k) will be tighter than those derived from the linear relaxation of (Rk),
opening the way to improved computational efficiency in the solution of the subprob-
lems.

We note that the strengthened metric inequalities suggested above also apply to the
approach described in [17] for (DCSMCF).

4.2. Suggested directions for future investigations

From the overview of existing techniques presented in section 3 above, it appears that
one of the most promising approaches for exact solution of (DCMCF) or (DCSMCF)
is based on a thorough exploitation of existing or new polyhedral results for strength-
ening the various possible LP formulations of the problem itself, or of the subproblems
encountered in its solution. First we observe that all available polyhedral results have
not been fully exploited yet computationally. This is the case, for instance, of the “lifted
two-cover inequalities” and of the “partition inequalities” derived in [51].
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Also we observe that considering alternative formulations may suggest the use of
available polyhedral results relevant to those formulations. As an example of this, we
would like to suggest a possible reformulation of the subproblem (Rk) stated in sec-
tion 3.2.

Let us associate with each edge u ∈ U , q(u) + 1 0–1 variables µ0
u, µ

1
u, . . . , µ

q(u)
u

satisfying

q(u)∑
t=0

µt
u = 1,

the xu variables being expressed as:

∀u ∈ U : xu =
q(u)∑
t=0

vtuµ
t
u

and the objective function as:

z =
∑
u∈U

q(u)∑
t=0

γ t
uµ

t
u.

With the above notation, (Rk) may be reformulated as:

(ILPk)
′



Minimize z =
∑
u∈U

q(u)∑
t=0

γ t
uµ

t
u

subject to∑
u∈U

λju

(
q(u)∑
t=0

vtuµ
t
u

)
� θ

(
λj
) ∀j ∈ J k,

∀u ∈ U :
q(u)∑
t=0

µt
u = 1,

∀t = 0, 1, . . . , q(u): µt
u ∈ {0, 1}.

We note that the solution set of (ILPk)
′ is the intersection of solution sets W of knapsack

problems with multiple choice constraints which, for the sake of notational simplicity,
may be reformulated as: 

−
n∑

j=1

ajxj � −b, (23)

∑
j∈Si

xj = 1 ∀i ∈ I, (24)

x ∈ {0, 1}n,
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where aj > 0 for j = 1, . . . , n, b > 0 and all Si are disjoint,⋃
i∈I

Si = {1, 2, . . . , n}.

Valid inequalities for closely related problems, namely knapsack problems with GUB
(Generalized Upper Bound) constraints have been described in [52]. We extend below
the proof from [52] to solution sets W defined by (23), (24), to show that essentially the
same inequalities as those described there are valid inequalities for the case of multiple
choice (MC) constraints.

First let us introduce some useful notation.
We say that a subset C ⊆ {1, 2, . . . , n} is a MC-cover (“Multiple Choice Cover”)

for W iff:

(i) |C ∩ Si| � 1, ∀i ∈ I ,

(ii) −∑j∈C aj > −b.

Given a MC-cover C, we denote I+ = {i ∈ I | C ∩ Si �= ∅} and, for any i ∈ I+:

S+
i = {j ∈ Si | aj � a+ for + ∈ C ∩ Si}.

We can then state

Proposition 1. Let W = {x | x ∈ {0, 1}n, x satisfies (23) and (24)} and C be any
MC-cover for W . Then the inequality:∑

i∈I+

∑
j∈Si\S+

i

xj +
∑

i∈I\I+

∑
j∈Si

xj � 1 (25)

is valid for W .

Proof. Consider x̄ ∈ W and suppose that (25) does not hold, in other words that∑
i∈I+

∑
j∈Si\S+

i

x̄j +
∑

i∈I\I+

∑
j∈Si

x̄j = 0. (26)

(26) implies that each of the two terms on the left-hand side is 0, which means that the
only nonzero components of x̄ are for j ∈ S+

i , i ∈ I+. Moreover, since x̄ ∈ W , ∀i ∈ I+
there is at most one x̄j = 1, j ∈ S+

i .
In view of this, and using the definition of S+

i , we can write:

n∑
j=1

aj x̄j �
∑
j∈C

aj

hence

−
n∑

j=1

aj x̄j � −
∑
j∈C

aj > −b
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which contradicts the fact that x̄ ∈ W , and completes the proof. �

Clearly, the inequalities (25) appear to be potentially useful in a branch and cut
approach for solving the subproblems (ILPk)

′. It is possible to show (this was suggested
by one of the referees) that the band inequalities (16) for (ILPk), when expressed in
terms of the µt

u variables (using the linear transformations yt
u

= ∑q(u)
r=t µ

r
u) just give

rise to valid inequalities of the form (25) for (ILPk)
′ and conversely. Therefore, the

two formulations (ILPk) reinforced by (16) and (ILPk)
′ reinforced by (25) appear to

be essentially equivalent, at least from a theoretical standpoint. However they may not
be computationally equivalent since, depending on implementation details, multiple-
choice constraints (24) may be handled more efficiently by some MIP solvers, while
ordering constraints (15) would be handled more efficiently by others. Carrying out a
full computational comparison between the two approaches in an interesting subject for
future investigations.
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