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ABSTRACT
Placement of regenerators in optical networks has attracted

the attention of recent research works in optical networks.

In this problem we are given a network, with an underlying

topology of a graph G, and with a set of requests that cor-

respond to paths in G. There is a need to put a regenerator

every certain distance, because of a decrease in the power

of the signal. In this work we investigate the problem of

minimizing the number of locations to place the regenera-

tors. We present analytical results regarding the complex-

ity of this problem, in four cases, depending on whether or

not there is a bound on the number of regenerators at each

node, and depending on whether or not the routing is given

or only the requests are given (and part of the solution is

also to determine the actual routing). These results include

polynomial time algorithms, NP-complete results, approxi-

mation algorithms, and inapproximability results.

Categories and Subject Descriptors
F.2.0 [ANALYSIS OF ALGORITHMS AND PROB-

LEM COMPLEXITY]: General

General Terms
Algorithms
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1. INTRODUCTION
We deal with optical networks, where we are given re-

quests for connections to be established between pairs of

nodes. These connections are established by using light-

paths, which correspond to paths in the underlying network

topology. For given nodes a and b in the network, we might

get as an input either a path connecting a and b, or only

the request (=pair of nodes) (a, b), and in this latter case

part of the problem is also to determine the actual routing.

In addition, since a lightpath looses its power along its way,

we are given a bound d ≥ 1 on the length of a lightpath. A

connection between nodes a and b can thus be done by a sin-

gle lightpath of length ≤ d connecting a and b (in which the

signal is sent in the optical domain). Alternatively, it can be

sent by a sequence of lightpaths each of length ≤ d connect-

ing a and v1, v1 and v2, . . . , vt−1 and vt, and vt and b. In

this case in each of the intermediate nodes v1, v2, . . . , vt−1, vt

we put a regenerator (each regenerator serves a unique con-

nection); the signal from a to v1 is transformed at v1 to the

electronic domain, then again to the optical domain from v1

to v2, then it is transformed again at v2 to the electronic

domain, and again to the optical domain from v2 to v3, and

so on. To each lightpath we assign a color (which is the

wavelength assigned to it). Two lightpaths that share an

edge must get different colors. Note that if a connection is

made by a sequence of lightpaths, they are not all necessar-

ily with the same color. Anyway, since we do not consider

bounds on the number of colors and our goal is independent

of it, in the sequel of the paper we never refer to colors or
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wavelengths. In fact, our goal is to minimize the number of

locations (i.e. nodes) where regenerators are used.

We consider this problem in four cases, depending on

whether or not there is a bound on the number of regen-

erators at each node, and depending on whether or not the

routing is given or only the requests are given (and part of

the solution is also to determine the actual routing). More-

over, we first deal with the case in which only simple paths

are allowed, and then we extends our results to the case of

non-simple paths.

This Regenerator Placement Problem (RPP) in optical

networks has attracted the attention of recent research works

(see, e.g., [4, 11, 12, 14, 15, 17, 18]). Moreover, other papers

(see, e.g., [6, 10, 16]) studied related problems dealing with

hardware optimization in optical networks with wavelength

conversion. An all-optical network is also called a trans-

parent optical network, and the opposite of a transparent

optical network is the opaque optical network (see, e.g., [2,

13]). An opaque optical network employs 3R regeneration

(reamplification, reshaping and retiming) at every interme-

diate node of a path to regenerate the signal and improve

transmission quality. We note that currently 3R regenera-

tion is realized only through optical-to-electronic-to-optical

(O/E/O) conversion. Most of today’s optical networks are

fully opaque, where O/E/O conversions take a major frac-

tion of network cost. This study is thus highly important

for this application area.

This is the first work where a systematic theoretical study

is made for this RPP. Most of the above-mentioned works

discuss the technological aspects of the problem, and include

heuristic algorithms for it. This work is the first to present

a theoretical framework to deal with these problems. Our

results include polynomial time algorithms, NP-complete re-

sults, approximation algorithms, and inapproximability re-

sults.

1.1 Definitions
We are given a network whose underlying topology is

an undirected graph G = (V, E). We assume that V =

{1, 2, · · · , n}. A path in the graph is a sequence of nodes

that follow edges of the graph; formally, a path [a, b] of

length t ≥ 1 connecting vertices a, b ∈ V is [a, b] =

〈a = v0, v1, v2, · · · , vt = b〉, where (vi, vi+1) ∈ E for every

i = 0, 1, · · · , t−1. We are given d > 0, which corresponds to

the maximal number of edges that a signal can travel before

it needs a regenerator. Each connection thus consists of a

sequence of lightpaths (of length at most d) whose concate-

nation forms a path connecting ai and and bi.

We need to establish a given set of requests by putting re-

generators in as few locations as possible. A solution consists

of a subset of nodes U ⊆ V , such that by putting regenera-

tors at these nodes all the constraints (on the length of the

lightpaths) can be satisfied.

Regarding the connections to be established we consider

two cases:

• We are given the actual routing. We will denote these

given m paths by {[a1, b1], [a2, b2], · · · , [am, bm]}, ai �=

bi, ai, bi ∈ V . In this case we have to determine a

set of nodes U ⊆ V where regenerators can be put.

This set U has the property that at least one among

any d+1 consecutive internal nodes of any path [ai, bi]

must belong to U . This corresponds to the constraint

that each path must be assigned a regenerator every

at most d hops.

• We are given only requests, defined by a demand ma-

trix An×n, where ai,j is the number of connections to

be established between i and j.

In this case we have to determine the routing for each

of the requests, and the set U as above.

These two cases will be denoted as ’rt’ (when the routing

is given) and ’req’ (when the routing is not given).

We consider two cases, depending on whether there is a

given bound k on the number of regenerators to be put in

a single node, or this number is unbounded (k = ∞). The

number of regenerators in a node v is denoted by reg(v).

We thus consider the following four optimization prob-

lems:

Problem RPP/∞/rt

Input: A network G = (V, E), a set of paths

{[a1, b1], [a2, b2], · · · , [am, bm]}, ai �= bi, ai, bi ∈ V , d > 0.

Output: A solution U ⊆ V .

Problem RPP/k/rt

Input: A network G = (V, E), a set of paths

{[a1, b1], [a2, b2], · · · , [am, bm]}, ai �= bi, ai, bi ∈ V , d, k > 0.

Output: A solution U ⊆ V such that reg(v) ≤ k for every

v ∈ U .

Problem RPP/∞/req

Input: A network G = (V, E), |V | = n, a matrix An×n,

d > 0.

Output: A routing for the requests and a solution U ⊆ V .

Problem RPP/k/req

Input: A network G = (V, E), G = (V, E), |V | = n, a

matrix An×n, d, k > 0.

Output: A routing for the requests and a solution U ⊆ V

such that reg(v) ≤ k for every v ∈ U .

For all the problems, we also have:

Measure of a solution: |U |, i.e. the number of locations

hosting regenerators.

Objective: Minimizing the measure of a solution.

1.2 Our contribution
Our results are summarized in Table 1.

We remark that Exp−Apx is the class of problems admit-

ting an approximation algorithm with an exponential ap-

proximation factor.

We first deal, in Section 2, with the case in which only

simple paths are allowed.
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complexity approximability

RPP/∞/rt polynomial for trees, rings Θ(log m + log d)

NP-hard for general network

RPP/k/rt NP-hard /∈ Exp−Apx

(k = 1, d = 3)

RPP/∞/req NP-hard Θ(log m)

([4], for d=1 (for the

and all-to-all) all-to-all case)

RPP/k/req NP-hard /∈ Exp−Apx

(k = 1, d = 1)

Figure 1: A summary of results for routing by simple paths

In Section 3 we extend our results to the case in which

the routing can be done by using non-simple paths.

Finally, in Section 4 we summarize our results and discuss

possible extensions of our studies.

2. THE SIMPLE PATHS CASE
In this section we study the problem in the case in which

the routing is done using simple paths. In particular, the

cases where we are given the paths are treated in Section

2.1 for case where there is no bound on the number of re-

generators that can be placed in one node (RPP/∞/rt) and

in Section 2.2 for the bounded case (RPP/k/rt). The cases

where we are given only the requests are treated in Section

2.3 for case where there is no bound on the number of re-

generators (RPP/∞/req), and in Section 2.4 for the bounded

case (RPP/k/req).

2.1 Problem RPP/∞/rt

We now study the problem RPP/∞/rt. For the topolo-

gies of trees and rings we show polynomial constructions in

Section 2.1.1. For the general problem we present approx-

imability results in Section 2.1.2.

2.1.1 Tree and ring networks
We show that Problem RPP/∞/rt is polynomially solv-

able if the graph is a tree. We denote by dist(x, y) the

distance between vertices x and y and we assume w.l.o.g.

that the tree is rooted at an arbitrary vertex and vertices

are numbered according to DFS postorder visit (i.e. we per-

form a DFS search from the root and we number a vertex

the last time it is visited).

Given a tree and a set of paths P the algorithm will modify

paths in P whenever a regenerator is placed.

Algorithm Reg − Trees

Input P: set of paths

for i from 1 to n do

let Pi be the set of paths including

node i

for all paths [y, w] from Pi do

if max(y,w) < i and dist(y, w) > d

then

place a regenerator at i

eliminate [y, w] in P

endif

if max(y,w) ≥ i and

dist(min(y, w), i) = d then

place a regenerator at i

eliminate [y, w] from P

if dist(i, max(y,w)) > d then

add [i, max(y,w)] to P

endif

endif

endforall

endfor

Theorem 2.1. Algorithm Reg − Trees finds an optimal

solution to Problem RPP/∞/rt if the given graph is a tree.

Proof. It is easy to check that the algorithm finds a fea-

sible solution. To prove optimality we proceed by induction

on k, the number of locations where regenerators are placed

by the algorithm. Given i let Ti be the subtree rooted at i.

The basis of the induction is trivially verified for k = 0.

It remains to prove the induction step: for any k ≥ 1,

we assume the claim true for k − 1 and we prove it for k.

Let i be the first location in which the algorithm places a

regenerator. It is easy to check that, if no regenerator is

placed in Ti, since there exists a path [a, b] such that either

1) [a, b] is completely contained in Ti and dist(a, b) > d or 2)

a belongs to Ti, b does not belong to Ti and dist(a, i) = d,

then any solution that does not use a regenerator in one

of the vertices of Ti is not feasible. Therefore, the optimal

solution uses regenerators at a least 1 location in Ti.

Moreover, let P̂ be the set of paths obtained from P by

(i) eliminating from P all paths completely contained in

Ti, and

(ii) replacing each path [a, b] ∈ P , such that a belongs to

Ti and b does not belong to Ti with path [i, b].

Since P̂ induces a new instance of the problem for which

the algorithm uses k−1 locations, by the induction hypoth-

esis k−1 is also the value of an optimal solution for such an

instance.

Therefore, the value of an optimal solution for the initial

instance is 1 + (k − 1) = k.
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Note that if the graph is a path then Algorithm Reg −
Trees is equivalent to the greedy algorithm that sweeps the

path from left to right and puts a regenerators whenever

deemed.

The previous theorem is the basis to show that Problem

RPP/∞/rt is polynomially solvable if the graph is a ring as

shown in the following theorem.

Theorem 2.2. Problem RPP/∞/rt is polynomially

solvable if the given graph is a ring.

Proof. First observe that if all paths have length less

than d then clearly the problem is trivial.

If there exists at least one path [a, b] of length greater

than d then arbitrarily choose a segment Z of d consecutive

vertices of [a, b]. For each vertex i of Z we obtain a solution

Ui as follows:

(i) put a regenerator in i;

(ii) apply Algorithm Reg−Trees to the path obtained by

cutting the ring at vertex i.

It is easy to see that in this way Ui is an optimal solution

with the additional constraint that there is a regenerator at

i. It follows that the optimal solution in the ring is equal to

the best solution among the d solutions Ui, i ∈ Z.

2.1.2 General networks
In this section we first show that the problem RPP/∞/rt

for general topologies is NP -hard and is not approximable in

polynomial time with an approximation factor (1 − ε) log m

(unless NP has slightly superpolynomial time algorithms),

and than we provide a general approximation algorithm with

approximation ratio O(log m + log d).

Theorem 2.3. Problem RPP/∞/rt is NP -hard and

any polynomial time approximation algorithm has an

approximation factor at least log m and Ω(log d), unless

NP ⊂ TIME(mO(log log m)).

Proof. We use a reduction from the Set Cover optimiza-

tion problem:

Set Cover

Input: A set A = {1, . . . , |A|} of elements, a collection S of

subsets of A, S = {s1, s2, · · · , sn′}, and k > 0.

Output: A subcollection U ⊆ S of subsets covering the

elements in A, i.e. such that ∪u∈Uu = A.

Measure of a solution: |U |, i.e. the cardinality of the

subcollection U .

Objective: Minimizing the measure of the returned solu-

tion.

The Set Cover problem is known to be NP -hard and not

approximable in polynomial time with an approximation

factor (1 − ε) log |A|, unless NP ⊂ TIME(|A|O(log log |A|))
[7]. Given an instance of Set Cover, we construct an in-

stance of RPP/∞/rt as follows. We first describe the net-

work G = (V, E). (See example in Figure 2).

Informally, for each set si ∈ S (i = 1, . . . , n′), we add a

main node v0,i and |A| − |si| additional nodes va,i such that

a /∈ si, corresponding to the |A| − |si| elements in A not be-

longing to si. Formally, V = Vstart∪V̂ ∪Vend, where Vstart =

{starta|a = 1, . . . , |A|}, Vend = {enda|a = 1, . . . , |A|} and

V̂ =
⋃

si∈S{v0,i} ∪ ⋃
si∈S{va,i|a = 1, . . . , |A|, a /∈ si}.

In order to describe the edge set E, we need the following

function:

row(a, i) =

{
0 if a ∈ si

a otherwise.

The edge set is E = Estart→1 ∪E1→2 ∪ · · · ∪E(n′−1)→n′ ∪
En′→end, where Estart→1 = {{starta, vrow(a,1),1}|a =

1, . . . , |A|}, En′→end = {{vrow(a,n′),n′ , enda}|a = 1, . . . , |A|}
and finally, for i = 1, . . . , n′ − 1, Ei→(i+1) =

{vrow(a,i),i, vrow(a,i+1),i+1}|a = 1, . . . , |A|}.
The set P of paths contains |A| paths, one for each element

in A; the path La corresponding to element a ∈ A is La =

〈starta, vrow(a,1),1, vrow(a,2),2, . . . , vrow(a,n′),n′ , enda〉.
In order to complete the reduction, we set d = n′, so that

each path needs at least one regenerator.

If there exists a solution for the Set Cover optimization

problem with measure k and subsets si1 , · · · , sik , then, since

one regenerator for each path is enough, it is easy to check

that placing regenerators at the nodes v0,i1 , · · · , v0,ik is a

solution having the same measure k for the corresponding

instance of the RPP/∞/rt problem.

Conversely, assume we are given a solution for the

RPP/∞/rt problem using regenerators at k locations. Now

we show that in this case it is possible to obtain a solu-

tion for the Set Cover optimization problem with measure

at most k, thus proving the claim. We now show that any

solution using regenerators at k locations can be converted

into another solution using regenerators at k′ ≤ k locations

corresponding uniquely to main nodes v0,i (i = 1, . . . , n′).
First, notice that regenerators at nodes in Vstart and Vend

can be eliminated because such nodes are only endpoints for

the paths. Moreover, if a regenerator used by a path La is

located at an additional node (notice that by construction

each additional node is crossed by only one path), it can

be moved to a main node crossed by La (such a node there

must exist since the sets cover all elements). Clearly, this

process cannot increase the number of locations where regen-

erators are placed. Therefore, we have obtained a solution

for the RPP/∞/rt problem using regenerators at k′ ≤ k loca-

tions corresponding only to main nodes v0,i (i = 1, . . . , n′);
clearly, a solution for the Set Cover optimization problem

with measure k′ can be obtained by choosing the sets corre-

sponding to such main nodes.

Finally, since in the work of [7] the instances proving the

result have |A| = Θ(n′), and in the reduction d = n′, the

same proof implies the Ω(log d) approximability result.

We now provide an approximation algorithm almost

matching the inapproximability result.

Theorem 2.4. It is possible to find a solution for prob-

lem RPP/∞/rt with approximation ratio O(log m + log d).
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ve,1

s3 = {b, c, d}
s4 = {d, e}

s2 = {a, c}
s1 = {a}

v0,1 v0,2 v0,3 v0,4

endb

enda

endc

endd

ende

starta

startb

startc

startd

starte

vd,1

vc,1

vb,1

vd,2

va,3

va,4

vc,4

vb,4vb,2

ve,2 ve,3

Figure 2: A reduction from Set Cover to RPP/∞/rt

Proof. A given instance of the problem consists of a net-

work G = (V, E), a set of paths {[a1, b1], [a2, b2], · · · , [am,

bm]}, ai �= bi, ai, bi ∈ V , d > 0. We reduce it to the

above-mentioned Set Cover problem.

We distinguish two cases: d odd and d even.

If d is odd, let A = {av,i|v ∈ V, v ∈ [ai, bi]}, and S =⋃{sv |v ∈ V }, where for every v the set sv is defined as

follows. Let Pv be the set of paths crossing node v. For

each path p ∈ Pv, we add to set sv all the elements in A

corresponding to the nodes of p at distance in p at most
d−1
2

from v; moreover, for any endpoint of such paths being

at distance at most d from v, we also add to set sv all the

elements in A corresponding to all the nodes of p between v

and such an endpoint.

Now we apply the Set Cover algorithm of [5]. If the solu-

tion obtained for the set cover is {sv1 , . . . , svt}, then clearly

by placing regenerators at the nodes {v1, . . . , vt} we get a

solution to the RPP/∞/rt problem with the same measure.

Conversely, given a solution for the RPP/∞/rt problem with

regenerators at the nodes {v1, . . . , vt}, it is easy to check that

{sv1 , . . . , svt} is a solution for the Set Cover problem with

the same measure.

Since the size of each of the sets of S is bounded by md,

it follows that the approximation ratio is log m + log d + 1.

If d is even, let A = {aj,i|ej ∈ E, ej ∈ [ai, bi]}, and S =⋃{sv |v ∈ V }, where for every v the set sv is defined as

follows. Let Pv be the set of paths crossing node v. For

each path p ∈ Pv, we add to set sv all the elements in A

corresponding to the edges of p at distance in p at most d
2

from v (we consider the edges incident to a node at distance

1 from it); moreover, for any endpoint of such paths being

at distance at most d from v, we also add to set sv all the

elements in A corresponding to all the edges of p between v

and such an endpoint.

The claim follows by exploiting the same arguments of the

previous (d odd) case.

2.2 Problem RPP/k/rt

In this section we study the problem RPP/k/rt. Clearly

if d = 1 then the problem is polynomial time solvable. We

prove that it is NP-Complete to find a feasible solution for

the problem if k = 1 and d = 3. This result is presented in

Theorem 2.5.

Theorem 2.5. Given an instance of the RPP/k/rt prob-

lem, the problem of deciding whether there exists a feasible

solution is NP -Complete when k = 1 and d = 3.

Since it is difficult even to find a feasible solution for the

considered problem, the following corollary holds.

Corollary 2.6. The RPP/k/rt problem is not approx-

imable in polynomial time, i.e. RPP/k/rt /∈ Exp−Apx unless

P = NP .

Moreover, by using a reduction from Graph d-Colorability,

d > 3, it is possible to show that the RPP/k/rt problem is

NP-Complete for every value of d ≥ 3.

2.3 Problem RPP/∞/req

In this section we first show that the problem RPP/∞/req

is NP -hard and is not approximable in polynomial time with

an approximation factor (1 − ε) log m, even in the all-to-

all case (unless NP has slightly super-polynomial time algo-

rithms). Then, we provide an approximation algorithm with

approximation ratio O(log m) for the all-to-all case.

In [4] the problem was proved to be NP-complete for the

all-to-all case, where d = 1. This reduction was from the

Minimum Vertex Cover problem. But it implies that the all-

to-all problem cannot be approximated better than 7
6

(see

[1]). We use a different proof, that enables us to derive a

much stronger inapproximability result; namely, we prove

that the all-to-all problem cannot be approximated within

log m.

Theorem 2.7. Problem RPP/∞/req is NP -hard and is

not approximable in polynomial time with an approximation

factor (1 − ε) log m, unless NP ⊂ TIME(nO(log log m)),

even when d = 1. Moreover, the problem is still not

approximable in polynomial time with an approximation

factor ( 1
2
− ε) log m, unless NP ⊂ TIME(nO(log log m)), if

the demand matrix is all-to-all and d = 1.

Proof. We use a reduction from the above-mentioned

Set Cover problem. This problem is known to be NP -

hard and not approximable in polynomial time with

an approximation factor (1 − ε) log |A|, unless NP ⊂
TIME(|A|O(log log |A|)) [7].
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s2

x

s4

c

d

e

as1

b
S1 = {a}
S2 = {a, c}

S4 = {d, e}
S3 = {b, c, d}

s3

Figure 3: A reduction from Set Cover to RPP/∞/req

Given an instance of Set Cover, we construct an instance

of RPP/∞/req as follows: the network is G = (V, E), where

V = {x} ∪ A ∪ {s|s ∈ S}. E = {(x, s)|s ∈ S} ∪ {(a, s)|a ∈
s}∪{(s, s′)|s, s′ ∈ S, s �= s′} and finally d = 1. (See example

in Figure 3).

We first provide the proof for the all-to-all demand ma-

trix case. In such a case, since in the work of [7] the in-

stances proving the inapproximability have |A| = Θ(|S|),
the number of requests turns to be m = Θ(|A|2), an there-

fore |A| = Θ(
√

m). Therefore, the reduction implies the

( 1
2
− ε) log m inapproximability result.

If there exists a solution for the Set Cover optimization

problem with measure k and subsets si1 , · · · , sik , then plac-

ing regenerators at the nodes si1 , · · · , sik is a solution hav-

ing the same measure k for the corresponding instance of

the RPP/∞/req problem in which the paths are selected as

follows: the paths between the nodes directly connected by

an edge are composed by such a unique edge (and do not

need any regenerator); the path between node x and a node

in a ∈ A is 〈x, sip , a〉, where p is such that a ∈ sip ; the

path between two nodes in a, b ∈ A is 〈a, sip , sip′ , b〉, where

p is such that a ∈ sip and p′ is such that b ∈ sip′ ; the path

between node sj and a node in a ∈ A such that a /∈ sj is

〈sj , sip , a〉, where p is such that a ∈ sip . Notice that all

the chosen paths requiring regenerators have as intermedi-

ate nodes only the nodes si1 , · · · , sik , i.e. the nodes hosting

a regenerator.

Conversely, assume we are given a solution for the

RPP/∞/req problem using regenerators at k locations. Now

we show that in this case it is possible to obtain a solution for

the Set Cover optimization problem with measure at most

k, thus proving the claim. First of all, we show that any solu-

tion using regenerators at k locations can be converted into

another solution using regenerators at k′ ≤ k locations cor-

responding uniquely to nodes si. Recall that all the nodes

si (i = 1, . . . , n) form a clique; if a regenerator is located

at a node y such that y = x or y ∈ A, since such a node

has to be an intermediate node for all the paths using such

a regenerator, it is possible to remove all the regenerators

from y by short-cutting all such paths. More specifically,

each path 〈. . . , si, y, sj , . . .〉 can be converted in a new path

〈. . . , si, sj , . . .〉 directly connecting si and sj . In this way we

have obtained a new solution for the RPP/∞/req problem us-

ing regenerators at k′ ≤ k locations corresponding uniquely

to nodes si. Finally, since in order to be connected to x any

node a ∈ A has to cross at least one node si in which the

path requires a regenerator, we have that there exist k′ ≤ k

sets spanning all the elements in A, and thus constituting

a solution for the Set Cover optimization problem having

measure k′ ≤ k.

In order to prove that in the case of general demand ma-

trix the problem is not approximable in polynomial time

with an approximation factor (1 − ε) log m, unless NP ⊂
TIME(nO(log log m)), it suffices to consider a demand ma-

trix in which there are |A| requests between node x and all

the nodes in A. The proofs proceeds with the same argu-

ments exploited in the all-to-all demand matrix case.

Theorem 2.8. It is possible to find a solution for the

RPP/∞/req problem with approximation ratio 3
2

log m + 1,

when the demand matrix is all-to-all.

Proof. In order to provide a 3
2

log m + 1 approximation

algorithm for the RPP/∞/req problem, we first apply the

Set Cover greedy algorithm of [5] to the following Set Cover

instance: A = V , and S =
⋃{sv |v ∈ V }, where for every v

the set sv be the sets of nodes u ∈ V such that the distance

in G between u and v is at most d.

Given a solution for an instance of the RPP/∞/req prob-

lem with regenerators at the nodes {v1, . . . , vt}, it is easy to

check that {sv1 , . . . , svt} is a solution for the corresponding

instance of the Set Cover problem with the same measure;

thus, the optimum for an instance of the RPP/∞/req prob-

lem is at least the optimum for the corresponding instance of

the Set Cover problem. Recall that the greedy algorithm of

[5] is log |A| approximating and |A| = |V | = 1+
√

1+8m
2

≤ 1+√
2m. Therefore, since log |A| ≤ log 1 +

√
2m ≤ 1

2
log m+1,

in order to prove the claim it remains to show that, given an

instance I of the RPP/∞/req problem and the correspond-

ing instance I ′ of the Set Cover problem, to any solution

U = {sv1 , . . . , svt} of I ′ can be associated a solution of I

with measure at most 3t − 2.

Let G′ = (V, E′) be the graph having the same node set of

G and the edge set E′ ⊆ E defined as follows: for each set in

svi ∈ S (i = 1, . . . , t), we add to E′ all the edges of E having

as endpoints nodes in svi . Notice that, since the sets in S

cover all the nodes in V , each edge in the set E \E′ connects

two different connected components of G′. Let E′′ ⊆ E \E′

be a set of edges containing for each couple of connected

components of G′ one edge in E \ E′ reconnecting them, if

it exists. We now compute a spanning tree T = (V, ET ) of

the graph (V, E′ ∪ E′′), that by construction is a connected

graph. The solution for the instance I of the RPP/∞/req

problem is obtained by selecting as paths (between all the

couples of nodes) the simple ones in T , and by placing regen-

erators at the following locations: t locations are the vertices

v1, . . . , vt; moreover, for each edge e = (u, v) ∈ ET ∩E′′, we

select as locations both u and v. See Figure 4 for an example

of an association between a solution of the Set Cover prob-

lem and the corresponding one of the RPP/∞/req problem.

Since in G′ there are at most t connected components, in

the spanning tree T |Et ∩E′′| ≤ t−1; therefore, the number

of locations is at most t+2(t−1) = 3t−2. Finally, it is easy
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Figure 4: (a) The graph G with an associated solu-

tion {s1, s2, s3} of the corresponding instance of the

Set Cover problem, for the case d = 2. (b) The graph

G′ associated to G. (c) The selected edge of E′′. (d)

The solution for the RPP/∞/req problem (regenera-

tors are located at the circled nodes).

to check that such a solution is a feasible one since in any

path of T there is a regenerator at least every d edges.

2.4 Problem RPP/k/req

In this section we study the RPP/k/req problem; we prove

that is NP-Complete to find a feasible solution for the prob-

lem if k = 1 and d = 1.

Theorem 2.9. Given an instance of the RPP/k/req, the

problem of deciding whether there exists a feasible solution

is NP -Complete when k = 1 and d = 1.

Proof. Since checking if a solution for the RPP/k/req

problem is feasible is easily doable in polynomial time, the

problem belongs to NP .

In order to prove its NP -Completeness, we provide a poly-

nomial reduction from the Disjoint paths problem, known

to be NP -Complete (see [8]).

Disjoint connecting paths

Instance: A Graph G = (V, E), a collection of x disjoint

vertex pairs (s1, t1), (s2, t2), . . . , (sx, tx)

Question: Does G contain x mutually vertex-disjoint paths

P1, P2, . . . , Px such that Pi joins si and ti for i = 1, . . . , x?

Given an instance of the Disjoint connecting paths

problem, G = (V, E), (s1, t1), (s2, t2), . . . , (sx, tx), we con-

struct an instance of RPP/k/req as follows: the network is

the same and the entry ai,j of the demand matrix An×n is

equal to 1 if and only if for some z = 1, . . . , x, i = sz and

j = tz. Putting d = 1 and k = 1 easily follows that a solu-

tion is feasible for the RPP/k/req problem if and only if the

answer to the Disjoint connecting paths problem is yes.

In fact, if the answer to the Disjoint connecting paths

problem is yes, a feasible solution for the RPP/k/req problem

can be obtained by routing each request relative to a 1-entry

ai,j of the demand matrix (corresponding to the vertex pair

(sz, tz)) on the path Pz. Since the paths P1, P2, . . . , Px are

vn

. . . . .

r

a1 b1 a2 b2 an bn

v1 v2

Figure 5: An instance in which the use of non simple

paths is helpful.

mutually vertex-disjoint, it is possible to put a regenerator

at each intermediate node of each path, thus obtaining a

feasible solution for the RPP/k/req problem.

Conversely, given a feasible solution for the RPP/k/req

problem, since when d = 1 a regenerator is needed at each

intermediate node of the paths used for the routing of the

requests, by recalling that k = 1 it follows that such paths

are vertex-disjoint.

Since it is difficult even to find a feasible solution for the

considered problem, the following corollary holds.

Corollary 2.10. The RPP/k/req problem is not approx-

imable in polynomial time, i.e. RPP/k/req /∈ Exp−Apx unless

P = NP .

3. THE NON-SIMPLE PATHS CASE
In this section we consider the case in which the routing

can be done using non-simple paths. Notice that in such

a case a lot of location on which regenerators have to be

put can be saved. For instance, consider the network in

Figure 5; there are n requests from ai to bi for i = 1, . . . , n.

If d = 3 and k ≥ n, by routing all such requests on the

non-simple path of length 6 crossing node r, regenerators

have to be located only at node r. In fact, regenerators

are electro-optical converters, and therefore a path could be

composed by two or more lightpaths crossing a same edge

and using different colors. Conversely, if only simple paths

are considered for the routing, n locations (say v1,. . . ,vn)

are needed.

All the (negative) results about the hardness and the inap-

proximability of the simple path case still hold for this (more

general) case. The extension is trivial for the proofs relative

to the problems in which the paths are given (Theorems 2.3

and 2.5 and Corollary 2.6). Moreover, it is easy to check

that the proofs of Theorems 2.7 and 2.9 and Corollary 2.10

still hold since, being d = 1, any solution using non-simple

paths can be converted in a better one using only simple

paths.

Therefore, in the following of this section we focus on the

positive algorithmic results of RPP/∞/rt and RPP/∞/req

problems.

3.1 Problem RPP/∞/rt

The algorithms of Section 2.1.1 for tree and ring networks

work when the given routing contains only simple paths.

Nevertheless, it is easy to check that, since we are dealing
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with tree and ring topologies, every instance I containing

non simple paths can be converted in another instance I ′

having only simple paths. In fact, let us consider a non

simple paths and let v be the last vertex of it such that the

path till v is simple; since two lightpaths sharing an edge

must use different colors, a color conversion is needed at

node v and we split the initial path in two paths, the first

one being simple; v is called a split-node. Such a process can

be iterated until the initial non simple paths is split in simple

paths. Moreover, since we are interested in minimizing the

number of locations where regenerators are placed, in order

to obtain I ′, for each split-node v we split at v all the paths

crossing it. The output of the (optimal) algorithm for the

initial instance I with non-simple paths is finally given by

the union of the set of split-nodes (where regenerators are

needed since color conversions have to be performed) and

the set given in output by the algorithm on the instance I ′

containing only simple paths.

Concerning general network topologies, the algorithm of

Theorem 2.4 can be extended, and the following theorem

holds.

Theorem 3.1. Let Δ be the maximum number of times

that a given path of the instance goes through a same node.

It is possible to find a solution for RPP/∞/rt problem in

which non-simple paths are allowed with approximation

ratio O(log m + log d + log Δ).

3.2 Problem RPP/∞/req

The RPP/∞/req problem has unexpected similarities with

the power consumption minimization problem in ad-hoc

wireless networks. In some sense, a regenerator at a node

corresponds to a wireless station at that node whose range

assignment to transmit all the nodes at distance at most

d costs 1. If non simple paths are allowed, thanks to such

similarities and by exploiting ideas in [3], it is possible to

provide an approximation algorithm asymptotically match-

ing the inapproximability result Ω(log m).

Theorem 3.2. For any demand matrix it is possible to

find a solution of the RPP/∞/req problem in which non-

simple paths are allowed with approximation ratio 3.22 log m.

Proof. In order to provide the claimed 3.22 log m-

approximation algorithm we transform an instance I of the

RPP/∞/req problem in an instance I ′ of the Node Weighted

Steiner Forest problem such that a ρ-approximating solution

for I ′ induces a 2ρ-approximation for I .

The Node Weighted Steiner Forest is defined as follows.

Node Weighted Steiner Forest

Input: An undirected graph G′ = (V ′, E′) with a node cost

function c : V ′ → R+ and a set of nodes D ⊆ V ′ partitioned

into p disjoint sets D1, . . . , Dp.

Output: A forest subgraph H of G′ such that any two nodes

belonging to the same set Dl, 1 ≤ l ≤ p, are connected by a

path in H .

Measure of a solution: total cost of H , that is the sum

of the costs of its nodes.

Objective: Minimizing the measure of the returned solu-

tion.

Given the demand matrix A and the graph G correspond-

ing to the instance I of RPP/∞/req, I ′ is constructed as

follows. G′ contains a 0-node zi and a 1-node oi for every

i ∈ V of G, of costs 0 and 1, respectively. There is an edge

between zi and oi for every i, 1 ≤ i ≤ n. Moreover, every oi

is connected to every zj such that j is at distance at most d

from i in G.

Sets D1, . . . , Dp correspond to the connected components

of the demand graph (namely, the graph in which the node

set is the same of G, and there is an edge between i and j

if there is a request between i and j in A, that is Ai,j > 0).

Then, each Dl is the set of the 0-nodes zi of all the nodes

i contained in a distinguished connected component of the

demand graph.

Every solution of I induces a solution of I ′ having the same

cost. Such a solution contains all the 0-nodes which corre-

spond to endpoints of requests, plus all the 0- and 1-nodes

corresponding to the nodes of G in which I puts a regenera-

tor. Clearly, this solution is feasible for I ′, because, since in

I for every request (i, j) there is a path from i to j containing

a sequence of regenerators t1, . . . , th placed at most every d

nodes, in I ′ there is a path from zi to zj , whose edges in

I ′ in the order are {zi, oi}, {oi, zt1}, {zt1 , ot1}, {ot1 , zt2}, ...

{oj , zj}. As a consequence opt(I ′) ≤ opt(I).

Conversely, consider any solution H of I ′ and the corre-

sponding solution of the instance I of RPP/∞/req in which

there is a regenerator in every node whose corresponding

1-node belongs to H . In such a solution, the routing is

obtained by associating to each edge in G′ between a 0-

node zi and a 1-node oj a lightpath in G (of length at most

d) between i and j. Notice that the concatenation of such

lightpath may result in a non-simple path. Unfortunately,

I ′ might be unfeasible, since in the path in G from i to j

induced by the path from zi to zj in H , we are guaranteed of

the existence of a regenerator at most every 2d nodes. This

can happen if such a path in H does not alternate horizontal

edges, that is between 0- and 1-nodes with the same index,

and vertical ones, between 0- and 1-nodes with different in-

dices. In fact, for each subpath corresponding to an edge

of H , a regenerator is guaranteed to be placed only at the

endpoint corresponding to its 1-node. However, feasibility

can be recovered by at most doubling the number of regen-

erators as follows. For each subtree T corresponding to a

connected component of the Steiner forest H , select a leaf

as source, and whenever there are two consecutive vertical

edges {oi, zt}, {zt, oj} in a path from such source towards

another leaf, add a regenerator at node t corresponding to

the middle of the two vertical edges. Thus, charging this

regenerator to oj , since oj has only one father zt, we have

that at the end of the process every 1-node has been charged

with at most one regenerator. The new solution is feasible

because the path connecting a given request between two

nodes i and j is obtained concatenating the subpaths of

length at most d in G corresponding to the single edges in
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H from zi to zj , and such subpaths have a regenerator at

both their endpoints, except at i and j.

In conclusion, the final number of regenerators is at most

twice the number of 1-nodes in H , that is it has been at most

doubled, and the obtained solution is feasible. Therefore,

given any ρ-approximate solution for I ′ of cost m, we get a

solution for I of cost at most 2m ≤ 2ρ · opt(I ′) ≤ 2ρ · opt(I).

The theorem then follows by the 1.61 ln |D|-approximating

algorithm presented in [9], by observing that m ≤ |D|.

Notice that the above approximation ratio is actually log-

arithmic in the number of nodes being endpoints of at least

one request. In the all-to-all case, such a number is about√
m, thus giving an approximation ratio roughly equal to

1.61 lnm.

4. DISCUSSION AND OPEN PROBLEMS
In this paper we have presented basic fundamental re-

sults concerning the problem of minimizing the number of

locations for placing of generators in optical networks. We

considered four cases, depending on whether or not there is

a bound on the number of regenerators placed in a single

node, and depending on whether or not the routing is given.

Moreover, we deal both with the case in which only simple

path are allowed for the routing, and with the case in which

the paths can be non-simple.

The main open problem is solving the RPP/∞/req prob-

lem in the general case when only simple paths are allowed.

This is the first study of these problems, and it suggests

many possible extensions, such as considering the objective

function of minimizing the total number of regenerators,

adding some constraint on the number of colors, solving the

on-line version of any of these problems and dealing with

specific network topologies. Finally, it would be worthy of

considering the general case where each edge e has a weight

w(e) (we assumed w(e) = 1 for every edge e), and the con-

straint is that the signal never travels a path whose weight

(that is the sum of weights of its edges) is greater than d.
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