
Chapter 4

Algorithms in edge-weighted graphs

Recall that an edge-weighted graph is a pair (G,w) where G = (V,E) is a graph and w : E → IR
is a weight function. Edge-weighted graphs appear as a model for numerous problems where
places (cities, computers,...) are linked with links of different weights (distance, cost, through-
put,...). Note that a graph can be viewed as an edge-weighted graph where all edges have weight
1.

Let (G,w) be an edge-weighted graph. For any subgraph H of G, the weight of H, denoted
by w(H), is the sum of all the weights of the edges of H. In particular, if P is a path, w(P) is
called the length of P. The distance between two vertices u and v, denoted by distG,w(u,v), is
the length of a shortest (with minimum length) (u,v)-path.

Observe that distG,w is a distance: it is symmetric, that is, distG,w(u,v) = distG,w(v,u), and it
satisfies the triangle inequality: for any three vertices x, y and z, distG,w(x,z) ≤ distG,w(x,y)+
distG,w(y,z).

4.1 Computing shortest paths

Given an edge-weighted graph (G,w), one of the main problems is the computation of distG(u,v)
and finding a shortest (u,v)-path. We have seen in Subsection 2.1.1, that if all the edges have
same weight then one can compute a shortest (u,v)-path by running a breadth-first search from
u. Unfortunately, this approach fails for general edge-weighted graphs. See Exercise 4.1. We
now describe algorithms to solve this problem in general. For this purpose, we solve the fol-
lowing more general problem.

Problem 4.1 (Shortest-paths tree).
Instance: an edge-weighted graph (G,w) and a vertex r.
Find: a subtree T of G such that ∀x ∈V (G),distG,w(r,x) = distT,w(r,x).

Such a tree is called a shortest-paths tree.
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46 CHAPTER 4. ALGORITHMS IN EDGE-WEIGHTED GRAPHS

4.1.1 Dijkstra’s Algorithm

Dijkstra’s Algorithm is based on the following principle. Let S ⊂ V (G) containing r and let
S̄ =V (G)\S. If P = (r,s1, . . . ,sk, s̄) is a shortest path from r to S̄, then sk ∈ S and P is a shortest
path from r to s̄. Hence,

dist(r, s̄) = dist(r,sk)+w(sks̄)

and the distance from r to S̄ is given by the following formula

dist(r, S̄) = min
u∈S,v∈S̄

{dist(r,u)+w(uv)}

To avoid to many calculations during the algorithm, each vertex v ∈V (G) is associated to a
function d�(v) which is an upper bound on dist(r,v), and to a vertex p(v) which is the potential
parent of v in the tree. At each step, we have:

d�(v) = dist(r,v) if v ∈V (Ti)

d�(v) = min
u∈V (Ti−1)

{dist(r,u)+w(uv)} if v ∈V (Ti)

Algorithm 4.1 (Dijkstra).

1. Initialize d�(r) := 0 and d�(v) :=+∞ if v �= r. T0 is the tree consisting of the single vertex
r, u0 := r and i := 0.

2. For any v ∈V (Ti), if d�(ui)+w(uiv)≤ d�(v), then d�(v) := d�(ui)+w(uiv) and p(v) := ui.

3. Compute min{d�(v) | v ∈V (Ti)}. Let ui+1 a vertex for which this minimum is reached. Let
Ti+1 be the tree obtained by adding the vertex ui+1 and the edge p(ui+1)ui+1.

4. If i = |V |−1, return Ti, else i := i+1 and go to Step 2.

Remark 4.2. The algorithm does not work if some weights are negative.

Complexity of Dijkstra’s Algorithm: To every vertex is associated a temporary label corre-
sponding to (d�(v), p(v)). They are depicted in Figure 4.1. We do

- at most |E| updates of the labels;

- |V | searches for the vertex v for which d�(v) minimum and as many removal of labels.

The complexity depends on the choice of the data structure for storing the labels: if it is a
list, the complexity is O(|E||V |+ |V |2). But it can be improved using better data structures.
For example, a data structure known as heap is commonly used for sorting elements and their
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Figure 4.1: A run of Dijkstra’s Algorithm on the edge-weighted graph depicted top left. At each
step, bold vertices and edges are those of Ti. To each vertex t of Ti is associated its name and
the value d�(t) = dist(r, t). Next to each vertex v not in V (Ti) is a box containing the value d�(v)
and p(v) if d�(v) �=+∞.
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associated values, called keys (such as edges and their weights). A heap is a rooted binary tree
T should we define it? whose vertices are in one-to-one correspondence with the elements in
question (in our case, vertices or edges). The defining property of a heap is that the key of the
element located at vertex v of T is required to be at least as small as the keys of the elements
located at vertices of the subtree of T rooted at v. This condition implies, in particular, that the
key of the element at the root of T is one of smallest value; this element can thus be accessed
instantly. Moreover, heaps can be reconstituted rapidly following small modifications such as
the addition of an element, the removal of an element, or a change in the value of a key. A
priority queue is simply a heap equipped with procedures for performing such readjustments
rapidly.

Using a priority queue, the complexity of Dijkstra’s Algorithm is O(|E| log |V |+ |V | log |V |).

It should be evident that data structures play a vital role in the efficiency of algorithms. For
further information on this topic, we refer the reader to [4, 1, 5, 3].

4.1.2 Bellmann-Ford Algorithm

The algorithm performs n iterations, and gives a label h(v) to any vertex. At iteration i, h(v) is
the minimum weight of a path using at most i edges between r and v.

Note that, it always exists a shortest walk using at most |V (G)|− 1 edges between r and v
(otherwise the walk would contain a cycle of negative weight).

Algorithm 4.2 (Bellmann-Ford).

1. Initialization : h(r) := 0, h(v) :=+∞,∀v �= r.

2. For i = 0 to |V (G)|−1 do :
for all v ∈V (G),h(v) := min(h(v),min{h(u)+w(uv) | uv ∈ E(G)}).

3. Return d(r,v) = h(r,v).

Complexity of Bellmann-Ford’s Algorithm: Each iteration costs O(|E|) (all edges are con-
sidered), so the total complexity is O(|E||V |).

The algorithm works even if some edges have negative weight. It can also detect cycles with
negative weight. There is such a cycle if and only if, after the |V |th iteration, the labels h may
decrease. Finally, if during an iteration, no h(v) decreases, then h(v) = d(r,v). It is possible
to improve the algorithm by continuing the iteration only if h(v) becomes min{h(u)+w(uv) |
uv ∈ E(G)} for at least one vertex. The algorithm run in time O(L|E|) where L is the maximum
number of edges in a shortest path.
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4.2 Minimum-weight spanning tree

Another important problem is the following: given a connected edge-weighted graph, what is
the connected spanning subgraph with minimum weight? If all weights are non-negative, since
any connected graph has a spanning tree (Corollary 1.10), the problem consists of finding a
spanning tree with minimum weight.

Problem 4.3 (Minimum-Weight Spanning Tree).
Instance: a connected edge-weighted graph (G,w).
Find: a spanning tree T of G with minimum weight, i.e. for which ∑e∈T w(e) is minimum.

For S ⊂ V (G), an edge e = xy is S-transversal, if x ∈ S and y /∈ S. The algorithms to find
a minimum-weight spanning tree are based on the fact that a transversal edge with minimum
weight is contained in a minimum-weight spanning tree.

Lemma 4.4. Let (G,w) be an edge-weighted graph and let S ⊂V . If e = ss̄ is an S-transversal
edge with minimum weight, then there is a minimum-weight spanning tree containing e.

Proof. Let T be a tree that does not contains e. There is a path P between s and s̄ in T . At least
one edge of P, say e�, is S-transversal. Hence, the tree T � = (T \ e�)∪{e} has weight w(T �) =
w(T )+w(e)−w(e�) ≤ w(T ) since w(e) ≤ w(e�). Therefore, if T is a minimum spanning tree,
then so does T � and w(e) = w(e�).

In particular, Lemma 4.4 implies that if e is an edge of minimum weight, i.e., w(e) =
min f∈E(G)w( f ) = wmin, then there is a minimum-weight spanning tree containing e.

4.2.1 Jarnı́k-Prim Algorithm

The idea is to grow up the tree T with minimum weight by adding, at each step, a V (T )-
transversal edge with minimum weight. At each step, ET is the set of the V (T )-transversal
edges.

Algorithm 4.3 (Jarnı́k-Prim).

1. Initialize the tree T to any vertex x and ET is the set of edges incident to x.

2. While V (T ) �=V (G):
Find an edge e ∈ ET with minimum weight. Add e and its end not in T to T . Let Ey be the
set of edges incident to y. Remplace ET by (ET�Ey).
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Complexity of Jarnı́k-Prim Algorithm: During the execution, at most |E(G)| edges are
added in ET , and at most |E(G)| edges are removed. Indeed, an edge e is removed when both
its endvertices are in V (T ). Since V (T ) grows up, e will not be added anymore to ET . |V (G)|
selections of the edge of ET with minimum weight must be performed. To performs such an
algorithm we need a data structure allows the insertion, the removal and the selection of the
minimum-weight element efficiently. Using a priority queue, the total complexity of Jarnı́k-
Prim Algorithm is O(|E| log |E|).

4.2.2 Boruvka-Kruskal Algorithm

Boruvka-Kruskal Algorithm is close to Jarnı́k-Prim Algorithm and its correctness also comes
from Lemma 4.4. The idea is to start from a spanning forest and to make its number of con-
nected components decreases until a tree is obtained. Initially, the forest has no edges and, at
each step, an edge with minimum weight that links two components is added.

For this purpose, we need a fast mechanism allowing to test whether or not u and v are in
the same component. A way to do so consists in associating to each connected component the
list of all the vertices it contains. To every vertex u is associated a vertex p(u) in the same
component. This vertex p(u) is a representative of this component. It points to the set Cp(u) of
vertices of this component and to the size size(p(u)) corresponding to the size it.

Algorithm 4.4 (Kruskal).

1. Initalize T : V (T ) :=V (G), E(T ) := /0. Order the edges in increasing order of the weights
and place them in a stack L; For all u ∈V (G), do p(u) :=Cu and size(Cu) := 1.

2. If L = /0, terminate. Else, pull the edge e = uv with minimum weight;

3. If p(u) = p(v) (the vertices are in the same component), then go to 2. Else p(u) �= p(v),
add e in T .

4. If size(p(u)) ≥ size(p(v)), then Cp(u) := Cp(u) ∪ Cp(v), size(p(u)) := size(p(u)) +
size(p(v)), and for any w ∈Cp(v), p(w) := p(u).
Else (size(p(u))< size(p(v))), Cp(v) :=Cp(v)∪Cp(u), size(p(v)) := size(p(u))+size(p(v)),
and for any w ∈Cp(u), p(w) := p(v).

5. Go to 2.

Complexity of Boruvka-Kruskal Algorithm Ordering the edges takes time O(|E(G)| log |E(G)|).
Then, each edge is considered only once and deciding whether the edge must be added to the
tree or not takes a constant number of operations.

Now, let us consider the operations used to update the data structure when an edge is inserted
in the tree.
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We do the union of to sets Cp(u) and Cp(v). If this sets are represented as lists with a pointor
to its last element, it takes a constant time. Such unions are done |V (G)|−1 times.

We also have to update the values of some p(w). Let x ∈ V (G) and let us estimate the
number of updates of p(x) during the execution of the algorithm. Observe that when p(x) is
updated, the component of x becomes at least twice bigger. Since, at the end, x belongs to a
component of size |V (G)|, then p(x) is updated at most log2(|V (G)|) times. In total, there are
at most |V (G)| log2 |V (G)| such updates.

Since |V (G)|≤ |E(G)|+1 , the total time complexity is O(|E(G)| log |E(G)|).

4.2.3 Application to the Travelling Salesman Problem

Rosenkrantz, Sterns and Lewis considered the special case of the Travelling Salesman Problem
(3.14) in which the weights satisfy the triangle inequality: w(xy)+w(yz)≥ w(xz), for any three
vertices x, y and z.

Problem 4.5 (Metric Travelling Salesman).
Instance: an edge-weighted complete graph (G,w) whose weights satisfy the triangle inequality.
Find: a hamiltonian cycle C of G of minimum weight, i.e. such that ∑e∈E(C)w(e) is minimum.

This problem is N P -hard (see Exercise 4.11) but a polynomial-time 2-approximation algo-
rithm using minimum-weight spanning tree exists.

Theorem 4.6 (Rosenkrantz, Sterns and Lewis). The Metric Travelling Salesman Problem ad-
mits a polynomial-time 2-approximation algorithm.

Proof. Applying Jarnı́k-Prim or Boruvka-Kruskal algorithm, we first find a minimum-weight
spanning tree T of G. Suppose that C is a minimum-weight hamiltonian cycle. By deleting any
edge of C we obtain a hamiltonian path P of G. Because P is a spanning tree, w(T ) ≤ w(P) ≤
w(C).

We now duplicate each edge of T , thereby obtaining a connected eulerian multigraph H with
V (H) =V (G) and w(H) = 2w(T ). The idea is to transform H into a hamiltonian cycle of G, and
to do so without increasing its weight. More precisely, we construct a sequence H0,H1, . . . ,Hn−2
of connected eulerian multigraphs, each with vertex set V (G), such that H0 = H, Hn−2 is a
hamiltonian cycle of G, and w(Hi+1)≤ w(Hi), 0 ≤ i ≤ n−3. We do so by reducing the number
of edges, one at a time, as follows.

Let Ci be an eulerian tour of Hi, where i < n− 2. The multigraph Hi has 2(n− 2)− i > n
edges, and thus a vertex v has degree at least 4. Let xe1ve2y be a segment of the tour Ci; it
will follow by induction that x �= y. We replace the edges e1 and e2 of Ci by a new edge e of
weight w(xy) linking x and y, thereby bypassing v and modifying Ci to an eulerian tour Ci+1 of
Hi+1 = (Hi \ {e1,e2})∪ {e}. By the triangle inequality, we have w(Hi+1) = w(Hi)−w(e1)−
w(e2)+w(e)≤w(Hi). The final graph Hn−2, being a connected eulerian graph on n vertices and
n edges, is a hamiltonian cycle of G. Furthermore, w(Hn−2)≤ w(H0) = 2w(T )≤ 2w(C).

A 3
2-approximation algorithm for the Metric Travelling Salesman Problem was found by

Christofides [2].
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4.3 Algorithms in edge-weighted digraphs

Computing shortest paths in directed graphs can be done in much the same way as in undirected
graphs by growing arborescences rather than trees. Dijkstra’s Algorithm and Bellman-Ford
Algorithm translates naturally.

The Minimum-Weight Spanning Tree Problem is equivalent to finding the minimum-weight
spanning connected subgraph. The corresponding problem in digraph, namely, finding a con-
nected subdigraph with minimum weight in a connected digraph is much more complex. Ac-
tually, this problem is N P -hard even when all edges have same weight because it contains the
Directed Hamiltonian Cycle Problem as special case. One can easily describe a polynomial-
time 2-approximation algorithm. (See Exercise 4.12). Vetta [6] found a polynomial-time 3

2-
approximation algorithm.

4.4 Exercices

Exercise 4.1. Show a edge-weighted graph G having a vertex u such that no breadth first seach
tree from u is a shortest-paths tree.

Exercise 4.2.

Consider the graph depicted in Figure 4.2.

1) Apply Dijkstra’s and Bellmann-Ford algorithms for finding a shortest-paths tree from r.

2) Apply the algorithms for finding a minimum-weight spanning tree.
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Exercise 4.3. Let (G,w) be a connected edge-weighted graph.
1) Prove that if w is a constant function then every shortest-paths tree is a minimum-weight
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spanning tree.
2) Exhibit a connected edge-weighted graph in which there is a shortest-paths tree which is not
a minimum-weight spanning tree.

Exercise 4.4. Four imprudent walkers are caught in the storm and nights. To reach the hut, they
have to cross a canyon over a fragile rope bridge which can resist the weight of at most two
persons. In addition, crossing the bridge requires to carry a torch to avoid to step into a hole.
Unfortunately, the walkers have a unique torch and the canyon is too large to throw the torch
across it. Due to dizziness and tiredness, the four walkers can cross the bridge in 1, 2, 5 and 10
minutes. When two walkers cross the bridge, they both need the torch and thus cross the bridge
at the slowest of the two speeds.

With the help of a graph, find the minimum time for the walkers to cross the bridge.

Exercise 4.5. Let T be a minimum-weight spanning tree of an edge-weighted graph (G,w)
and T � another spanning tree of G (not necessarily of minimum weight). Show that T � can be
transformed into T by successively exchanging an edge of T � by an edge of T so that at each
step the obtained graph is a tree and so that the weight of the tree never increases.

Exercise 4.6. Little Attila proposed the following algorithm to solve the Minimum-Weight
Spanning Tree Problem: he considers the edges successively in decreasing order with respect
to their weight and suppress the ones that are in a cycle of the remaining graph. Does this
algorithm give an optimal solution to the problem? Justify your answer.

Exercise 4.7. Let (G,w) be an edge-weighted graph. For all t ≥ 1, a t-spanner of (G,w) is a
spanning edge-weighted graph (H,w) of (G,w) such that, for any two vertices u,v, distH,w(u,v)≤
t ×distG,w(u,v).

1) Show that (G,w) is the unique 1-spanner of (G,w).
2) Let k ≥ 1. Prove that the following algorithm returns a (2k−1)-spanner of (G,w).

1. Initalise H : V (H) := V (G), E(H) := /0. Place the edges in a stack in increasing order
with respect to their weight. The minimum weight edge will be on top of the stack.

2. If L is empty then return H. Else remove the edge uv from the top of the stack;

3. If in H there is no (u,v)-path with at most 2k−1 edges, add e to H.

4. Go to 2.

3) Show that the spanner returned by the above algorithm contains a minimum-weight span-
ning tree. (One could show that at each step the connected components of H and the forest
computed by Boruvka-Kruskal Algorithm are the same.)

Exercise 4.8.

We would like to determine a spanning tree with weight close to the minimum. Therefore we
study the following question: What is the complexity of the Minimum-Weight Spanning Tree
Problem when all the edge-weights belong to a fixed set of size s. (One could consider first the
case when the edges have the same weight or weight in {1,2}.
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We assume that the edges have integral weights in [1,M]. We replace an edge with weight
in [2i,2i+1 − 1] by an edge of weight 2i. (We sample the weight.) Prove that if we compute a
minimum-weight spanning tree with the simplified weight then we obtain a tree with weight at
most twice the minimum for the original weight.

What happens if we increase the number of sample weights?

Exercise 4.9. 1) Let G be 2-connected edge-weighted graph. (See Chapter 5 for the definition
of 2-connectivity.) Show that all the spanning trees have minimum weight if and only if all the
edges have the same weight.

2) Give an example of a connected edge-weighted graph for which all the spanning tree have
the same weight but whose edges do not all have the same weight.

Exercise 4.10. The diameter of an edge-weighted graph (G,w) is the maximum distance be-
tween two vertices: diam(G) := max{distG,w(u,v) | u ∈V (G),v ∈V (G)}.
Show that the following algorithm computes the diameter of an edge-weighted tree T .

1. Pick a vertex x of T .

2. Find a vertex y whose distance to x is maximum (using Dijkstra’s Algorithm for example).

3. Find a vertex z whose distance to y is maximum.

4. Return distT,w(y,z).

Exercise 4.11. Show that the Metric Travelling Salesman Problem is N P -hard.

Exercise 4.12.

1) Let D be a strongly connected digraph on n vertices. A spanning subdigraph of D is strong-
minimal if it is strongly connected and every spanning proper subdigraph is not strongly con-
nected.

a) Show that in the handle decomposition of a strong-minimal spanning subdigraph all the
handles have length at least 2.

b) Deduce that a strong-minimal spanning subdigraph of D has at most 2n−2 arcs.

2) Describe a polynomial-time 2-approximation for the following problem:
Instance: a strongly connected digraph D.
Find: a strongly connected spanning subdigraph with minimum number of arcs.
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