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Abstract

In this paper, we study the diverse routing problem in optical mesh net-

works. We use a general framework based on Shared Risk Link Groups (SRLGs)

to model the problem. We prove that the diverse routing problem is indeed NP-

complete, a result that has been conjectured by several researchers previously.

In fact, we show that even the �ber-span-disjoint paths problem, a special case

of the diverse routing problem is also NP-complete. We then develop an inte-

ger linear programming formulation and show through numerical results that

it is a very viable method to solve the diverse routing problem for most optical

networks found in many applications which typically have no more than a few

hundreds nodes and �ber spans.

Index Terms: optical �ber communication, wavelength division multiplexing,

communication system routing, protection, complexity theory

1 Introduction

In optical networks, circuits (demands) often require two paths, one working path

and one protection path, so that it can withstand certain network failures, such

that �ber cuts, hardware and software failures, and power outrages. Therefore, in

the design of an optical network, not only does one need to build enough working

capacity to accommodate working paths and also additional spare capacity so that

protection paths can be established. There are two commonly used protection schemes

in determining how much the spare capacity is needed for protection paths: shared
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path protection and dedicated path protection. In the case of shared path protection,

the spare capacity may be shared among di�erent protection paths, while in the case

of dedicated path protection, the spare capacity is dedicated to individual protection

paths and cannot be shared by others. In general, the requirement for working path

and protection path is that they have to be diversely routed so that at least one path

can survive a single failure in the network, where a single failure may represent a �ber

cut or an individual card failure at a node.

The problem of �nding two diversely routed paths in optical networks is much

more diÆcult than the classical edge/node-disjoint paths problem in graph theory.

This is because optical networks architecturally have two layers: the physical layer

and the optical layer (virtual/logical layer). The physical layer consists of �ber spans

and nodes (representing locations where �ber spans terminate) and the optical layer

consists of optical links (or light paths) and a subset of nodes contained in the physical

layer. An optical link in the optical layer is a path connecting a pair of nodes via

a set of �ber spans in the physical layer. The failures, including �ber cuts and

optical/electronic component failures at nodes, occur in the physical layer. However,

the circuits are routed over optical links in the optical layer. Since an optical link is

a path that may traverse several �ber spans and nodes, it can be a�ected by di�erent

failures in the physical layer. On the other hand, several optical links may traverse a

single �ber span or node, hence, a single failure in the physical layer can cause multiple

optical link failures. The diverse routing problem is to �nd two paths between a pair

of nodes in the optical layer such that no single failure in the physical layer may cause

both paths to fail. In [8], an example is provided to illustrate why the traditional

edge/node-disjoint algorithms do not work for such a problem.

The problem of �nding diversely routed paths in optical networks was �rst consid-

ered in [1] and later in [15, 2, 8, 10]. Heuristic algorithms were developed in [1, 15, 10]

for special cases of the diverse routing problem, where only �ber cuts (and node fail-
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ures) were considered. An exhaustive search algorithm is proposed in [2] for �nding

diversely routed paths. In [8], the problem was formulated as a linear programming

problem. A problem related to the diverse routing problem is to embed the optical

links into the physical layer with the objective of minimizing the e�ect of physical

layer failures on the optical layer (e.g., see [5, 12]).

In this paper, we consider the diverse routing problem within a very general frame-

work in which we use the Shared Risk Link Group (SRLG) to represent a set of optical

links that are a�ected by a single failure in the physical layer. SRLG is generic network

protection/restoration terminology that has been proposed in the Internet Engineer-

ing Task Force (IETF) and Optical Internetworking Forum (OIF) standard bodies

[7, 13]. We �rst prove that the diverse routing problem is NP-complete, a result that

has been suggested by several researchers (e.g., see [2, 8, 10]) and remains to be an

open problem until now. A weaker result was given in [10] where it was shown that

the problem of �nding maximum number of diversely routed paths is NP-complete.

We further prove that the �ber-span-disjoint paths problem, a special case of the

diverse routing problem considered in [1, 15, 10], is NP-complete as well. We also

consider two generalizations of the diverse routing problem: one is the minimum cost

diverse routing problem in which our goal is to �nd two diversely routed paths with

minimum total cost, and the other is the least coupled paths problem in case that

there do not exist two diverse paths. Obviously, they are both NP-complete since

they include the diverse routing problem as a special case. We propose an integer

linear programming (ILP) formulation for these two problems, and provide numerical

results to show that the ILP formulation o�ers a very e�ective way to solve them

(and the diverse routing problem itself) for most optical networks found in applica-

tions which typically have no more than a few hundreds of nodes and �ber spans.

Therefore, in addition to resolving the long-standing complexity issue for the diverse

routing problem for optical networks, we also provide a viable method for solving the
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problem.

The rest of the paper is organized as follows. In Section 2, we provide a basic

framework for the diverse routing problem and introduce necessary notation, de�ni-

tions, and terminologies. In Section 3, we study the complexity issue and prove that

the diverse routing problem is NP-complete. Our NP-completeness results include one

for the �ber-span-disjoint paths problem, which was considered by several researchers

previously. In Section 4, we develop an integer linear programming formulation and

also provide some numerical results to demonstrate its e�ectiveness for the diverse

routing problem. Finally, a conclusion is provided in Section 5.

2 Problem Formulation

For an optical network, we use graph Gf = (Vf ; Ef) to represent its physical layer,

where Ef is the set of edges representing �ber spans and Vf is the set of nodes

representing locations (where the �ber spans terminate). We use graph Go = (Vo; Eo)

to represent its optical layer, where Eo is the set of edges representing optical links

(light paths) and Vo � Vf representing end points of the optical links. In general, each

edge in Eo may correspond to a path in graph Gf . Let R be the set of risks (failures).

Each risk may represent a �ber cut, a card failure at a node, a piece of software

failure, an operational error, or any combination of these factors. Let Er � Eo denote

the subset of optical links that can be a�ected by r (r 2 R), and we refer Er as a

Shared Risk Link Group (SRLG). For a path p in Go, we say it contains r 2 R if any

edge on the path belongs to Er, and let

rp = fr 2 R : path p contains rg:

Then the SRLG diverse routing problem can be de�ned as follows:

De�nition 1 (The SRLG Diverse Routing Problem) Find two paths p1 and p2

between a pair of nodes such that rp1\rp2 = ;, i.e., p1 and p2 do not contain a common
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element of R. We also say that p1 and p2 are two SRLG diverse paths (with respect

to R).

In case that there do not exist two SRLG diverse paths, then a related problem

is the following least coupled SRLG paths problem:

De�nition 2 (The Least Coupled SRLG Paths Problem) Find two paths p1

and p2 between a pair of nodes such that jrp1 \ rp2j is minimized, i.e., the number

of common elements in R shared by both paths is minimized.

The least coupled SRLG paths problem was also considered in [8], where it was set

up as an ILP problem based on the cut set formulation. Clearly, the SRLG diverse

routing problem can be viewed as a special case of the least coupled SRLG paths

problem in which minp1;p2 jrp1 \ rp2j = 0. If there is a cost associated with each edge

in Go, then the SRLG diverse routing problem can be extended to the minimum cost

SRLG diverse routing problem.

De�nition 3 (The Minimum Cost SRLG Diverse Routing Problem) Find two

SRLG diverse paths between a pair of nodes such that their total edge cost is mini-

mized (the total edge cost is de�ned as the summation of costs of all edges on the two

paths).

A special case of the SRLG diverse routing problem is the �ber-span-disjoint paths

problem in which R = Ef (only failures considered in the physical layer are �ber cuts)

and every edge in Eo represents a path in Gf . Other special cases of the SRLG diverse

routing problem include the edge-disjoint paths problem (R = Eo and Er = frg) and

the node-disjoint paths problem (R = Vo and Er contains all edges in Eo which are

connected to node r).

Before closing this section, we should point out that another two generalizations

of the SRLG diverse routing problem are: i) Find k > 2 SRLG diverse paths between
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a pair of nodes, and ii) Find maximum number of SRLG diverse paths between a pair

of nodes.

3 NP-Completeness

In this section, we �rst prove that the SRLG diverse routing problem is NP-complete,

which immediately implies that both the least coupled SRLG paths problem and the

minimum cost SRLG diverse routing problem are NP-complete. We then prove that

the �ber-span-disjoint paths problem is also NP-complete. To proceed, we �rst need

to introduce a special type of optical layer graph Gl
o = (V l

o ; E
l
o), which is depicted in

Figure 1 (where solid circles, both large and small, represent nodes). The graph Gl
o

can be divided into S subgraphs, which are denoted as G1; G2; : : : ; GS. In subgraph

Gi (i = 1; 2; : : : ; S), there are two end-nodes i � 1 and i that are connected by a set

of parallel paths. If multiple edges are allowed between a pair of nodes, then each

parallel path between nodes i � 1 and i can simply be a single edge; otherwise, we

can assume that each parallel path is made of two edges. We further assume that the

(two) edges on each of these parallel paths belong to the same SRLG and the edges

on di�erent parallel paths belong to di�erent SRLGs. Let

Ri = fr 2 R : r is contained by any edge in Gig;

i.e., Ri is the subset of R for subgraph Gi. We are now ready to present our �rst

NP-complete result.

Theorem 1 The SRLG diverse routing problem is NP-complete for nodes 0 and S

in Gl
o, hence, it is NP-complete in general.

Proof. We �rst note that �nding a path between nodes 0 and S is equivalent to �nding

a subset of R which contains at least one element in each Ri (i = 1; 2; : : : ; S). Hence,

�nding two SRLG diverse paths between nodes 0 and S is equivalent to �nding two
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Figure 1: A Special Graph Gl
o with S Subgraphs

disjoint subsets of R such that each of them contains at least one element from each

subset Ri (i = 1; 2; : : : ; S). We now show that the well-known set splitting problem

can be reduced to the SRLG diverse routing problem. The set splitting problem can

be stated as follows: Given a collection of subsets, fCi : i = 1; : : : ; Kg, of a �nite set C,

are there two disjoint subsets of C such that each subset contains at least one element

in Ci (i = 1; 2; : : : ; K)? So, if we set R = C, S = K, and Ri = Ci (i = 1; 2; : : : ; S),

then the set splitting problem is reduced to the SRLG diverse routing problem. Since

the set splitting problem is NP-complete (e.g., see [4, p.221, SP4]), the SRLG diverse

routing problem is NP-complete.

It is worth pointing out that if jRij = 2, then the SRLG diverse routing problem

for nodes 0 and S in Gl
o can be solved in polynomial time (see [4, p.221, SP4]) (note

that if any Ri has only one element, then there do not exist two SRLG diverse paths).

As we have mentioned in Section 2 that the SRLG diverse routing problem can be

viewed as a special case of the least coupled SRLG paths problem, hence the latter

problem is also NP-complete. However, in what follows we provide a di�erent proof

for the NP-completeness of the least coupled SRLG paths problem, which in fact

leads to a slightly stronger result. First, we need some preliminary results.

Lemma 2 For a given graph G = (V;E), its maximum bipartite subgraph problem,

i.e., �nding a bipartite subgraph with maximum number of nodes, is NP-complete.
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A proof of Lemma 2 can be found in [16, 9] (also see [4, p.195, GT21]).

Lemma 3 For a given graph G = (V;E), the problem of �nding two node-covers

which share minimum number of common nodes is NP-complete.

Proof. We prove that this problem is equivalent to the maximum bipartite subgraph

problem, hence it is NP-complete. Consider two node-covers: V1 and V2. Let Vc =

V1 \ V2, �Vc = V nVc, �V1 = V nV1, and �V2 = V nV2. Since V1 is a node-cover, there is

no edge between nodes in �V1. Similarly, there is no edge between nodes in �V2. Since

V1nVc � �V2, there is no edge between nodes in V1nVc. Note that �Vc = �V1 + V1nVc,

therefore the subgraph generated by �Vc is a bipartite. On the other hand, suppose

the subgraph generated by Vb = (V3; V4) � V is a bipartite. Let V1 = V3[ (V nVb) and

V2 = V4[(V nVb). It is not diÆcult to verify that both V1 and V2 are node-covers. Also

note that V1 \ V2 = V nVb. To summarize, we have shown that for every two node-

covers we can generate one bipartite subgraph and vice versa, and furthermore, the

set of the common nodes shared by the two node-covers is the complementary node

set of the corresponding bipartite subgraph. Therefore, the problem of �nding two

node-covers with minimum common nodes is equivalent to the maximum bipartite

subgraph problem.

We now prove that the least coupled SRLG paths problem for nodes 0 and S in

Gl
o is NP-complete, even if jRij = 2 for i = 1; 2; : : : ; S. As mentioned earlier, the

SRLG diverse routing problem for nodes 0 and S in Gl
o can be solved in polynomial

time if jRij = 2. Hence, the following NP-completeness result for the least coupled

SRLG paths problem is stronger.

Theorem 4 The least coupled SRLG paths problem for nodes 0 and S in Gl
o is NP-

complete, even if jRij = 2 for i = 1; 2; : : : ; S.

Proof. As we have pointed out in the proof of Theorem 1, �nding a path between

nodes 0 and S is equivalent to �nding a subset of R which contains at least one
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element from each subset Ri (i = 1; 2; : : : ; S). On the other hand, the problem of

�nding a node-cover for a graph can polynomially transform to the latter problem

with jRij = 2 (e.g., see [6]). Therefore, the problem of �nding two node-covers which

share minimum number of common nodes can polynomially transform to the least

coupled SRLG paths for nodes 0 and S in Gl
o with jRij = 2. Based on Lemma 3 we

can then conclude that the latter problem is NP-complete.

Finally, we consider the �ber-span-disjoint paths problem. To prove it is NP-

complete, we only need to show that the SRLG diverse routing problem polynomially

transforms to the �ber-span-disjoint paths problem. To achieve this, we need to

construct the physical layer graph Gf = (Vf ; Ef ) for G
l
o with the following properties:

each risk in R represents a �ber cut in Gf (i.e., R = Ef ) and each edge e 2 El
o

corresponds to a path in Gf . Without loss of generality, we assume that multiple

edges between a pair of nodes are allowed in Gl
o and each parallel path is simply

an edge (otherwise, each edge can be replaced by two edges and the corresponding

risk be replaced by a pair of new risks). We now construct the physical layer graph

Gf = (Vf ; Ef) as follows:

1. Add 4jEl
oj new elements to R and let Rn denote the set of these newly added

elements. We then assign four (4) elements in Rn to each edge e 2 El
o. So, now

every edge e 2 El
o belongs to �ve (5) SRLGs (one original SRLG and four new

SRLGs). We note that each new SRLG only contains one edge.

2. Replace each edge in Gl
o with a path consisting of 5 new edges, one for each

risk, and placing the edge corresponding the original risk in the middle.

3. Merge the edges in the same SRLG into a single edge.

To illustrate how the above procedure works, we provide a simple example in

Figure 2. The network at the top of Figure 2 is Gl
o with four nodes and seven edges:
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Figure 2: An Illustrative Example on How to Construct Gf for Gl
o

the edges represented by the same line pattern belong to the same SRLG. So, the

seven edges belong to three SRLGs: one is represented by solid lines (three), one by

short dotted lines (two), and one by long dotted lines (two). The physical layer is

depicted at the bottom. Speci�cally, the seven paths in Gf that represent the seven

edges in Gl
o are given in the following table:

Paths in Gf Edges in Gl
o

0{E{A{B{G{1 short dotted line between nodes 0 and 1

1{F{A{B{H{2 short dotted line between nodes 1 and 2

1{I{C{D{K{2 long dotted line between nodes 1 and 2

2{J{C{D{L{3 long dotted line between nodes 2 and 3

0{M{S{T{O{1 solid line between nodes 0 and 1

1{N{S{T{Q{2 solid line between nodes 0 and 1

2{P{S{T{R{3 solid line between nodes 0 and 1

It is not diÆcult to see that graphGf constructed based on our proposed procedure

has a total of 4jEl
oj+jRj edges and 2jE

l
oj+2jRj+S+1 nodes, and also the construction
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can be carried out in polynomial time. We note that the reason we add 4 rather than

fewer, say 2, risks for each edge e 2 El
o is to avoid multiple edges between a pair of

nodes in Gf . Also, it is not diÆcult to see that two paths between nodes 0 and S

in Gl
o are SRLG diverse with respect to R if and only if they are SRLG diverse with

respect to R[Rn, i.e., the SRLG diverse routing problem remains the same with the

expanded set of risks. To summarize, we present

Theorem 5 The SRLG diverse routing problem can polynomially transform to the

�ber-span-disjoint paths problem for nodes 0 and S in Gl
0
, which implies that the

�ber-span-disjoint paths problem is also NP-complete.

4 Integer Linear Programming Formulation

In this section, we formulate the problems discussed in the previous two sections as

the integer linear programming (ILP) problems. Though we have proved that these

problems are NP-complete, as we will demonstrate later that the ILP formulation

provides a very viable tool for solving them, in particular for most optical networks

in real-world which typically have less than a few hundreds nodes and �ber spans.

Throughout this section, we will focus exclusively on the optical layer graph Go =

(Vo; Eo) and use s to denote the source node and t the destination node and the paths

that we are interested are between s and t. Again, for ease of exposition, we assume

that Go is a directed graph.

We �rst introduce some necessary notation:

0: = [0; 0; : : : ; 0]T , the zero column vector;

1: = [1; 1; : : : ; 1]T , the unit column vector;

c: = [ce]e2Eo
, the cost row vector for the edges, where ce is the cost of edge e 2 Eo;
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u: = [uv]
T
v2Vo

, the source-destination column vector, where

uv =

8><
>:

1 if v = s,

�1 if v = t,

0 otherwise;

A: = [av;e]jVoj�jEoj, the node-edge incidence matrix, where

av;e =

8><
>:

1 if edge e originates from node v,

�1 if edge e terminates at node v,

0 otherwise;

H: = [hr;e]jRj�jEoj, the risk-edge incidence matrix, where

hr;e =

(
1 if e 2 Er,

0 otherwise;

xi: = [xe;i]
T
e2Eo

, the column vector containing edge decision variables for path pi

(i = 1; 2), where

xe;i =

(
1 if edge e is on path pi
0 otherwise;

zi: = [zr;i]
T
r2R, the column vector containing failure decision variables for path pi

(i = 1; 2), where

zr;i =

(
1 if r is contained in path pi
0 otherwise.

4.1 The Minimum Cost SRLG Diverse Routing Problem

The problem of �nding two SRLG diverse paths from s to t with minimum total edge

cost can be formulated as the following ILP problem:

min c(x1 + x2)

s.t. Axi = u i = 1; 2 (1)

Hxi � jEojzi i = 1; 2 (2)

z1 + z2 � 1 (3)

x and z are binary decision variables.
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� Constraint (1) guarantees that the edges selected based on xi is a path from s

to t.

� Constraint (2) implies that if r is contained in path pi then any edge in Er may

be selected for the path, otherwise, no edge in Er can be selected. Clearly, if an

edge belongs to several SRLGs, then it can be selected for path pi if and only

if the corresponding elements in R are contained in pi. The reason we need to

have coeÆcient jEoj in (2) is because pi may contain several edges that belong

to the same SRLG (jEoj can be replaced by any large positive number).

� Constraint (3) guarantees that no one element in R is contained in both paths.

We should also point out that the binary constraint on x can be replaced by

0 � x � 1. This is because that for a given pair of z1 and z2 (assuming that (3) is

satis�ed) the following mixed ILP (MILP) problem has an integer optimal solution:

min c(x1 + x2)

s.t. Axi = u i = 1; 2

Hxi � jEojzi i = 1; 2

0 � xi � 1 i = 1; 2

z is binary decision variable.

In fact, the above MILP problem can be treated as two independent shortest path

problems between s and t: the �rst one only uses edges that belong to [fr:zr;1=1gEr

and the second one only uses edges that belong to [fr:zr;2=1gEr. Obviously, the com-

putation time can be signi�cantly reduced if the binary constraint on x is removed

(see the numerical results presented in Section 5.3).
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4.2 The Least Coupled SRLG Paths Problem

Let z = [zr]
T
r2R denote a column vector with jRj elements, where zr = minfzr;1; zr;2g

indicating whether r is contained in both paths p1 and p2 or not. Then, the least

coupled SRLG paths problem can be formulated as the following ILP:

min
X
r2R

zr

s.t. Axi = u i = 1; 2 (4)

Hxi � jEojzi i = 1; 2 (5)

zr � zr;1 + zr;2 � 1 r 2 R (6)

x and z are binary decision variables.

Again, the binary constraint on x and zr can be replaced by 0 � x � 1 and zr � 0,

respectively. Finally, we note that a di�erent ILP formulation for the least coupled

SRLG problem was given in [8]. It is based on the cut set formulation.

4.3 Some Numerical Results

We tested the ILP formulation for the minimum cost SRLG diverse routing problem

on four networks with di�erent sizes by using CPLEX 7.0 on a Pentium III 800MHz

PC. The results are provided in the following table.

Network Nodes Fiber Spans Optical Links Run Time (seconds)

ILP MILP

I 47 65 47 0.28 0.20

II 49 72 185 0.54 0.29

III 144 198 298 2.27 1.26

IV 226 303 353 4.42 1.78

The run times given in the last two columns are average times (in seconds) to

obtain two SRLG diverse paths with minimum cost based on the ILP formulation and

the MILP formulation (where the binary constraint on the edge decision variables x

is removed), respectively. It is clear that the run time is reduced quite signi�cantly

when the binary constraint on the edge decision variables x is removed.
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5 Conclusion

In this paper, we considered the SRLG diverse routing problem in optical networks.

We proved that the problem is NP-complete. Furthermore, we showed that the �ber-

span-disjoint paths problem, a special case of the SRLG diverse routing problem that

was considered by several researchers before, is also NP-complete. We then provided

an ILP formulation for the minimum cost SRLG diverse routing problem, which we

demonstrated is quite e�ective for networks with a few hundreds nodes and �ber

spans. One possible future research direction is to develop more eÆcient algorithms

based on some heuristics and approximation methods, or their combination with our

ILP formulation. In addition, it also needs to be investigated how the SRLG diverse

routing problem should be considered in combination of other important issues in

optical networks, such as capacity planning and overall equipment cost.
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