
Chapter 5

Connectivity

5.1 Introduction

The (strong) connectivity corresponds to the fact that a (directed) (u,v)-path exists for any
pair of vertices u and v. However, imagine that the graphs models a network, for example the
vertices correspond to computers and edges to links between them. An important issue is that
the connectivity remains even if some computers and links fail. This will be measured by the
notion of k-connectivity.

Let G be a graph. Let W be an set of edges (resp. of vertices). If G\W (resp. G−W ) is not
connected, then W separates G, and W is called an edge-separator (resp. vertex-separator) or
simply separator of G.

For any k ≥ 1, G is k-connected if it has order at least k + 1 and no set of k − 1 vertices
is a separator. In particular, the complete graph Kk+1 is the only k-connected graph with k+ 1
vertices. The connectivity of G, denoted by κ(G), is the maximum integer k such that G is
k-connected. Similarly, a graph is k-edge connected if it has at least two vertices and no set
of k− 1 edges is a separator. The edge-connectivity of G, denoted by κ�(G), is the maximum
integer k such that G is k-edge-connected.

For any vertex x, if S is a vertex-separator of G− x then S∪{x} is a vertex-separator of G,
hence

κ(G)≤ κ(G− x)+1.
However, the connecivity of G− x may not be upper bounded by a function of κ(G); see Exer-
cise 5.3 (ii).

Regarding egde-connectivity, things are a bit easier. Indeed, for any edge e ∈ E(G), F is an
edge-separator of G\ e if and only if F ∪{e} is an edge-separator of G. Hence

κ�(G)−1 ≤ κ�(G\ e)≤ κ�(G).

By definition, being 1-connected, 1-edge-connected or connected is equivalent. For larger
value of k, k-connectivity implies k-edge-connectivity.

Proposition 5.1. Let G be a graph with at least two vertices.

κ(G)≤ κ�(G)≤ δ(G).
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Proof. Removing all edges incident to a vertex makes the graph disconnected. Hence, κ�(G)≤
δ(G).

Let us assume that κ�(G) = k. Let F = {x1y1,x2y2, . . . ,xkyk} be an edge-separator of G
such that all xi’s are in the same connected component C of G \F . If G− {x1,x2, . . . ,xk} is
not connected, then κ(G) ≤ k. Else, C = {x1,x2, . . . ,xk}. Hence, x1 has at most k neighbours,
namely the xi’s for xi �= x1 and the yi’s such that xi = x1. Then the neighbourhood of x1 is a
vertex-separator of size at most k. So κ(G)≤ k ≤ κ�(G).

Reciprocally, the edge-connectivity of a graph cannot be bounded by its connectivity. See
Exercise 5.3.

A natural question is how to add a vertex (computer) to an already existing k-connected
graph (network) so that it remains k-connected. Obviously, since the connectivity is at least
the minimum degree by Proposition 5.1, one needs to link the new vertex to at least k existing
vertices. This easy necessary condition is in fact sufficient.

Lemma 5.2. Let G be a k-connected graph. If G� is obtained from G by adding a new vertex x
adjacent to at least k vertices of G, then G� is k-connected.

Proof. Let S be a separator S of G�. Let us show that |S| ≥ k. If S contains x, then S \ {x}
must be a separator of G. Since G is k-connected then |S\{x}|≥ k and so |S|≥ k+1. Assume
now that x /∈ S. If N(x) ⊆ S then |S| ≥ k. Else, N(x) \ S �= /0 and N(x) \ S belongs to a unique
connected component of G�\S (the one of x). Hence, S is a separator of G. Thus |S|≥ k because
G is k-connected.

Similarly, adding a new vertex of degree k to a k-edge-connected graph yields a k-edge-
connected graph.

Lemma 5.3. Let G be a k-edge-connected graph. If G� is obtained from G by adding a new
vertex x adjacent to at least k vertices of G, then G� is k-edge-connected.

Proof. Left in Exercise 5.5

5.2 2-edge-connected graphs

For 2-edge-connected graphs, there is a structural theorem similar to Theorem 1.15 for strongly
connected digraphs. It can be proved in exactly the same way.

The following proposition follows easily from the definition of 2-edge-connectivity.

Proposition 5.4. Let D be a 2-edge connected graph. Then every edge is in a cycle.

Proof. Let e = uv be an edge. Since G is 2-edge-connected then G\ e is connected. Thus there
is a (v,u)-path in G\ e. Its concatenation with (u,v) is a cycle containing e.

Definition 5.5. Let G be a graph and H be a subgraph of G. A H-handle is a path or a cycle
(all vertices are distinct except possibly the two endvertices) such that its endvertices are in
V (H) and its internal vertices are in V (G)\V (H). A handle decomposition of G is a sequence
(C,P1, . . . ,Pk) such that:
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• C = G0 is a cycle;

• for all 1 ≤ i ≤ k, Pi is a Gi−1-handle and Gi = Gi−1 ∪Pi;

• Gk = G.

It is straightforward to show that if H is a 2-edge-connected subgraph of a graph G, the graph
H ∪P is 2-edge-connected for any H-handle P. (See Exercise 5.6.) Hence, an easy induction
immediately yields that every graph admitting a handle decomposition is 2-edge-connected.
Conversely, every 2-edge-connected graph admits a handle decomposition starting at any cycle.

Theorem 5.6. Let G be a 2-edge-connected graph and C a cycle. Then G has a handle decom-
position (C,P1, . . . ,Pk).

Proof. Let H be the largest subgraph of G such that H admits a handle decomposition (C,P1, . . .Pk).
Since every edge xy in E(G) \E(H) with both endvertices in V (H) is a H-handle, H is an in-
duced subgraph of G. Suppose for a contradiction that H �= G, then V (H) �= V (G). Since G is
2-edge connected, there is an edge vw with v ∈V (G) and w ∈V (G)\V (H). Since G is 2-edge
connected, G contains a (w,H)-path P. Then, the concatenation of (v,w) and P is a H-handle in
G, contradicting the maximality of H.

Corollary 5.7 (Robbins, 1939). A graph admits a strongly connected orientation if and only if
it is 2-edge connected.

Proof. Necessity: If a graph G is not connected, then there is no directed path between any two
vertices in distinct components whatever be the orientation. Let us assume that G has an edge
uv such that G\uv is not connected. Let Cu and Cv be the connected components of u and v in
G\uv. Then, if uv is oriented from u to v, there is no directed (v,u)-path using this orientation.

Sufficientcy: Let us assume that G is 2-edge connected. From Theorem 5.6, G admits a
handle decomposition (C,P1, . . . ,Pk). Orienting C into a directed cycle and each Pi, 1 ≤ i ≤ k,
into a directed path, we obtain an orientation D of G having a handle decomposition. So, by
Theorem 1.15, D is strongly connected.

5.3 2-connected graphs

For 2-connected graphs, there is a structural theorem similar to Theorems 5.6 and 1.15.
Observe that since a 2-connected graph is also 2-edge-connected by Proposition 5.1, every

edge of a 2-connected graph contains is in a cycle. More generally, for any two vertices x and y
(not necessarily adjacent) there is a cycle containing x and y. See Exercise 5.7.

Definition 5.8. Let G be a graph and H be a subgraph of G. A H-ear is a path whose endvertices
are in V (H) and whose internal vertices are in V (G) \V (H). An ear decomposition of G is a
sequence (C,P1, . . . ,Pk) such that:

• C = G0 is a cycle;
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• for all 1 ≤ i ≤ k, Pi is a Gi−1-ear and Gi = Gi−1 ∪Pi;

• Gk = G.

It is straightforward to show that if H is a 2-connected subgraph of a graph G, the graph
H∪P is 2-connected for any H-ear P. (See Exercise 5.6.) Hence, an easy induction immediately
yields that every graph admitting an ear decomposition is 2-connected. Conversely, every 2–
connected graph admits an ear decomposition starting at any cycle.

Theorem 5.9. Let G be a 2-connected graph and C a cycle. Then G has an ear decomposition
(C,P1, . . . ,Pk).

Proof. Let H be the largest subgraph of D such that H admits an ear decomposition (C,P1, . . .Pk).
Since every edge xy in E(G)\E(H) with both endvertices in V (H) is a H-ear, H is an induced
subgraph of G. Suppose for a contradiction that H �= G, then V (H) �= V (G). Since G is con-
nected, there is an edge vw with v ∈V (G) and w ∈V (G)\V (H). Since G is 2-connected, G−v
contains a (w,H)-ear P. The concatenation of (v,w) and P is a H-ear in G, contradicting the
maximality of H.

5.4 Contraction and k-connected graphs

Definition 5.10. Let e = xy be an edge of a graph G = (V,E). Let G/e denote the graph
obtained from G by contracting the edge e in a new vertex ve that is adjacent to all neighbours
of x and y. Formally, G/e has vertex set V � = (V \ {x,y})∪ {ve} and edge set E � = {vw ∈
E | {v,w}∩{x,y}= /0}∪{vew | w ∈ (NG(x)∪NG(y))\{x,y}}.

Since a connected graph contains a spanning tree (Corollary 1.10), contracting an edge of
the tree incident to one of its leaves, we get a smaller connected graph.

Proposition 5.11. If G is connected and |V (G)|> 1 then there is an edge e of G such that G/e
is connected.

Similarly, any (large enough) 2-connected graph can be contracted into a smaller 2-connected
graph.

Proposition 5.12. If G is 2-connected and |V (G)| > 3 then there is an edge e of G such that
G/e is 2-connected.

Proof. Assume G is 2-connected and |V (G)|> 3. By Proposition 5.4, G contains a cycle. Let C
be a cycle of minimum length. By Theorem 5.9, G admits an ear decomposition (C,P1,P2, . . . ,Pr).
Let m be the greatest index such that Pm is not an edge. Then, G� = G\

�r
i=m+1 E(Pi) is a span-

ning 2-connected subgraph of G. Let e be an edge of Pm. If m = 1, then G = C is a cycle of
length at least 4 and thus G/e is a cycle and so 2-connected. If m ≥ 2, then G�/e can be ob-
tained from C by adding the H-paths P1,P2, . . . , ,Pm−1,Pm/e. Hence, from Theorem 5.9, G�/e
is 2-connected. Since G/e is a supergraph of G�/e (obtained by adding the edges corresponding
to Pi, m < i ≤ r), then G/e is 2-connected.
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Lemma 5.13. If G is 3-connected and |V (G)|> 4 then there is an edge e of G such that G/e is
3-connected.

Proof. Assume for a contradiction that such an edge does not exist. Then, for any xy ∈ E(G),
the graph G/xy contains a separator S with at most two vertices. Since κ(G)≥ 3, the vertex vxy
of G/xy resulting from the contraction is in S and |S|= 2. Let z be the vertex in S\{vxy}. Then,
{x,y,z} is a separator of G. Since no proper subset of {x,y,z} is a separator of G, every vertex
in {x,y,z} has a neighbour in each component of G−{x,y,z}.

Consider x, y and z, as above, such that a component C of G− {x,y,z} has minimum size.
Let v be the neighbour of z in C. By assumption, G/zv is not 3-connected, so there exists a
vertex w such that {z,v,w} is a separator of G. Again, every vertex in {z,v,w} has a neighbour
in every component of G−{z,v,w}.
At least one of x and y, say x is not w and so the connected component of x in G− {z,v,w}
contains all the connected components of G− {x,y,z}. Since x and y are adjacent, there is a
component D of G− {z,v,w} that contains none of x and y. Hence any other one (there is at
least one since G− {z,v,w} is not connected) must be included in C and thus is smaller than
because v ∈C. This contradicts the minimality of C.

Hence, any 3-connected graph can be reduced to K4 by a succession of edge-contractions.
One can show that, reciprocally, any such graph is 3-connected. See Exercise 5.21.

Theorem 5.14 (Tutte, 1961). A graph G is 3-connected if and only if there is a sequence
G0,. . . ,Gn of graphs such that:

(i) G0 = K4 and Gn = G;

(ii) for any i < n, there is an edge xy of Gi+1 such that d(x),d(y)≥ 3 and Gi = Gi+1/xy.

Propositions 5.11 and 5.12 and Lemma 5.13 cannot be generalized to the 4-connected case.
Indeed, the square of a cycle, depicted in Figure 5.1, is 4-connected. However, the contraction
of any edge creates a vertex with degree three.

Figure 5.1: 4-connected graph such that the contraction of any edge makes it 3-connected

Any 4-connected graph (except K5) can be modified into a smaller 4-connected graph by
contracting one or two edges. If k ≥ 6, for any b≥ 1, there are k-connected graphs with arbitrary
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size that cannot be reduced to a k-connected graph by contracting at most b edges (e.g., planar
triangulations of a torus). The question is open for k = 5. For more on this topic, we refer the
reader to the survey of M. Kriesell [1].

5.5 Connectivity in digraphs

Similar concepts to k-connectivity and k-edge-connectivity may be defined for digraphs.
Let D be a digraph. Let W be an set of arcs (resp. of vertices). If D \W (resp. D−W ) is

not strongly connected, then W separates D, and W is called an arc-separator (resp. vertex-
separator) or simply separator of D.

For any k ≥ 1, D is k-strongly connected if if it has order at least k + 1 and set of k − 1
vertices is a separator. In particular, the complete symmetric digraph �Kk+1 is the only k-strongly
connected digraph with k+ 1 vertices. The strong connectivity of D, denoted by κ(D), is the
maximum integer k such that D is k-strongly connected. Similarly, D is k-arc connected if it has
at least two vertices and no set of k−1 arcs is a separator. The arc-connectivity of D, denoted
by κ�(D), is the maximum integer k such that D is k-arc-connected.

Results similar to the one proved in Section 5.1 hold for strong-connectivity and arc-connectivity.
For any vertex x, if S is a vertex-separator of D−x then S∪{x} is a vertex-separator of D, hence

κ(D)≤ κ(D− x)+1.

However, the strong connectivity of D− x may not be upper bounded by a function of κ(D).
For any arc e ∈ E(D), F is an arc-separator of D\e if and only if F ∪{e} is an arc-separator

of D. Hence
κ�(D)−1 ≤ κ�(D\ e)≤ κ�(D).

By definition, being 1-strongly connected, 1-arc-connected or strongly connected is equiva-
lent. For larger value of k, k-strong connectivity implies k-arc-connectivity.

Proposition 5.15. Let D be a graph with at least two vertices.

κ(D)≤ κ�(D)≤ min{δ+(D),δ−(D)}.

Proof. Removing all arcs leaving a vertex results in a digraph which not strongly connected.
Hence, κ�(D)≤ δ+(D). By directional duality, κ�(D)≤ δ+(D).

Let us assume that κ�(D) = k ≥ 2. Let F = {x1y1,x2y2, . . . ,xkyk} be an arc-separator of D.
Then D\F has two strongly connected components X and Y such that xi ∈ X and yi ∈Y , for all
1 ≤ i ≤ k and there is no arc with tail in X and head in Y except those of F (see Exercise 5.4-
2)). If D− is not strongly connected, then κ(G) ≤ k. Else X = {x1, . . . ,xk}. Then x1 has at
most k outneighbours, namely the xi’s for xi �= x1 and the yi’s such that xi = x1. Then the
outneighbourhood of x1 is a vertex-separator of size at most k. So κ(D)≤ k ≤ κ�(D).

Reciprocally, the arc-connectivity of a graph cannot be bounded by its strong connectivity.
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In fact, as we shall see, all the results on connectivity and edge-connectivity may be seen as
particular cases of results on strong connectivity and arc-connectivity for symmetric digraphs.
Indeed, for any graph G, its associated digraph, denoted �G is the symmetric digraph obtained
from G by replacing each edge xy by the two arcs (x,y) and (y,x).

The following proposition follows directly form the definition of �G.

Proposition 5.16. Let G be a graph and �G is associated digraph.

(i) (v1,v2, . . . ,vp) is a path in G if and only if (v1,v2, . . . ,vp) is a directed path in �G.

(ii) G is connected if and only if �G is strongly connected.

Theorem 5.17. Let G be a graph and �G is associated digraph. Then

(i) κ(G) = κ(�G).

(ii) κ�(G) = κ�(�G).

Proof. Let W be a set of vertices. Then the digraph associated to G−W is �G−W . Hence by
Proposition 5.16-(ii) the graph G−W is connected if and only if �G−W is strongly connected.
In other words, W is a vertex-separator of G if and only if it is a vertex-separator of�(G). This
implies (i).

Let us now prove (ii). Let F be a minimum edge-separator of G. Then G \ F has two
components X and Y (see Exercise 5.4-1)). Let F = {x1y1,x2y2, . . . ,xkyk} with xi ∈ X and
yi ∈ Y , for all 1 ≤ i ≤ k. Then �F = {(x1,y1),(x2,y2), . . . ,(xk,yk)} is an arc-separator of �G since
there are no arcs with tail in X and head in Y . So κ�(�G)≤ κ�(G).

Conversely assume that �F = {(x1,y1),(x2,y2), . . . ,(xk,yk)} is a minimum arc-separator of �G.
Then �G\�F has two strongly connected components X and Y such that xi ∈ X and yi ∈Y , for all
1 ≤ i ≤ k and there is no arc with tail in X and head in Y except those of �F (see Exercise 5.4-2)).
Thus F = {x1y1,x2y2, . . . ,xkyk} is an edge-separator of G.

In view of Theorem 5.17, Proposition 5.1 may be seen as Proposition 5.15 in the case of
symmetric digraphs.

5.6 Menger’s Theorem

Let W be an edge-separator (resp. vertex-separator) of a graph G. If two vertices u and v are
in two distinct connected components of G \W (resp. G−W ) , then W separates two vertices
u and v and is called a (u,v)-separator. A separator of a graph is necessarily a (u,v)-separator
for some pair of vertices. In addition, if we consider a vertex-separator, these two vertices are
not adjacent.

Let u and v be two vertices of a graph G. The edge-connectivity between u and v or (u,v)-
edge-connectivity in G, denoted by κ�

G(u,v) or simply κ�(u,v), is the minimum cardinality of
a (u,v)-edge-separator. If u and v are not adjacent, then the connectivity between u and v or
(u,v)-connectivity in G, denoted by κG(u,v) or simply κ(u,v), the minimum cardinality of a



64 CHAPTER 5. CONNECTIVITY

(u,v)-vertex-separator. Clearly, κ(G) = min{κ(u,v) | u,v ∈ V (G),uv /∈ E(G)} and κ�(G) =
min{κ�(u,v) | u,v ∈ V (G)}. So, to compute κ(G) (resp. κ�(G)), it is sufficient to compute
κ(u,v) (resp. κ�(u,v)) for every pair of vertices u and v.

Similar concept may be defined in digraphs. Let W be an arc-separator (resp. vertex-
separator) of a digraph D. If there is no directed (u,v)-path in D \W (resp. D−W ) , then
W separates u from v and is called a (u,v)-separator. Observe that contrary to the undirected
case, a (u,v)-separator is not necessarily a (v,u)-separator. A separator of a digraph is neces-
sarily a (u,v)-separator for some pair of vertices. In addition, if we consider a vertex-separator,
uv is not an arc (but vu may be an arc).

Let u and v be two vertices of a digraph D. The arc-connectivity between u and v or
(u,v)-arc-connectivity in D, denoted by κ�

D(u,v) or simply κ�(u,v), is the minimum cardi-
nality of a (u,v)-edge-separator. If uv is not an arc, then the connectivity between u and
v or (u,v)-connectivity in D, denoted by κD(u,v) or simply κ(u,v) the minimum cardinal-
ity of a (u,v)-vertex-separator. Clearly, κ(G) = min{κ(u,v) | u,v ∈ V (G),uv /∈ E(G)} and
κ�(G) = min{κ�(u,v) | u,v ∈ V (G)}. So, to compute κ(G) (resp. κ�(G)), it is sufficient to
compute κ(u,v) (resp. κ�(u,v)) for every pair of vertices u and v.

Two (directed) paths are independent if their internal vertices are distinct. In particular, two
(directed) (s, t)-paths are independent if their sole common vertices are s and t. The maximum
number of pairwise independent (directed) (s, t)-paths is denoted by Π(s, t). If W is an (s, t)-
vertex-separator of a graph or digraph, then two independent (s, t)-paths intersect W in distinct
vertices, so

κ(s, t)≤ Π(s, t). (5.1)

Similarly, if F is an (s, t)-edge-separator in a graph, then two edge-disjoint (s, t)-paths in-
tersect W in distinct edges, and if F is an (s, t)-arc separator in a digraph, then two arc-disjoint
directed (s, t)-paths intersect W in distinct arcs. Hence denoting by Π�(s, t) the maximum num-
ber of pairwise edge-disjoint (s, t)-paths (resp. arc-disjoint directed (s, t)-paths), we have

κ�(s, t)≤ Π�(s, t). (5.2)

Menger’s Theorem shows that Inequalities 5.1 and 5.2 are in fact equalities.

Theorem 5.18 (Menger, 1927). (i) Let s and t be two distinct vertices of a graph (resp. digraph)
such that st is not an edge (resp. arc). Then, the minimum size of an (s, t)-vertex-separator
equals the maximum number of independent (s, t)-paths. In symbols,

κ(s, t) = Π(s, t).

(ii) Let s and t be two distinct vertices of a graph (resp. a digraph). Then, the minimum
size of an (s, t)-edge-separator (resp. arc-separator) equals the maximum number of pairwise
edge-disjoint (s, t)-paths (resp. pairwise arc-disjoint directed (s, t)-paths). In symbols,

κ�(s, t) = Π�(s, t).
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Proof. Let us first prove (ii) in a digraph D. We will use a recursive algorithmic approach as
follows. Suppose we have found a set of k pairwise arc-disjoint directed (s, t)-paths, then we
will either construct a set of k+ 1 pairwise arc disjoint paths from s to t or find an (s, t)-arc-
separator of size k.

The induction can be started with k = 0 or k = 1 by finding a directed (s, t)-path.
Let P = {P1, . . . ,Pk} be a set of k pairwise arc-disjoint directed (s, t)-paths. Let E(P ) =

E(P1)∪ · · ·∪E(Pk). Let us construct a set S of vertices with the following algorithm.

Algorithm 5.1 (Constructing S).

1. Put s in S.

2. If there exist x ∈ S and an arc xy in E(D) \E(P ) (i.e. xy is in none of the paths Pi), then
add y to S. Go to 2.

3. If there exist x ∈ S and an arc yx in E(P ), then add y to S. Go to 2.

Observe that the so constructed set S is connected but not necessarily strongly connected.
(The graph underlying D�S� is connected). Two cases can appear at the end of the algorithm.
Case 1: t ∈ S. In that case we will construct a set of k+ 1 pairwise arc-disjoint directed (s, t)-
paths.

Since S is connected there is an oriented (not necessarily directed) (s, t)-path Pk+1, that is
a sequence x0e1x1 . . .x je j+1x j+1 . . .epxp where x0 = s, xp = t and for all 1 ≤ j ≤ p, e j is either
the arc x j−1x j or the arc x jx j−1. If e j = x j−1x j, then e j is called a forward arc; if not it is called
a backward arc. Observe that by construction of S, if an arc is forward in Pk+1 if and only if it
is not in E(P ).

If Pk+1 does not contain any backward arc, then the set of paths (P1,P2, . . . ,Pk,Pk+1) is a set
of k+1 pairwise arc-disjoint directed (s, t)-paths.

Otherwise starting from the set P and Pk+1), we shall construct a set P � = (P�
1, . . . ,P

�
k) of k

pairwise arc-disjoint directed (s, t)-paths and an oriented (s, t)-path P�
k+1 having one backward

arc fewer than Pk+1 and such that if an arc is forward in P�
k+1 if and only if it is not in E(P �).

Repeating this construction p times (wherep is the number of backward arcs in Pk+1), we obtain
a set of k+1 pairwise arc-disjoint directed (s, t)-paths.

Let j be the smallest index for which e j is backward and let i0 be the index such that
e j ∈ E(Pi0). Let us define the following paths.

- P�
i = Pi for 1 ≤ i �= i0 ≤ k;

P�
i0 is the concatenation of the directed (s,x j−1)-subpath of Pk+1 and the directed (x j−1, t)-

subpath of Pi0;

P�
k+1 is the concatenation of the directed (s,x j)-subpath of Pi0 and the oriented (x j, t)-

subpath of Pk+1.
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It is simple matter to check that the paths P�
1, . . . ,P

�
k,P

�
k+1 satisfy the property describe above.

Case 2: t /∈ S. In that case we will find an (s, t)-arc-separator of size k.
Let T = V \S. Let F be the set of arcs from S to T , i.e. with tail in S and head in T . Then

F separates S from T and so form an (s, t)-arc-separator. But every such arc belongs to E(P );
otherwise we could have applied Step 2 of Algorithm 5.1 and so this algorithm was not finished.
Furthermore, a path Pi cannot contain two arcs from S from T , otherwise there will exist an arc
yx from T to S in Pi and this arc should have been added to the set S by Step 3 of Algorithm 5.1.
Hence |F |≤ k.

Let us deduce (i) for digraphs. We outline the proof. Some details are left in Exercise 5.15.
Let D be a digraph and s and t two vertices such that st is not an arc. The split digraph S(D)

is the digraph D obtained in splitting every vertex into an arc v−v+:

V (S(D)) =
�

v∈V (D)

{v−,v+},

E(S(D)) = {v−v+ | v ∈V (D)}∪{u+v− | uv ∈ E(D)}.

An arc of the form v−v+ is called an inner arc of S(D).
Trivially, if W is an (s, t)-vertex-separator of D then {v−v+ | v ∈ W} is an (s+, t−)-arc-

separator of S(D). Conversely, one can show that there is a minimum (s+, t−)-arc-separator F
in S(D) made of inner arcs and for such an F , the set {v | v−v+ ∈ F} is an (s, t)-vertex-separator
of D. Hence κD(s, t) = κ�

S(D)(s
+, t−).

For any directed path P = (x1, . . . ,xp), its split path S(P) is defined as the directed path
(x+1 ,x

−
2 ,x

+
2 , . . . ,x

+
p−1,x

−
p ). One can easily see that every directed (s+, t−)-path is the split path of

some directed (s, t)-path. Moreover, one shows that P1, . . . ,Pk are pairwise independent directed
(s, t)-path in D if and only if S(P1), . . . ,S(Pk) are pairwise arc-disjoint directed (s+, t−)-path in
S(D). Hence, ΠD(s, t) = Π�

S(D)(s
+, t−).

Now by (ii) for digraphs, we have κ�
S(D)(s

+, t−) = Π�
S(D)(s

+, t−). Thus κD(s, t) = ΠD(s, t).

Both assertions (i) and (ii) for graphs may be deduced from themselves for digraphs using
the fact that connectivity in graphs corresponds to connectivity in symmetric digraphs. Let
G be a graph and �G its associated digraph. Similarly to Theorem 5.17, one can show that
κG(s, t) = κ�G(s, t) and κ�

G(s, t) = κ�
�G
(s, t). It is also not difficult to show that ΠG(s, t) = Π�G(s, t)

and Π�
G(s, t) = Π�

�G
(s, t). (See Exercise 5.14).

We now give a short inductive proof of Theorem 5.18-(i) for graphs.

Alternative proof of Theorem 5.18-(i) for graphs: For sake of contradiction, let k = κ(s, t) be
the smallest integer contradicting the theorem. Clearly, k ≥ 2. Let G be a counterexample (for
this minimum value of k) that has the minimum number of edges. Then, there are at most k−1
independent (s, t)-paths.

There is no vertex x adjacent both to s and t otherwise G−x would be a counterexample for
k−1, a contradiction to the minimality of k.
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Let W be an (s, t)-vertex-separator of size k.
Let us assume first that both s and t are not adjacent to all vertices in W . Then, each of s

and t has a neighbour in V (G)\W (otherwise, the neighbourhood of s or t would be a smallest
vertex-separator). Let Gs be the graph obtained from G by contracting the component C of G\W
containing s in a single vertex s� (i.e. replacing C by a single vertex adjacent to all vertices in
W ). In Gs, an (s�, t)-vertex-separator has size at least k. Since C has at least 2 vertices, Gs
has less edges than G. By minimality of G, there are at least k independent (s�, t)-paths in Gs.
Removing s�, we obtain k paths from W to t such that, for any w ∈ W , w is the start of exactly
one of these paths. Performing the same operation in Gt (obtained in the same way as Gs), we
obtain k independent paths from s to W such that, for any w ∈ W , w is the terminus of exactly
one of these paths. For any w ∈ W , let us concatenate the (s,w)-path and the (w, t)-path. We
obtain k independent (s, t)-paths in G, a contradiction.

So, we can assume that, for every (s, t)-vertex-separator W of size k, either s or t is ad-
jacent to all vertices of W . Let P = (s,x1,x2, . . . ,xl, t) be a shortest (s, t)-path. Then, l ≥ 2b
because s and t have no common neighbours. By minimality of G, in G \ x1x2, there is an
(s, t)-vertex-separator W0 of size k− 1. Hence, W1 = W0 ∪ {x1} and W2 = W0 ∪ {x2} are (s, t)-
vertex-separators in G. Since s is not adjacent to x2 because P is a shortest path, then t is adjacent
to all vertices of W2. Similarly, s is adjacent to all the vertices in W1. Hence, all vertices of W0
(which is not empty) are common neighbours of s and t, a contradiction.

Corollary 5.19 (Menger, 1927). Let G be a graph with at least two vertices.
(i) G is k-connected if and only if any two vertices can be joined by k independent paths.
(ii) G is k-edge-connected if and only if any two vertices can be joined by k edge-disjoint

paths.

Proof. (i) If any two vertices can be joined by k independent paths, then G is clearly k-connected.
Now, if G is k-connected, by Theorem 5.18-(i), any 2 non-adjacent vertices can be joined by k
independent paths. It remains to show that if G is k-connected, then any two adjacent vertices x
and y can be joined by k independent paths.

Let G� be obtained from G by adding a vertex x� adjacent to all neighbours of x and a vertex
y� adjacent to all neighbours of y. Since δ(G) ≥ κ(G) ≥ k, by Lemma 5.2, G� is k-connected.
Since x� and y� are not adjacent, there are k independent (x�,y�)-paths P1, . . . ,Pk in G�. For any
1 ≤ i ≤ k, let P�

i be the path obtained as follows:

- if {x,y}⊂V (Pi) then P�
i = (x,y);

- if {x,y}∩V (Pi) = {x}, take the (x,y�)-subpath of Pi and replace y� by y;

- if {x,y}∩V (Pi) = {y}, take the (x�,y)-subpath of Pi and replace x� by x;

- if {x,y}∩V (Pi) = /0, P�
i is obtained by replacing x� with x and y� with y.

We get k independent (x,y)-paths.

(ii) Straightforward from Theorem 5.18-(ii).
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Corollary 5.20. Let G be a k-connected graph and let A and B be two subsets of V (G). If
|A|≥ k and |B|≥ k, then there are k disjoint (A,B)-paths

Proof. Let G� be the graph obtained from G by adding two vertices a and b respectively adjacent
to all vertices of A and B. From Lemma 5.2 (applied twice), G� is k-connected and so κG�(a,b)≥
k. By Menger’s Theorem, there are k independent (a,b)-paths in G�. Removing a and b from
these paths, we obtain k disjoint (A,B)-paths.

5.7 Exercises

Exercise 5.1. Compute κ(u,v) and κ�(u,v) in the graph below:

vu

Exercise 5.2. Prove the following assertion or give a counterexample. If P is a (u,v)-path in a
2-connected graph G, then there exists a (u,v)-path Q independent of P.

Exercise 5.3. Let k and l be two integers with 1 ≤ k < l. Give graphs G1, G2 and G3 such that :

• (i) κ(G1) = 1 and κ�(G1) = l;

• (ii) κ(G2) = k and κ(G2 − x) = l for some particular vertex x;

• (iii) κ�(G3 − x) = k and κ�(G3 \ xy) = l for some particular edge xy.

Exercise 5.4. 1) Show that if the edge-connectivity of a graph is k ≥ 1, then when removing
at most k edges then we obtain at most two connected components. Does there exists a similar
result for connectivity? arc-connectivity?

2) Let D be a k-arc connected digraph and F = {x1y1, . . . ,xkyk} a minimum arc-separator.
Show that D\F has two strongly connected components X and Y such that xi ∈ X and yi ∈ Y ,
for all 1 ≤ i ≤ k and there is no arc with tail in X and head in Y except those of F .

Exercise 5.5. Prove Lemma 5.3.

Exercise 5.6. Show that if H is a 2-edge-connected subgraph of a graph G, then for any H-
handle P, the graph H ∪P is 2-edge-connected.

Exercise 5.7. Let G be a graph on at least 2 vertices. Show that the following propositions are
equivalent:
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• (i) G is 2-connected;

• (ii) any two vertices are in a cycle;

• (iii) any two edges are in a cycle and δ(G)≥ 2;

• (iv) for any three vertices x,y et z, there is a (x,z)-path containing y.

Exercise 5.8. Let G be a graph on at least 3 vertices. Show that the following propositions are
equivalent:

• (i) G is 2-edge-connected;

• (ii) any edge is in a cycle;

• (iii) any two edges are in a tour and δ ≥ 1;

• (iv) any two vertices are in a tour.

Exercise 5.9. Let d1 ≤ d2 ≤ · · · ≤ dn be the degree sequence of a graph. We assume that
d j ≥ j+ k−1 for 1 ≤ j ≤ n−1−dn−k+1.
Show that G is k-connected.

Exercise 5.10. Let G be a regular bipartite graph on at least two vertices. Prove that κ(G) �= 1.

Exercise 5.11. Show a graph which is not 2-connected but admits a strongly connected orien-
tation.

Exercise 5.12. Inspired by Algorithm 2.6, give an algorithm in time O(|E|) that computes the
2-connected components of a graph.

Exercise 5.13. Let G be a connected graph, all vertices of which have even degree. Show that
G is 2-edge-connected.

Exercise 5.14. Let G be a graph and �G its associated digraph. Show that

(a) there are k independent (s, t)-paths in G if and only there are k independent directed (s, t)-
paths in �G, and

(b) there are k pairwise edge-disjoint (s, t)-paths in G if and only there are k pairwise arc-
disjoint directed (s, t)-paths in �G.

Exercise 5.15. Let D be a digraph and S(D) its split digraph. Let s and t be two vertices of D
such that st is not an arc.

1) a) Let F be an (s+, t−)-arc-separator in S(D). For an non-inner arc e = u+v−, we define
r(e) to be u−u+ if u �= s and v−v+ otherwise. Show that if e is non-inner then the set
(F \{e})∪{r(e)} is also an (s+, t−)-arc-separator.



70 CHAPTER 5. CONNECTIVITY

b) Show that if F is an (s+, t−)-arc-separator made of inner arcs, then {v | v−v+ ∈ F} is a
vertex-separator of S(D).

c) Deduce κD(s, t) = κ�
S(D)(s

+, t−).

2) a) Shows that P1, . . . ,Pk are pairwise independent directed (s, t)-paths in D if and only if
S(P1), . . . ,S(Pk) are pairwise arc-disjoint directed (s+, t−)-paths in S(D). Hence,

b) Deduce ΠD(s, t) = Π�
S(D)(s

+, t−).

Exercise 5.16.

Let G be a graph on at least three vertices which is not a complete graph.
1) Show that G has three vertices u, v, and w such that uv ∈ E(G), vw ∈ E(G) and uw /∈ E(G).
2) Show that if G is 2-connected and δ(G)≥ 3 then there exists such a triple u,v,w such that, in
addition, G−{u,w} is connected.

Exercise 5.17. Let a and b be two vertices of a graph G. Let X and X � be two (a,b)-vertex-
separators. Let us denote Ca (resp. C�

a) the connected component of a in G−X (resp. G−X �)
and Cb (resp. C�

b) the connected component of b in G−X (resp. G−X �).
Prove that the two sets Ya = (X ∩C�

a)∪ (X ∩X �)∪ (X � ∩Ca) and Yb = (X ∩C�
b)∪ (X ∩X �)∪

(X � ∩Cb) are (a,b)-separators.

Exercise 5.18 (Dirac, 1960). Let x be a vertex of a graph G and U a set of vertices of G not
containing x. An (x,U)-fan is a set of (x,U)-paths such that the intersection of any two is {x}.
Prove that G is k-connected if and only if it has at least k+ 1 vertices and for any choice of x
and U such that x /∈U and |U |≥ k, there is a (x,U)-fan of cardinality k.

Exercise 5.19. Let k ≥ 2 be an integer. Prove that, if G is k-connected, then any set of k vertices
is contained in a cycle. Is the converse also true?

Exercise 5.20. Let G be a cubic graph.
1) Show that if κ�(G)≥ 2 then κ(G)≥ 2.
2) Show that if κ�(G) = 3 and κ(G)≥ 2 then κ(G) = 3.

Exercise 5.21. Let x and y be two adjacent vertices of degree at least k in a graph G. Show that
if G/xy is k-connected then G is also k-connected.

Exercise 5.22. Let k ≥ 2 be an integer. Let G be a k-connected graph and xy an edge of G.
Show that G/xy is k-connected if and only if G−{x,y} is (k−1)-connected.

Exercise 5.23. Let G be a 2-connected graph of order at least 4. Prove that for every edge e,
G\ e or G/e is 2-connected.

Exercise 5.24. Let v be a vertex of a 2-connected graph G. Show that v has a neighbour u such
that G−{u,v} is connected.

Exercise 5.25. Let xy be an edge of a 2-connected graph G. Show that G\ xy is 2-connected if
and only if x and y are in a cycle of G\ xy.
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Exercise 5.26 (W. T. Tutte). A wheel is a graph obtained from a cycle by adding a vertex
adjacent to all vertices of the cycle.

Let G be a 3-connected graph different from a wheel. Show that, for any edge e, either G/e
or G\ e is also a 3-connected graph.
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