
Chapter 3

Complexity of algorithms

In this chapter, we see how problems may be classified according to their level of difficulty.

Most problems that we consider in these notes are of general character, applying to all mem-
bers of some family of graphs or digraphs. By an instance of a problem, we mean the problem
applied to one specific member of the family. For example, an instance of Algorithm 2.6 is the
problem of finding all the strongly connected components of a particular digraph.

An algorithm for solving a problem is a well-defined procedure which accepts any instance
of the problem as input and returns a solution to the problem as output. Designing computa-
tionally efficient algorithms for solving graphs problems is one of the main concern of graph
theorists and computer scientists. The two aspects of theoretical interest in this regards are,
firstly, to verify that a proposed algorithm does indeed perform correctly and, secondly, to
analyse how efficient a procedure is. In the previous chapters, we have already encountered
algorithms for solving a number of basic problems. In each case, we have established their
validity and estimated their running time.

By the computational complexity (or, for short, complexity) of an algorithm, we mean the
number of basic computational steps (such as arithmetical operations and comparisons) required
for its execution. This number clearly depends on the size and nature of the input. In the case
of graphs, the complexity is a function of the number of bits required to encode the adjacency
list of the input graph G = (V,E), a function of |V | and |E|. (The number of bits required
to encode an integer k is �log2 k�.) Naturally, when the input includes additional information,
such as weights on the vertices or edges of the graph, this too must be taken into account in
calculating the complexity. If the complexity is bounded above by a polynomial in the input
size, the algorithm is called a polynomial-time algorithm. Such an algorithm is further qualified
as linear-time if the polynomial is a linear function, quadratic-time if it is a quadratic function,
and so on.

The classical big-O notation is defined as follows. For functions f and g we write f = O(g)
if there are positive numbers n0 and c such that for every n ≥ n0, f (n) ≤ c · g(n). We also
write f = Ω(g), which means that g = O(f), and f = Θ(g), which means that f = Ω(g) and
f = O(g).

29

30 CHAPTER 3. COMPLEXITY OF ALGORITHMS

3.1 Computational complexity
Polynomial-time solvable algorithms The significance of polynomial-time algorithms is that
they are usually found to be computationally feasible, even for large input graphs. By contrast,
algorithms whose complexity is exponential in the size of the input have running times which
render then unusable even on inputs of moderate size.

For example, Algorithm 1.1 runs in polynomial time: The eulerian tour will be represented
with a function next such that at the end, next(e) is the edge that immediately follows e in the
tour. Each time we insert an edge e, we change the value of next for at most two edges: the one
of the edge el = vl−1vl if e = vlvl+1 is not in W , or those of vi−1vi and el = vl−1vl if e = viu.
But an edge is inserted exactly once so the complexity is O(|E|).

The algorithms discussed in Chapter 2 also run in polynomial time. In breadth-first search,
each edge is examined for possible inclusion in the tree just twice, (once per endvertex). The
same is true for depth-first search. Each time that an edge is considered, a constant number of
operations (test, addition or removal in a queue or a stack, mark). Hence, Algorithms 2.2 and
2.3 perform in time O(|E|). The complexity of Algorithms 2.4 and 2.5 is also O(|E|) since they
are variation of breadth-first search, as well as the complexity of Algorithm 2.6 because it is a
variation of depth-first search.

Although our analysis of these algorithms is admittedly cursory, and leaves out many perti-
nent details, it should be clear that they do indeed run in polynomial time. A thorough analysis
of these and other graph algorithms can be found in the books by Aho et al. [2] and Papadim-
itriou [6]. On the other hand, there are many basic problems for which polynomial-time al-
gorithms have yet to be found, and indeed might well not exist. Determining which problems
are solvable in polynomial time and which are not is evidently a fundamental question. In this
connection, a class of probems denoted by N P (standing for nondeterministc polynomial-time)
plays an important role. we give here an informal definition of this class: a precise treatment
can be found in the book of Garey and Johnson [4], or in Chapter 29 of the Handbook of Com-
binatorics [5].

The classes P , N P and co-N P A decision problem is a question whose answer is either
‘yes’ or ‘no’. Such a problem belongs to the class P if there is a polynomial-time algorithm
that solves any instance of the problem in polynomial time. It belongs to the class N P if, given
any instance of the problem whose answer is ‘yes’, there is a certificate validating this fact
which can be checked in polynomial time; such a certificate is said to be succint. Analogously,
a decision problem belongs the the class co-N P if, given any instance of the problem whose
answer is ‘no’, there is a succint certificate which confirms that this is so. It is immediate from
those definitions that P ⊆ N P . Likewise, P ⊆ co-N P . Thus

P ⊆ N P ∩ co-N P .

Consider, for example, the problem of determining whether a graph is bipartite. This deci-
sion problem belongs to N P , because a bipartition is a succint certificate: given a bipartition
(A,B) of a bipartite graph G, it suffices to check that each edge of G has one endvertex in A
and one endvertex in B. The problem also belongs to co-N P because, by Theorem 2.5, every

3.1. COMPUTATIONAL COMPLEXITY 31

nonbipartite graph contains an odd cycle, and any such cycle constitutes a succint certificate
of the graph’s nonbipartite character. It thus belongs to N P ∩ co-N P . In fact, as shown by
Algorithm 2.1 which run in polynomial time, it belongs to P .

Consider now the problem of deciding whether a graph has a hamiltonian cycle, that is a
spanning cycle or its analog in digraph.

Problem 3.1 (Hamiltonian Cycle).
Instance: A graph G.
Decide: Does G have a hamiltonian cycle?

Problem 3.2 (Directed Hamiltonian Cycle).
Instance: A digraph G.
Decide: Does G have a directed hamiltonian cycle?

If the answer is ‘yes’, then any hamiltonian cycle would serve as a succint certificate. How-
ever, should the answer be ‘no’, what could consitute a succint certificate confirming this fact?
In constrast to the two problems described above, no such certificate is known! In other words,
notwithstanding that the Hamiltonian Cycle Problem is clearly member of the class N P , it has
not yet been shown to belong to co-N P , and might very well not belong to this class.

We have noted three relations of inclusion among the classes P , N P and co-N P , and it is
natural to ask wether these inclusiuons are proper. Because P = N P if and only if P = co-N P ,
two basic questions arise, both of which have been posed as conjectures.

Conjecture 3.3.
P �= N P

Conjecture 3.4 (Edmonds).
P = N P ∩ co-N P

Conjecture 3.3 is one of the most fundamental open questions in all mathematics. (A prize
of one million dollar has been offered for its resolution). It is widely (but not universally)
believed that the conjecture is true, that there are problems in N P for which no polynomial-
time algorithm exists. One such problem would be the Directed Hamiltonian Cycle Problem.
As we show in Section 3.3, this problem is at least as hard to solve as any problem in the
class N P ; more precisely, if a polynomial-time algorithm for this problem should be found,
it could be adapted to solve any problem in N P in polynomial time by means of a suitable
transformation.

Conjecture 3.4 is strongly supported by empirical evidence. Most decision problems which
are known to belong to N P ∩ co-N P are also known to belong to P . A case in point is the
problem of deciding whether a given integer is prime. Although it had been known for some
time that this problem belongs to both N P and co-N P , a polynomial-time algorithm for testing
primality was discovered only much more recently, by Agrawal, Kayal and Saxena [1].

32 CHAPTER 3. COMPLEXITY OF ALGORITHMS

3.2 Polynomial reductions
A common approach to problem-solving is to transform the given problem into one whose
solution is already known, and then convert that solution into a solution of the original problem.
Of course, this approach is feasible only if the transformation can be made rapidly. The concept
of polynomial reduction captures this requirement.

A polynomial reduction of a problem P to problem Q is a pair of polynomial-time algorithms
which transforms each instance I of P to an instance J of Q, and the other which transforms a
solution for the instance J to a solution for the instance I. If such a reduction exists, we say that
P is polynomially reducible to Q, and write P � Q. The significance of polynomial reducibility
is that if P � Q, and if there is a polynomial-time algorithm for solving Q, then this algorithm
can be converted into a polynomial-time algorithm for solving P.

In particular, if P and Q are both decision problems, it translates into symbols:

P � Q and Q ∈ P ⇒ P ∈ P . (3.1)

Observe that, since the solution of a decision problem is either ‘yes’ or ‘no’, the second algo-
rithm which transforms a solution for the instance J to a solution for the instance I, is trivial:
either it is identity (the solution to I is ‘yes’ if and only if the answer to J is ‘yes’) or the negation
(the answer to I is ‘yes’ if and only if the answer to J is ‘no’).

3.3 N P -complete problems

3.3.1 The class N P C
We have just seen how polynomial reductions may be used to produce new polynomial-time
algortihms from existing ones. By the same token, polynomial reductions may also be used to
link ‘hard’ problems, ones for which no polynomial-time algorithm exists, as can be seen by
writing (3.1) in a different form:

P � Q and P /∈ P ⇒ Q /∈ P .

This viewpoint led Cook and Levin to define a special class of seemingly intractable decision
problems, the class of N P -complete problems. Informally, there are the problems in the class
N P which are ‘at least as hard to solve’ as any problem in N P .

Formally, a problem P in N P is NP-complete if P� � P for every problem P� in N P . The
class of N P -complete problems is denoted by N P C . It is by no means obvious that N P -
complete problems should exist at all. On the other hand, once one such problem has been
found, the N P -completeness of other problems may be established by means of polynomial
reductions, as follows.

In order to prove that a problem Q in N P is N P -complete, it suffices to find a polynomial
reduction to Q of some known N P -complete problem P. Why is this so? Suppose that P is
N P -complete. Then P� � P for all P� ∈ N P . If P � Q, then P� � Q for all P� ∈ N P , by the

3.3. N P -COMPLETE PROBLEMS 33

transitivity of the relation �. In other words, Q is N P -complete. In symbols:

P � Q and P ∈ N P C ⇒ Q ∈ N P C .

Cook and Levin made a fundamental breakthrough by showing that there do indeed exist
N P -complete problems. More precisely, they proved that the satisfiability problem for boolean
formulae is N P -complete. We now describe this problem, and examine the theoretical and
practical implications of their discovery.

3.3.2 Boolean formulae and satisfiability
A boolean variable is a variable which takes on one of two values, f alse or true. Boolean
variables may be combined into boolean formulae, which may be defined recursively as follows.

• Every boolean variable is a boolean formula.

• If f is a boolean formula, then so too is (¬ f), the negation of f .

• If f1 and f2 are boolean formulae, then so too are:

– (f1 ∨ f2), the disjunction of f1 and f2,

– (f1 ∧ f2), the conjunction of f1 and f2.

These three operations may be thought of informally as ‘not f ’, ‘ f1 or f2’, and ‘ f1 and f2’,
respectively.

An assignment of values to the variables is called a truth assignment. Given a truth assign-
ment, the value of the formula may be computed according to the following rules:

• if f = f alse, then (¬ f) = true, else (¬ f) = f alse;

• if f1 = true or f2 = true, then (f1 ∨ f2) = true, else (f1 ∨ f2) = f alse;

• if f1 = true and f2 = true, then (f1 ∧ f2) = true, else (f1 ∨ f2) = f alse.

Two boolean formulae are equivalent (written ≡) if they take the same value for each as-
signment of the variable involved. It follows easily from the above rules that disjunction and
conjunction are commutative and associative. Hence, all the formulae obtained from k sub-
formulae f1, f2, . . . , fk by means of disjunction are all equivalent. Any of these is denoted by
(f1 ∨ f2 ∨ · · ·∨ fk).

A boolean formula is satisfiable if there is a truth assignment of its variables for which the
value of the formula is true. Clearly, some boolean formulae are satisfiable and some are not.
This poses the general problem:

Problem 3.5 (SAT ; Boolean Satisfiability).
Instance: a boolean formula f .
Decide: Is f satisfiable?

34 CHAPTER 3. COMPLEXITY OF ALGORITHMS

Observe that SAT belongs to N P . Indeed given an appropriate truth assignment, it can be
checked in polynomial time that the value of the formula is indeed true.

Theorem 3.6 (Cook – Levin). The problem SAT is N P -complete.

The proof of the Cook-Levin Theorem involves the notion of a Turing machine, and is
beyond the scope of these notes. A proof may be found in the books of Garey and Johnson [4]
or Sipser [7].

Many combinatorial problems are shown to be N P -complete. See for example [4] or [3].
One of the most celebrated and to which many reductions are proved, is 3-SAT. To define it, we
need a few more definitions.

A variable x, or its negation x, is a literal, and a disjunction of literals is a clause. Any
conjuction of disjunctive clauses is referred to as a formula in conjunctive normal form. It
can be shown that every boolean formula is equivalent, via a polynomial reduction, to one in
conjunctive normal form (Exercise 3.1). Furthermore, every boolean formula is equivalent,
again via a polynomial reduction, to one in conjunctive normal form with exactly three literals
per clause. The decision problem for such boolean formulae is known as 3-SAT.

Problem 3.7 (3-SAT).
Instance: a boolean formula f in conjunctive normal form with exactly three literals per clause.
Decide: Is f satisfiable?

Theorem 3.8. The problem 3-SAT is N P -complete.

Proof. By Theorem 3.6, it suffices to prove that SAT � 3-SAT. Let f be a boolean formula in
conjunctive normal form. We show how to construct, in polynomial time, a boolean formula f �
in conjunctive normal form such that:

(i) each clause in f � has three literals;

(ii) f is satisfiable if and only if f � is satisfiable.

Such a formula f � may be obtained by the addition of new variables and clauses, as follows.
Suppose that some clause of f has just two literals, for instance the clause (x1 ∨ x2). In this

case, we simply we simply replace this clause by two clauses with three literals, (x1 ∨ x2 ∨ x)
and (x1∨x2∨x), where x is a new variable. Clearly (x1∨x2) is equivalent to the conjunction of
these two clauses.

Clauses with single literals may be dealt with in a similar manner. If x1 is a clause, then we
first replace this clause by the two clauses with two literals (x1 ∨ x) and (x1 ∨ x), where x is a
new variable. We then replace each of these two clauses by two clauses with three literals as
above.

Now suppose that some clause (x1 ∨ x2 ∨ · · ·∨ xk) of f has k literals, where k ≥ 4. In this
case, we add k−3 new variables y1,y2, . . . ,yk−3 and form the following k−2 clauses, each with
three literals.

(x1 ∨ x2 ∨ y1),(y1 ∨ x3 ∨ y2),(y2 ∨ x4 ∨ y3), . . . ,(yk−4 ∨ xk−2 ∨ yk−3),(yk−3 ∨ xk−1 ∨ xk).

One may verify that (x1∨x2∨ · · ·∨xk) is equivalent to the conjunction of these k−2 clauses.

3.3. N P -COMPLETE PROBLEMS 35

3.3.3 Some N P -completeness proofs
As we have observed, in order to show that a decision problem Q in N P is N P -complete, it
suffices to find a polynomial reduction to Q of a known N P -complete problem. This is gen-
erally easier said than done. What is needed is to first decide on an appropriate N P -complete
problem P and then come up with a suitable polynomial reduction. In the case of graphs, the
latter step is often achieved by means of a construction whereby certain special subgraphs, re-
ferred to as ‘gadgets’, are inserted into the instance of P so as to obtain an instance of Q with the
required properties. We now describe an illustration of this technique by showing how 3-SAT
may be reduced to the Directed Hamiltonian Cycle Problem via an intermediate problem, the
Exact Cover Problem.

Let A be a family of subsets of a finite set X . An exact cover of X by A is a parti-
tion of X , each member of which belongs to A . For instance, if X = {x1,x2,x3} and A =
{{x1},{x1,x2},{x2,x3}}, then ({x1},{x2,x3}) is an exact cover of X by A . This notion give
rise to the following decision problem.

Problem 3.9 (Exact Cover).
Instance: a set X and a family A of subsets of X .
Decide: Is there an exact cover of X by A?

We first describe a polynomial reduction of 3-SAT to the Exact Cover Problem, and then a
polynomial reduction of the Exact Cover Problem to the Directed Hamiltonian Cycle Problem.
Since 3-SAT is N P -complete by Theorem 3.8, this implies that the Exact Cover Problem and
the Directed Hamiltonian Cycle Problem are N P -complete.

Theorem 3.10. 3-SAT is polynomially reducible to the Exact Cover Problem.

Proof. Let f be an instance of 3-SAT, with variables x1, . . . ,xn and clauses f1, . . . , fm. We first
construct a graph G from f by setting:

V (G) = {xi | 1 ≤ i ≤ n}∪{xi | 1 ≤ i ≤ n}∪{ f j | 1 ≤ j ≤ m},
E(G) = {xixi | 1 ≤ i ≤ n}∪{xi f j | xi ∈ f j}∪{xi f j | xi ∈ f j},

where the notation xi ∈ f j (resp. xi ∈ f j) signifies that xi (resp. xi) is a literal of the clause f j.
We then obtain an instance (X ,A) of the Exact Cover Problem from this graph G by setting:

X = { f j | 1 ≤ j ≤ m}∪E(G), and
A = {E(xi) | 1 ≤ i ≤ n}∪{E(xi) | 1 ≤ i ≤ n}∪{{ f j}∪Fj | Fj ⊂ E(f j),1 ≤ j ≤ m},

where E(x) denotes the set of edges incident to vertex x in the graph G.
It can be verified that the formula f is satisfiable if and only if the set X has an exact cover

by the family A .

Corollary 3.11. The Exact Cover Problem is N P -complete.

Theorem 3.12. The Exact Cover Problem is polynomially reducible to the Directed Hamilto-
nian Cycle Problem.

36 CHAPTER 3. COMPLEXITY OF ALGORITHMS

Proof. Let (X ,A) be an instance of the Exact Cover Problem, where X = {xi,1 ≤ i ≤ n} and
A = {A j | 1 ≤ j ≤ m}. We construct a digraph D as follows. Let P be a directed path whose
arcs are labelled by the elements of X , Q a directed path whose arcs are labelled by the elements
of A , and for 1 ≤ j ≤ m, R j a directed path whose vertices are labelled by the elements of A j.
The paths P, Q, and R j, 1 ≤ j ≤ m, are assumed to be pairwise disjoint. We add an arc from the
start of P to the start of Q, and from the terminus of Q to the terminus of P. For 1 ≤ j ≤ m, we
also add an arc from the tail of the arc labelled A j of Q to the start of R j, and from the terminus
of R j to the head of the arc labelled A j of Q.

For 1 ≤ j ≤ m, we now transform the directed path R j into a digraph D j by replacing
each vertex labelled xi of R j by a symmetric path Pi j of length two, that is the symmetric
digraph obtained from a path of length two by replacing each edge by two arcs in each direction.
Moreover, for every such symmetric path, we add an arc from the start of Pi, j to the tail of the
arc labelled xi of P, and one from the head of xi to the terminus of Pi, j. We denote the resulting
digraph by D. See Figure 3.1.

P2,3

x3x2x1

P3,3P2,2P2,1

A2 A3A1

P1,1

Figure 3.1: The digraph D when X = {x1,x2,x3} and A = {{x1,x2},{x2},{x2,x3}}.

Observe now, that the digraph D has a directed hamiltonian cycle C if and only if the set X
has an exact cover by A .

Suppose first that D has a directed hamiltonian cycle C. If C does not use the arc labelled
A j in Q, it is obliged to traverse D j from its start to its terminus. Conversely, if C uses the arc
labelled A j in Q, it is obliged to include each one of the paths Pi, j in D j in its route from the
start of P to the terminus of P. Moreover, C traces exactly one of the paths Pi, j (for xi ∈ A j) in
travelling from the head of the arc of P labelled xi to its tail. Hence A j that label the arcs of
Q∩C form a partition of X .

Reciprocally, if we have an exact cover of X by A , a directed hamiltonian cycle C of D may
be constructed by taking the arcs labelled A j when A j is not a member of the exact cover and all
the paths Pi j for Xj in the cover and xi ∈ Xj and completing by adding arcs in an obvious way.

Finally, the number of vertices of D is

|E(D)|= |X |+ |A |+3
m

∑
j=1

|AJ|+2.

This function is bounded above by a linear function of the size of the instance (X ,A), so the
above reduction is indeed polynomial.

3.4. N P -HARD PROBLEMS 37

Corollary 3.13. The Directed Hamiltonian Cycle Probem is N P -complete.

A huge number of decision problems have been shown to be N P -complete. See for example
the book of Garey and Johnson [4].

3.4 N P -hard problems
We now turn to the computational complexity of optimization problems such as the Travelling
Salesman Problem. An edge-weighted graph is a pair (G,w) where G = (V,E) is a graph and
w : E → IR is a weight function.

Problem 3.14 (Travelling Salesman).
Instance: an edge-weighted complete graph (G,w).
Find: a hamiltonian cycle C of G of minimum weight, i.e. such that ∑e∈E(C)w(e) is minimum.

This problem contains the Hamiltonian Cycle Problem as a special case. To see this, as-
sociate with a given graph G the edge-weighted complete graph on V (G) in which the weight
function w is defined by w(uv) = 0 if uv ∈ E(G), and w(uv) = 1 otherwise. The resulting
edge-weighted complete graph has a hamiltonian cycle of weight zero if and only if G has a
hamiltonian cycle. Thus, any algorithm for solving the Travelling Salesman Problem will also
solve the Hamiltonian Cycle Problem, and we may conclude that the former problem is at least
as hard as the latter. Because the Hamiltonian Cycle Problem is N P -complete, (See Exer-
cise 3.2), the Travelling Salesman Problem is at least as hard as any problem in N P . Such
problems are called N P -hard.

Observe that every optimization problem implicitely includes an infinitude of decision prob-
lems. For example, the Travelling Salesman Problem includes, for each real number r, the fol-
lowing decision problem. Given an edge-weighted graph (G,w), is there a hamiltonian cycle
of weight at most r? If one of these problems is N P -complete, then the optimization prob-
lem is N P -hard. However, the problem may still be N P -hard even if all these problems are
polynomial-time solvable. For example, it is the case for the following basic problem.

Problem 3.15 (Maximum Stable Set).
Instance: a graph G.
Find: a stable set of maximum size in G.

If k is a fixed integer not depending on |V (G)|, the existence of a stable set of size k can be
decided in polynomial time, simply by means of an exhaustive search, because the number of
k-subsets of V (G) is bounded above by |V (G)|k. However, if k depends on |V (G)|, this is no
longer true. Indeed, the problem of deciding whether a graph G has a k-clique, where k depends
on |V (G)| is N P -complete.

Theorem 3.16. The following problem is N P -complete.
Instance: a graph G
Decide: α(G)≥ |V (G)|/3?

38 CHAPTER 3. COMPLEXITY OF ALGORITHMS

Proof. Let Φ be a 3-SAT formula with n variables x1, . . . ,xn and m clauses C1, . . . ,Cm. Let us
create a graph GΦ as follows:

• For each clause Cj = � j
1 ∨ � j

2 ∨ � j
3, we create a 3-cycle (v j

1,v
j
2,v

j
3). These cycles are called

the clause gadgets.

• For any two vertices v j
k and v j�

k� in different clause gadgets, we add an edge between v j
k and

v j�
k� if and only if there is a variable xi such that {� j

k,�
j�
k�}= {xi, x̄i}.

By construction |V (Gφ)|= 3m. Let us prove that GΦ has a stable set of size m if and only if
Φ is satisfiable.

Suppose Φ has a satisfying truth assignment f . Then at least one variable in each clause
is satisfied by f . Define S to be a set of vertices in GΦ found by selecting one of vertices
corresponding to the satisfied variable in each clause gadget. Since we picked one vertex for
each clause, there are clearly m vertices in S. Now consider two distinct vertices v j

k and v j�
k� of

S. They are not in the same clause gadget, since we only select a single vertex for each gadget,
and {� j

k,�
j�
k�} �= {xi, x̄i}, because f can not have satisfied both of xi and x̄i. Therefore x and y are

not adjacent. Hence S is a stable set of size m.
Suppose now that GΦ has a stable set S of size m. Since the clause gadget are complete

subgraphs, there is at most vertex vertex of S per clause gadget. But in fact, since there are
exactly m clause gadgets, S must contain exactly one node from each clause gadget. Let f be
the truth assignment defined by f (xi) = true if there exists a literal � j

k = xi whose associated
vertex v j

k is in S, and f (xi) = f alse otherwise. Clearly, f satisfies Φ.

Since a subset S of V (G) is a stable set in G if and only if S is a clique in G, the following
problem is polynomially equivalent to the Maximum Stable Set Problem, and thus is N P -hard
also.

Problem 3.17 (Maximum Clique).
Instance: a graph G.
Find: a clique of maximum size in G.

A huge collection of optimization problems have been shown to be N P -hard, see [3].

3.5 Approximation algorithms
For N P -hard optimization problems of practical interest, such as the Travelling Salesman Prob-
lem, the best that one can reasonably expect of a polynomial-time algorithm is that it should
always return a feasible solution which is not too far from optimality.

Given a real number r ≥ 1, an r-approximation algorithm for a minimization problem is
an algorithm that returns a feasible solution whose value is no more than r times the optimal
value; similarly, an r-approximation algorithm for a maximization problem is an algorithm that
returns a feasible solution whose value is no less than r times the optimal value; the smaller
the value of r, the better the approximation. Naturally, the running time of the algorithm is an
equally important factor. We give an example.

3.5. APPROXIMATION ALGORITHMS 39

Problem 3.18 (Maximum Cut).
Instance: a graph G.
Find: a spanning bipartite subgraph F of G with the maximum number of edges.

It can be shown that the Maximum Cut Problem is N P -hard (Exercise 3.4).

Theorem 3.19. The Maximum Cut Problem admits a polynomial-time 2-approximation algo-
rithm.

Proof. We now describe an algorithm that find a bipartite subgraph F such that |E(F)| ≥
|E(G)|/2. Since an subgraph of G cannot have more than |E(G)| edges, this is a 2-approximation
algorithm.

Algorithm 3.1 (Maximum-Cut Approximation).

2. Take any ordering v1,v2, . . . ,vn of the vertices; A := /0; B := /0; E := /0.

2. For i = 1 to n, if vi has more neighbours in A than in B, then add vi to B and all edges
joining vi to elements of A to E. Else add vi to A and all edges joining vi to elements of B
to E.

3. Return ((A,B),E).

This algorithm examined every vertex exactly once and each time its examines a vertex it
must counts the numbers of vertices in A and B and compare them. Then its complexity is at
most O(|V |2).

Let us now show that the returned bipartite graph F satisfies |E(F)|≥ |E(G)|/2. Therefore
let us denote by Fi = ((Ai,Bi),Ei) the bipartite graph constructed after step i that is after having
examing vi at Step 2 in the above algorithm. and Gi = G�{v1, . . . ,vi}�. We prove by induction
that |E(Fi)|≥ |E(Gi)|/2, the result holding vacuously when i = 0. Suppose now that i > 0 and
that the result holds for i−1. We obtained Fi from Fi−1 by adding Vi to the part in which it has the
smaller number of neighbours. Hence, the number of edges incident to vi that we add to Fi−1 is
at least has large has half the number of edges joining vi to a vertex in V (Fi−1) = {v1, . . . ,vi−1}.
Since |E(Fi−1)|≥ |E(Gi−1)|/2 by the induction hypothesis, we have |E(Fi)|≥ |E(Gi)|/2.

The analog of the Maximum Cut Problem in edge-weighted graph, called the Weighted
Maximum Cut Problem also admits a polynomial-time 2-approximation algorithm. See Exer-
cise 3.7.

If some algorithms admits polynomial-time approximation algorithms, some others do not.
For example, this is the case for the Travelling Salesman Problem: for any t ≥ 2, there cannot
exists a polynomial-time t-approximation algorithm for solving the Travelling Salesman Prob-
lem, unless P = N P . (Exercise 3.8). However some special cases the Travelling Salesman
Problem admit polynomial-time approximation algorithm. For example, such an algorithm,
when the weights satisfies the triangle inequality, is discussed in Section 4.2.3.

40 CHAPTER 3. COMPLEXITY OF ALGORITHMS

For more on approximation algorithms, we refer the interested reader to the book of Vazi-
rani [8].

3.6 Exercises
Exercise 3.1. Let f1 and f2 be two boolean formulae in conjuctive normal form.
1) Show that:

a) f1 ∧ f2 is in conjunctive normal form;

b) f1 ∨ f2 is equivalent to a boolean formula in conjunctive normal form;

c) ¬ f1 is equivalent to a boolean formula in conjunctive normal form;

2) Deduce that every boolean formula is equivalent to a boolean formula in conjunctive normal
form.

Exercise 3.2.
1) Describe a polynomial-time reduction of the Directed Hamiltonian Cycle Problem to the
Hamiltonian Cycle Problem.
2) Deduce that the Hamiltonian Cycle Problem is N P -complete.

Exercise 3.3.

A path is hamiltonian in a graph G if it goes through all vertices of G. The Hamiltonian
Path Problem consists in deciding if a given graph contains a hamiltonian path. Show that the
Hamiltonian Path Problem is N P -complete.

Exercise 3.4. Show that the Maximum Cut Problem is N P -hard.

Exercise 3.5. A vertex cover in graph is a set S of vertices such that every edge of G has an
endvertex in S. The Vertex Cover Problem consists in finding a minimum vertex cover of the
input graph, that is a vertex cover with the minimum number of vertices.

1) Show that the Vertex Cover Problem is N P -hard.
2) A matching in a graph G is a set of pairwise disjoint edges. A matching M is maximal in

G if for any edge e ∈ E(G)\M, the set M∪{e} is not a matching.

a) Show that if M is a maximal matching in G, then G−V (M) is a stable set.

b) Deduce a 2-approximation algorithm for the Vertex Cover Problem.

Exercise 3.6. A feedback arc set in a digraph D is a set of arcs F such that D\F is acyclic. Show
that finding a feedback arc set of minimum cardinality in a digraph is an N P -hard problem.

Hint: Use reduction from the Vertex Cover Problem. From an undirected graph G, you may
construct a digraph with vertex set

�
v∈V (G){v−,v+}.

3.6. EXERCISES 41

Exercise 3.7. Describe a polynomial-time 2-approximation algorithm for the following prob-
lem, called the Weighted Maximum Cut Problem.
Instance: an edge-weighted graph (G,w).
Find: a spanning bipartite subgraph F of G with the maximum weight.

Exercise 3.8.
1) Let G be a graph on n vertices, n ≥ 3 vertices, and let t be a positive integer. Consider the
edge-weighted complete graph (K,w), where V (K) =V (G), in which w(e) = 1 if e ∈ E(G) and
w(e) = (t −1)n+2 if e ∈ E(K)\E(G). Show that:

a) (K,w) has a hamiltonian cycle of weight n if and only if G has a hamiltonian cycle;

b) any hamiltonian cycle of (K,w) of weight greater than n has weight at least tn+1.

2) Deduce that, unless P �= N P , there cannot exist a polynomial-time t-approximation algo-
rithm for solving the Travelling Salesman Problem.

42 CHAPTER 3. COMPLEXITY OF ALGORITHMS

Bibliography

[1] M. Agrawal, N. Kayal and N. Saxena. PRIMES is in P. Ann. of Math. (2) 160:781–793,
2004.

[2] A. V. Aho, J. E. Hopcroft and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley Series in Computer Science and Information Processing,
Addison-Wesley, Reading, MA, 1975. Second printing.

[3] P. Crescenzi and V. Kann, eds. A N P -compendium of N P optimization problems.
http://www.csc.kth.se/ viggo/problemlist/.

[4] M. R. Garey and D. S. Johnson, Computers and intractability. A guide to the theory of
NP-completeness. A Series of Books in the Mathematical Sciences. W. H. Freeman and
Co., San Francisco, Calif., 1979.

[5] R. L. Graham, M. Grötschel and L. Lovász, eds. Handbook of Combinatorics. Vol. 1,2.
Elsevier, Amsterdam, 1995.

[6] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.

[7] M. Sipser. Introduction to the Theory of Computation. Second edition. Course Technol-
ogy, Boston, MA, 2005.

[8] V. V. Vazirani. Approximation Algorithms. Springer, Berlin, 2001.

43

44 BIBLIOGRAPHY

