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1 Modelling the channel assignment problem

We may think of the radio channel assignment problem as the final stage in the design of a cellular
radio communications system. The general idea of such a system is that many low-powered transmitters
(base stations) each serve the customers in their local cell, and thus the same radio channel can be used
simultaneously in many different cells, as long as these cells are sufficiently well separated. Since the
radio spectrum is a finite resource which is heavily in demand, we want to assign the channels to the
transmitters carefully in order to take maximum advantage of this re-use possibility.

Suppose then that transmitters are located at various sites in a geographical region, perhaps a city,
with power levels set. Engineers often aim to spread the transmitters out to form roughly a part of a
triangular lattice, since it gives the best “coverage”, that is, it minimises the maximum distance to a
transmitter. Sometimes the transmitters may be spread out very differently, for example along a major
road. The service region is divided into cells around each transmitter. A cell around transmitter v may
be seen as the potential receiver sites which are closer to v than to any other transmitter, at least in the
case when each transmitter as the same power. When such transmitters are spread out like part of the
triangular lattice, the cells are hexagonal.

For each cell, there is an estimate of the (peak period) expected demand. Using these demand es-
timates and some (simple) queuing model, an appropriate number p(v) of channels is chosen for each
transmitter v. (Note that we are considering a static model : there is interest also in dynamic models,
where the demand levels change over the time, and the focus is on the method for re-assigning channels.)
The aim is to find an assignment of p(v) channels to each transmitter v, such that the corresponding
interference is acceptable, and the span of channel used is minimised.

So, when will interference be acceptable. Typically a “protection ratio” θ is set, depending on engi-
neering considerations involving the selectivity of the equipment used and the width of the channel. We
say that the interference arising from some channel assignment is acceptable if the signal-to-interference
ratio is at least θ at each potential receiver site.

We assume that the power received does not depend on the frequency used (which is realistic since the
range of frequencies involved is usually small). Another simplifying assumption that seems reasonable
from the physics of interference is that only the difference between two channels matters. Typically
the smaller the difference the greater the interference. But this is not always the case as there may for
example be “intermodulation products”, in particular at transmitters on the same site.

Consider a pair of transmitters u and v, and suppose that they transmit on channels differing by c. If
there is a potential receiver in the cell around u such that the ratio of the received power from u to that
from v is less than the protection ratio θ, then we make c a “forbidden distance” for u and v; similarly with
u and v interchanged. Hence for each pair (u,v) of distinct transmitters, we have a set Tuv of forbidden
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differences |i− j| for channels i at u and channels j at v. In the case where all the transmitters are
identical (and under the above assumptions) if c is forbidden for u and v it is also forbidden for v and
u, so Tuv = Tvu. Similarly, for each vertex v, we have a set Tvv of forbidden differences between two
channels at v.

We form the corresponding interference or constraint graph G. It has a vertex for each transmitter
and distinct vertices u and v are adjacent if Tuv is non-empty. In particular, at each vertex v, there is a
loop of length l(vv) = Tvv. It is often convenient to think of the problem as being specified by the graph
G with a set Te for each e of G, where always 0 ∈ Te. In the case, when the interference increases with
the proximity between two transmitters then Te is of the form {0, . . . , l(e)−1}. Hence we may consider
that each edge is associated a non-negative integer length l(e) for each edge e.

An assignment is a mapping φ : V → P ({1, . . . , t}) such that |φ(v)| = p(v) for each v ∈ V (G). It is
feasible if the following conditions hold:

• (i) for any two distinct adjacent vertices u and v and each i ∈ φ(u) and each j ∈ φ(v) we have
|i− j| ≥ l(uv).

• (ii) for each v ∈V (G) and any two distincts integers i and j in φ(v), we have |i− j| ≥ l(vv).

The span of the problem, span(G, l, p), is the least integer t such that there is a feasible assignment.
(Some authors call t−1 the span.)

We want to determine or approximate the span, and find corresponding assignments.

Examples

1. If G is a triangle with each edge of length 3 and the demand of each vertex is 1 then the span is 7.

2. If G is a 4-cycle with each edge length 3 and the demand of each vertex is 1 the span is 4.

3. Let G be the 5-cycle plus the loops on all the vertices, such that every edge has length 1 except the
loops which have length 2. If each vertex has demand 2, then the span is 5.

2 General results

In this section we give various results, some introductory, about the span in the channel assignment
problem. We restrict our attention here to the case of unit demands. In this case, the co-site constraints
(=loops) are irrelevant and we can see an assignment as a mapping φ : V →{1, . . . , t} which is feasible if
|φ(u)−φ(v)| ≥ l(uv) for every edge uv. For convenience, we denote span(G, l,1) by span(G, l) where 1
the appropriate all 1’s function.

Note that a general channel assignment problem can always be transformed into a unit demand
problem by blowing up each vertex v into a clique of p(v) vertices with edge lengths equal to l(vv).

2.1 All equal edge lengths

Observe that span(G,1) equals the chromatic number χ(G). Note also that, with any positive edge
lengths, the least number of integers required is just χ(G), but it is the span that is of interest to us.

When the edge lengths are all the same, we are almost back to colouring. Let k denote the appropriate
all k’s function.
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Proposition 2.1. If each edge length is k then

span(G,k) = k(χ(G)−1)+1.

Proof. Observe that the span is at most the right hand side, since we could always first properly colour G
with χ(G) colours and then assign a channel to each colour, using channels 1,k +1, . . . ,k(χ(G)−1)+1.

Now let us show that the span is at least the right hand side. Let t be the span, and consider a feasible
assignment φ using channels 0,1, . . . , t−1 which uses as few as possible channels which are not multiples
of k. Then in fact φ must use only multiples of k, for otherwise the least channel not a multiple of k could
be pushed down to the nearest multiple of k, giving a contradiction. But now if we let c(v) = φ(v)/k we
obtain a proper colouring of G. So χ(G)≤ (t−1)/k +1, which is the desired inequality.

2.2 Lower bound for the span

It follows from Proposition 2.1 that if G is the complete graph Kn and all edge lengths are at least k then
span(G, l) ≥ k(n− 1)+ 1. This result can be extended as follows. A path P is hamiltonian in G if its
goes through all the vertices, i.e. V (P) = V (G).

Proposition 2.2. If G is complete, then

span(G, l)≥ hp(G, l)+1,

where hp(G, l) is the minimum length of a hamiltonian path.

Proof. Given a feasible assignment φ, list the vertices as v1, . . . ,vn so that φ(v1) ≤ φ(v2) ≤ ·· · ≤ φ(vn).
P = v1v2 . . .vn is a hamiltonian path in G and

φ(vn)−φ(v1) =
n−1

∑
i=1

φ(vi+1)−φ(vi)≥
n−1

∑
i=1

l(vivi+1),

which is the length of P. Since span(G, l) = φ(vn)−φ(v1)+1, we get the result.

This last result has the drawback that it is NP-hard to calculate hp(G, l), but there are good lower
bounds which may be efficiently calculated, for example the minimum length of a spanning tree. Observe
that Proposition 2.2 is tight if the edge lengths satisfy the triangle inequality, but we should not expect
this to hold for minimum channel separations.

2.3 Sequential assignment methods

Suppose that we want to colour the vertices of a graph with colours 1,2, . . . ... and we have a given
ordering on the vertices. Let us consider two variants of the greedy colouring algorithm. In the ”one-
pass” method, we run through the vertices in order and always assign the smallest available colour. In the
”many-passes” method, we run through the vertices assigning colour 1 whenever possible, then repeat
with colour 2 and so on. Both methods yield exactly the same colouring, and show that χ(G)≤ ∆(G)+1
colours.

Let us now consider the channel assignment problem (G, l). Define the weighted degree of a vertex
v by d(G,l)(v) = ∑uv∈E l(uv) and define the maximum weighted degree by ∆(G, l) = maxv∈V (G) d(G,l)(v).
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Example: Let G be the 4-cycle C4, with vertices v1,v2,v3,v4 and edge lengths l(v1v2) = 1 and l(v2v3) =
l(v3v4) = l(v4v1) = 2. Note that ∆(G, l) = 4. The one-pass method assigns channels 1,2,4,6 to the vertices
v1, v2, v3, v4 respectively, with span 6. The many-passes method assigns channel 1 to vertices v1 and
v3, channel 2 to none of the vertices, and channel 3 to vertices v2 and v4, with span 3. In fact the many
passes method always uses at most the channels 1, . . . ,∆(G, l)+1.

Theorem 2.3 (McDiarmid [7]).
span(G, l)≤ ∆(G, l)+1.

Proof. In order to show that the many-passes method needs a span of at most the above size, suppose
that it is about to assign channel c to vertex v. Let A be the set of neighbours u of v to which it has
already been assigned a channel φ(u). For each channel j ∈ {1, . . . ,c−1}, there must be a vertex u ∈ A
with φ(u)≤ j and φ(u)+ l(uv)≥ j +1. Hence the intervals {φ(u), . . . ,φ(u)+ l(uv)−1} for u ∈ A cover
{1, . . . ,c−1}. Thus

c−1≤ ∑
u∈A

l(uv)≤ d(G,l)(v)≤ ∆(G, l).

This completes the proof.

3 Computing the span

We noted earlier that the special case when all lengths are 1 is essentially the graph colouring problem.
Since graph colouring is NP-hard – see for example [3]–, we cannot expect an easy ride. In fact, the
general problem seems to be harder than graph colouring.

3.1 Bipartite graphs and odd cycles

Let G be a graph and l an edge-length. Let L(G, l) = max{l(xy)+1 | xy ∈ E(G)}. For any (G, l), clearly
span(G, l)≥ L(G, l).

This inequality is tight for bipartite graphs.

Proposition 3.1. If G is a bipartite graph, then span(G, l)≥ L(G, l), for any l.

Proof. If we set φ(x) = 1 for x in one part of the bipartition and φ(x) = L(G, l) for x in the other part,
then we obtain a feasible assignment with span L(G, l).

This proposition implies that the channel assignment problem for bipartite graphs is easy. After
bipartite graphs the next thing to consider is odd cycles. Here again it is easy to determine the span.

Proposition 3.2. If G is an odd cycle then span(G, l)= max{L(G, l),M(G, l)}, where M(G, l)= min{l(uv)+
l(vw)+1 | uv,vw ∈ E(G)}.

Proof. Since G is an odd cycle, in any feasible assignment φ there exist edges uv and vw of G such that
φ(u) ≤ φ(v) ≤ φ(w). Then |φ(w)− φ(u)| ≥ l(uv)+ l(vw) and so the span of (G, l) is at least M(G, l).
Hence it is at least max{L(G, l),M(G, l)}.

On the other hand, let us choose two edges uv and vw in G with l(uv) + l(vw) = M(G, l)− 1.
Form an even cycle G′ by deleting v and adding the edge uw. Consider the length function l′ on
E(G′) which satisfies l′(uw) = l(uv)+ l(vw) and agrees with l elsewhere. Since G′ is bipartite, (G′, l′)
admits an optimal feasible assignment φ with span L(G′, l′) = max{L(G, l),M(G, l)}. Furthermore,
|φ(u)− φ(w)| ≥ l(uw) ≥ l(uv) + l(vw). Hence one can choose φ(v) between φ(u) and φ(w) so that φ

is a feasible assignment of (G, l).
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Let us call a graph 1-nearly bipartite if by deleting at most one vertex we may obtain a bipartite
graph. It is of course easy to recognise if a graph is 1-nearly bipartite, by simply deleting each vertex in
turn. It is also easy to determine the chromatic number of a 1-nearly bipartite graph G, as it is at most 3.
However, it is NP-hard to determine span(G, l), even if we restrict the edge lengths to be 1 or 2, see [?].

3.2 A general exponential algorithm

Theorem 3.3 (McDiarmid [7]). Given (G, l) with maximum edge-length m, we can compute span(G, l)
in O∗((2m+1)n) steps.

Proof. Let us describe the method. Let V denote the set of vertices of G. For each S⊂V , let Ni(S) = {v∈
V \S | ∃ an edge uv with u ∈ S and l(uv)≥ i }. For each nested family A⊇ B1 ⊇ ·· · ⊇ Bm−1 of m subsets
of V and each non-negative integer t, let F(A;B1, . . . ,Bm−1; t) be the set of all feasible assignments
φ : A→{1, . . . , t} for the subproblem on A such that φ(v)≤ t− i whenever v ∈ Bi, for each i = 1, . . . ,m−
1. Let f (A;B1, . . . ,Bm−1) be the least t such that F(A;B1, . . . ,Bm−1; t) is non-empty. Thus the span is
f (V ; /0, . . . , /0). By definition, if A = /0 then F = { /0} and f = 0.

Claim 3.3.1. For each non-empty A⊂V

f (A;B1, . . . ,Bm−1) = 1+min
S

f (A\S;B′1, . . . ,B
′
m−1),

where S runs over all stable subsets of A \B1; B′i−1 = Bi ∪ (A∩Ni(S)) for each i = 2, . . . ,m− 1; and
B′m−1 = A∩Nm(S).
(Note that A\S⊇ B′1 ⊇ ·· · ⊇ B′m−1, as required for the domain of f .)

The method to calculate the span is brutal: we use the claim to tabulate all the values f (A;B1, . . . ,Bm−1)
in increasing order of the size of A. For a given set A of size a, there are ma points in the domain of f :
for each point we have m choices for the smallest element of the nested family that contains a . The
additional time to compute f for a given point with set A of size a is at most O∗(2a) since they are at

most 2a (stable) sets in A. Hence the total time taken is at most O∗
(

n

∑
a=0

(
n
a

)
ma2a

)
= O∗ ((2m+1)n).

It remains only to prove the claim.

Proof Claim 3.3.1. We show first that the left side is at most the right. Let S be a stable subset of
A \B1, and let f (A \ S;B′1, . . . ,B

′
m−1) = t − 1. We want to show that f (A;B1, . . . ,Bm−1) ≤ t. Let φ ∈

F(A \ S;B′1, . . . ,B
′
m−1) and extend φ to φ̂ : A→ {1, . . . , t} by setting φ̂(v) = φ(v) for each v ∈ A \ S and

φ̂(v) = t for each v ∈ S.
We must check that φ̂∈ F(A;B1, . . . ,Bm−1). Let uv be an edge with u∈ S and v∈ A\S. Thus φ̂(u) = t

and φ̂(v)≤ t−1. If l(uv) = i∈ {2, . . . ,m}, then v∈Ni(S)⊆ B′i−1, and so φ̂(v) = φ(v)≤ (t−1)−(i−1) =
t− i. Thus in each case φ̂(u)− φ̂(v) ≥ l(uv). Since S is stable and φ is feasible for the subproblem on
A\S, it now follows easily that φ̂ is feasible for the subproblem on A. If v ∈ B1 then φ̂(v) = φ(v)≤ t−1
since S⊆ A\B1; and if v ∈ Bi for some i ∈ {2, . . . ,m−1} then v ∈ B′i−1 and so φ̂(v) = φ(v)≤ t− i by our
choice of φ. Hence φ̂ ∈ F(A;B1, . . . ,Bm−1).

Conversely, let us show that the right side is at most the left. Let f (A;B1, . . . ,Bm−1) = t and let
φ ∈ F(A;B1, . . . ,Bm−1). Let S be the stable set φ−1(t). Then S must be non-empty by the minimality of
t, and S ⊆ A \B1 since φ(v) ≤ t− 1 for each v ∈ B1. If t = 1 then S = A and the result holds, so let us
assume that t ≥ 2. Define φ′ : A\S→{1, . . . , t−1} by setting φ′(v) = φ(v) for each v ∈ A\S.
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Let us check that φ′ ∈ F(A\S;B′1, . . . ,B
′
m−1). Clearly φ′ is feasible for the subproblem on A\S. Let

i∈ {2, . . . ,m−1} and let v∈ B′i−1 = Bi∪(A∩Ni(S)). If v∈ Bi then φ′(v) = φ(v)≤ t− i = (t−1)−(i−1)
by the condition on φ, and if v ∈ Ni(S) then the same inequality holds, since S is non-empty and φ is
feasible for A. Finally, if v ∈ B′m−1 = A∩Nm(S), then as before φ′(v) = φ(v)≤ t−m = (t−1)− (m−1).
Thus φ′ ∈ F(A\S;B′1, . . . ,B

′
m−1).

The proof of Claim 3.3.1 completes the proof of Theorem 3.3.

3.2.1 An Integer Programme model

The following integer programme (IP) gives a simple reformulation of the channel assignment model,
though other formulations may be better suited to computation for particular types of problem, see
also [10].

Choose an upper limit fmax, and let F = {1, . . . , fmax}be the set of available channels. We introduce
a binary variable yu,i for each transmitter u and channel i : setting yu,i = 1 will correspond to assigning
channel i as one of the channels at transmitters u. Then span(G, l, p) is given by the following integer
programme.

Minimise z subject to :

z ≥ j× yv, j ∀v ∈V (G), j ∈ F
∑ j∈F yv, j = p(v) ∀v ∈V (G)
yu,i + yv, j ≤ 1 ∀u,v ∈V (G) and i, j ∈ F such that (u, i) 6= (v, j) and |i− j|< l(uv)

yv, j ∈ {0,1} ∀v ∈V (G), j ∈ F

To see that this IP formulation is correct, consider an optimal assignment φ : V → F . Set yv, j = 1 if
j ∈ φ(v) and yv, j = 0 otherwise; and set z to be the maximum channel used. It is easy to see that this
gives a feasible solution to the IP, wiht z = span(G, l, p). Conversely, given a feasible solution to the IP
with value t, we may obtain in a similar way a feasible assignment φ.

4 Channel assignment in the plane

It is natural to specialise the channel assignment problem to the case where the transmitter sites are
located in the plane, and the minimum channel separation for a pair of sites depends on the distance
between them.

In this section, we will consider only co-channel interference, which corresponds to each minimum
channel separation being 0 (if there is no edge) or 1 (at the same site or between adjacent sites). Hence
we have to determine span(G,1, p). Then we are left with a colouring problem of a weighted graph.
A weighted graph is a pair (G, p), where G is a graph and p a weight function on the vertex set of G.
A t-colouring of a weighted graph (G, p) is a mapping C : V (G)→ P ({1, . . . , t}) such that for every
vertex v ∈ V (G), |C(v)| = p(v) and for all edge uv ∈ E(G), C(u)∩C(v) = /0. The chromatic number
of a weighted graph (G, p), denoted χ(G, p), is the least integer t such that (G, p) admits a t-colouring.
This is a natural generalisation of the chromatic number of a graph since χ(G,1) = χ(G). Moreover,
χ(G, p) = span(G,1, p).

The clique number of a weighted graph (G, p), denoted ω(G, p), is the maximum weight of a clique,
that is max{p(C) |C clique of G}, where p(C) = ∑v∈C p(v).
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Generalising Proposition ??, for any weighted graph (G, p), we have

χ(G, p)≥ ω(G, p).

4.1 Disk graphs

Suppose that we are given a threshold distance d0, such that interference will be acceptable as long as
no channel is re-used at sites less than distance d0 apart. Given a set of V points in the plane and given
d0 > 0, let G(V,d0) denote the graph with vertex set V in which distinct vertices u and v are adjacent
whenever the euclidean distance between them is less than d0. Equivalently, we may centre an open disk
of diameter d0 at each point v, and then two vertices are adjacent when their disks meet. Such a graph is
called a unit disk (or proximity) graph.

Observe that if G is a unit disk graph, the graph Gp obtained from the weighted graph (G, p) by
replacing each vertex v by a complete graph of size p(v) is also a unit disk graph. Hence our basic
version of the channel assignment problem is equivalent to colouring unit disk graphs. The following
result shows that the clique and chromatic numbers of such graphs are not too far apart.

Proposition 4.1 (Clark, Colbourn and Johnson [2]). For a unit disk graph G,

χ(G)≤ 3ω(G)−2.

Proof. In a realisation of G with diameter d0, consider the “bottom left” point v. All its neighbours lie
within an angle of less than 180 degrees at v. Thus we can cover all the neighbours with three sectors,
each with radius less than d0 and angle less than 60 degrees. But the points in each sector together with
v form a clique, and so the degree of v is at most 3(ω(G)−1). It follows that the degeneracy of G is at
most 3ω(G)−3. The result follows from Proposition ??.

It would be nice to improve this result: perhaps the factor 3 could be replaced by 3/2? It is shown
in [1] that it is NP-hard to recognise unit disk graphs. Many problems are NP-hard for unit disk graphs,
even given a realisation in the plane, see [2]: for example finding χ(G) or α(G). However there is a
polynomial time algorithm to find ω(G), given a realisation in the plane.

Theorem 4.2 (Clark, Colbourn and Johnson [2]). Given a realisation of a unit disk graph G, there is a
polynomial time algorithm to find ω(G).

Proof. Suppose we are given a representation with diameter 1. The algorithm relies on the following
fact. For every clique K, there are points u and v in K at euclidean distance d < 1 such that all points
of K is contained in the region Ruv of points in the plane within distance at most d of both u and v. See
Figure 1.

Hence we consider in turn each edge uv of G and the corresponding region Ruv and find a maximum
clique in Ruv. The line uv cuts Ruv into two halves: let A and B be the sets of points in the two halves. It
is easy to verify that A and B are cliques.

Let H be the bipartite graph with bipartition (A,B) where a ∈ A and b ∈ B are adjacent if they are at
euclidean distance at least 1. Then we obtain a maximum clique within L by forming (A∪B)\C, where
C is a minimum cover in H.

If the transmitters can have different powers, we are led to consider disk graphs, which are defined
as for unit disk graphs except that the diameters may be different.
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u Ruv v

Figure 1: The region Ruv.

Proposition 4.3. For a disk graph G,

χ(G)≤ 6ω(G)−5.

Proof. Consider a vertex v with disk of smallest diameter, and proceed as in the proof of Proposition 4.1
to show that the degeneracy is at most 6(ω(G)−1).

4.2 Triangular lattice

The triangular lattice T L crops up naturally in radio channel assignment. It is sensible to aim to spread
the transmitters out to form roughly a part of a triangular lattice, with hexagonal cells, since that will
give the best “coverage”, that is, for a given number of transmitters in a given area this pattern minimises
the maximum distance to a transmitter.

The triangular lattice graph T L may be described as follows. The vertices are all integer linear
combinations ae1 + be2 of the two vectors e1 = (1,0) and e2 = (1

2 ,
√

3
2 ). Thus we may identify the

vertices with the pairs (a,b) of integers. Two vertices are adjacent when the Euclidean distance between
them is 1. Therefore, each vertex x = (a,b) has six neighbours: its left neighbour (a− 1,b), its right
neighbour (a + 1,b), its leftup neighbour (a− 1,b + 1), its rightup neighbour (a,b + 1), its leftdown
neighbour (a,b−1) and its rightdown neighbour (a+1,b−1). See Figure 2.

(a+1,b−1)

(a,b)

(a,b+1)(a−1,b+1)

(a,b−1)

(a−1,b) (a+1,b)

Figure 2: The vertex (a,b) and its six neighbours.

A hexagonal graph is an induced subgraph of the triangular lattice.
The triangular lattice has a unique (up to colours permutations) 3-colouring cT , defined by cT ((a,b))=

a−b mod 3. See Figure 3. It follows immediately that for any weighted hexagonal graph (G, p),
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1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

2 3

2 3

1

1

1

1 2

1 2

Figure 3: The unique 3-colouring of the triangular lattice.

χ(G, p)≤ 3max{p(v) | v ∈V (G)} ≤ 3ω(G, p).

In the rest of this section, we will improve this upper bound. It is fairly easy to improve it for bipartite
graphs.

Lemma 4.4. Let (G, p) be a weighted bipartite graph. Then χ(G, p) = ω(G, p).

Proof. Let (A,B) be a bipartition of G. Let v be a vertex of G. Assign it the colour set {1,2, . . . , p(v)}
if it is in A and the colour set {ω(G, p)− p(v) + 1, . . . ,ω(G, p)} if it is in B. This give us an optimal
colouring of (G, p). Indeed, if uv is an edge with u ∈ A and v ∈ B then p(u)+ p(v)≤ ω(G, p).

Remark 4.5. This lemma gives us a polynomial time algorithm to compute the chromatic number of a bi-
partite weighted graph. Indeed, calculating ω(G, p) is easy because it is the maximum of max{p(v) | v ∈
V (G)} and max{p(u)+ p(v) | uv ∈ E(G)} since a clique has size at most 2 in a bipartite graph.

McDiarmid and Reed [8] showed that it is NP-complete to decide whether the chromatic number
of a weighted hexagonal graph is 3 or 4. Hence, there is no polynomial time algorithm for finding the
chromatic number of weighted hexagonal graphs (unless P=NP). Therefore, one has to find approximate
algorithms. The better known so far has approximation ratio 4/3 and is based on the following result:

Theorem 4.6 (McDiarmid and Reed [8]). For any weigthed hexagonal graph G,

χ(G, p)≤ 4ω(G, p)+1
3

.

Proof. The weighted colouring of (G, p) with 4ωp(G)+1
3 colours is given by the following algorithm : We

first calculate the 3-colouring cT of G. We then compute ω(G, p) and set k = bω(G,p)+1
3 c. The algorithm

proceeds in two stages.
In the first stage, we use 3k colours (i, j) for i = 1,2,3 and j = 1, . . . ,k. For each vertex v, we compute

the value m(v) which is the maximum of p(u) over its neighbours u such that cT (u) = cT (v)+1 mod 3.
(These are its right, leftup and leftdown neighbours if they are present.) If v has no such neighbours then
m(v)= 0. Let r(v)= min{p(v)−k,k−m(v)}. We assign to v the colours (cT (v),1), . . . ,(cT (v),min{k, p(v)}).
Moreover, if r(v) > 0 we assign to v the colours (cT (v)+1,k−r(v)+1), . . . ,(cT (v)+1,k). By definition
of r(v) those colours are not assigned to the neighbours of v, so the colouring is proper.

9



Now let U be the set of vertices whose demand is not yet fulfilled after the first stage. Then v ∈U if
and only if p(v) > max{k,2k−m(v)}, and in this case, the number of colours that remain to be assigned
to v is p′(v) = p(v)−max{k,2k−m(v)}.

Let H be the graph induced by the vertices of U . H is triangle-free because p(v) ≥ k + 1 for every
vertex v∈U . Hence ω(H)≤ 2. In addition, for all vertex v∈U , p′(v)≤ p(v)+m(v)−2k≤ω(G, p)−2k
and for any two neighbours u and v in H, p′(u)+ p′(v)≤ ω(G, p)−2k. Hence ω(H, p′)≤ ω(G, p)−2k.

We shall prove that H is acyclic and thus bipartite. Hence by Lemma 4.4, one can assign p′(v)
colours to every vertex v of U using ω(H, p′) colours. Hence in total, we have used at most

3k +ω(H, p′)≤ ω(G, p)+ k ≤ 4ω(G, p)+1
3

colours.
Remains to prove that H is acyclic. To do so, we shall prove that in H a vertex v = (a,b) has at

most one neighbour to its right, that is among its rightup neighbour x = (a,b + 1), its right neighbour
y = (a + 1,b) and its rightdown neighbour z = (a + 1,b− 1). Since H is triangle-free, it suffices to
prove that v, x and z cannot be all three in U (and y is not in U). Suppose for a contradiction that
these three vertices are in U . Set s = min{p(x), p(z)}. Then s ≥ k + 1. Furthermore, if m(v) > 0
and u is the neighbour of v in which m(v) is attained, then v, u and either x or z form a triangle, so
p(v)+m(v)+s≤ω(G, p). Notice that this inequality is also true if m(v) = 0 because p(v)+s≤ω(G, p)
for v is adjacent to x and z. Thus we have

1≤ p′(v)≤ p(v)+m(v)−2k ≤ ω(G, p)− s−2k ≤ ω(G, p)−3k−1≤ 0

which is a contradiction.

A distributed algorithm which guarantees the 4
3 ω(G, p) bound is reported by Narayanan and Schende [11].

However, one expects to have approximate algorithms with ratios better than 4/3. In particular, Reed
and McDiarmid conjecture that, for big weights, the ratio may be decreased to almost 9/8.

Conjecture 4.7 (McDiarmid and Reed [8]). There exists a constant c such that for any weigthed hexag-
onal graph (G, p),

χ(G, p)≤ 9
8

ω(G, p)+ c.

Note that the ratio 9/8 in the above conjecture is the best possible. Indeed, consider a 9-cycle C9
with constant weight k. A colour can be assigned to at most 4 vertices, so χ(C9,k) ≥ 9k

4 . Clearly,
ω(C9,k) = 2k. So χ(C9,k) ≥ 9

8 ω(C9,k). An evidence for this conjecture has been given by Havet [5],
who proved that if a hexagonal graph G is triangle-free (i.e. has no K3) then χ(G, p)≤ 7

6 ω(G, p)+5. See
also [12] for an alternative proof and [6] for a distributed algorithm for colouring triangle-free hexagonal
graphs with 5

4 ω(G, p)+3 colours.

Exercises

Exercise 1. Let (G, l) be a unit demand instance of the channel assignment problem and m a non-negative
integer. A subset U of vertices is m-assignable if span(G〈U〉, l)≤ m. Let αm denote the maximum size
of an m-assignable set. Show that

span(G, l)≥ m×|V (G)|
αm −m−1.
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Exercise 2. Let G be a bipartite graph and p a demand function. Let pmax = max{p(v) | v ∈ V (G)} be
the maximum demand.

1. Let l be the length defined by l(uv) = 1 for all uv ∈ E(G) and l(vv) = 3 for all v ∈V (G).

a. Show that 3pmax−2≤ span(G, l, p)≤ 3pmax−1.

b. Show that span(G, l, p)≤ 3pmax−1 if and only if there are two adjacent vertices with demand
pmax.

2. Let l be the length defined by l(uv) = 1 for all uv ∈ E(G) and l(vv) = 2 for all v ∈V (G).

a. Show that 2pmax−1≤ span(G, l, p)≤ 2pmax.

b. A path in G is critical if it has an even number of vertices, the endvertices have demand pmax
and the internal vertices have demand < pmax.
Show that span(G, l, p) = 2pmax−1 if and only if for every critical path P, p(P)≤ (|V (P)|−
1)pmax− (|V (P)|−2)/2. (Gerke [4]).

Exercise 3. A bicolouring of a graph G is a colouring of (G,2), where 2 is the appropriate all 2’s
function. A t-bicolouring is a bicolouring in {1, . . . , t}.

1 Let P = (x0,x1, . . . ,xm) be a path of length m ≥ 4. Show that for any 2-subsets c0 and cm of
{1, . . . ,5}, there is a 5-bicolouring such that C(x0) = c0 and C(xm) = cm.

2 a) Show that every triangle-free hexagonal graph is 5-bicolourable.
b) Deduce that for any weighted hexagonal graph (G, p), χ(G, p)≤ 5

4 ω(G, p)+3. (Havet [5])
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