
Chapter 1

Basic concepts

All the definitions given in this section are mostly standard and may be found in several books
on graph theory like [1, 2, 3].

1.1 Graphs

A graph G is a pair (V,E) of sets satisfying E ⊂ [V ]2, where [V ]2 denotes the set of all 2-element
subsets of V . We also assume tacitly that V ∩E = /0. The elements of V are the vertices of the
graph G and the elements of E are its edges. The vertex set of a graph G is referred to as V (G)
and its edge set as E(G). An edge {x,y} is usually written as xy. A vertex v is incident with an
edge e if v ∈ e. The two vertices incident with an edge are its endvertices. An edge is said to
join or link its two endvertices. Note that in our definition of graphs, there is no loops (edges
whose endvertices are equal) nor multiple edges (two edges with the same endvertices).

Sometimes we will need to allow multiple edges. So we need the notion of multigraph
which generalises the one of graph. A multigraph G is a pair (V,E) where V is the vertex
set and E is a collection of elements of [V ]2. In a multigraph G, we say that xy is an edge of
multiplicity m if there are m edges with endvertices x and y. We write µ(x,y) for the multiplicity
of xy, and write µ(G) for the maximum of the edges multiplicities in G.

The complement of a graph G= (V,E) is the graph G with vertex set V and edge set [V ]2\E.
A graph is empty if it has no edges. A graph is complete of for all pair of distinct vertices u,v,
{u,v} is an edge. The complete graph on n vertices is denoted Kn. Trivially, the complement of
an empty graph is a complete graph.

A subgraph of a graph G is a graph H such that V (H) ⊂ V (G) and E(H) ⊂ E(G). Note
that since H is a graph we have E(H) ⊂ E(G)∩ [V (H)]2. If H contains all the edges of G
between vertices of V (H), that is E(H) = E(G)∩ [V (H)]2, then H is the subgraph induced by
V (H) = S. It is denoted G�S�. The notion of submultigraph and induced submultigraph are
defined similarly. If S is a set of vertices, we denote by G− S the (multi)graph induced by
V (G)\S. For simplicity, we write G− v rather than G−{v}. For a collection F of elements of
[V 2], we write G\F = (V (G),E(G)\F) and G∪F = (V (G),E(G)∪F). As above G\{e} and
G∪{e} are abbreviated to G\ e and G∪ e respectively. If H is a subgraph of G, we say that G
is a supergraph of H.
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Let G be a multigraph. When two vertices are the endvertices of an edge, they are adjacent
and are neighbours. The set of all neighbours of a vertex v in G is the neighbourhood of G and
is denoted NG(v), or simply N(v). The degree dG(v) = d(v) of a vertex is the number of edges
to which it is incident. If G is a graph, then this is equal to the number of neighbours of v.

Proposition 1.1. Let G = (V,E) be a multigraph. Then

∑
v∈V

d(v) = 2|E|.

Proof. By counting inc the number of edge-vertex incidence in G. On the one hand, every edge
has exactly two endvertices, so inc = 2|E|. On the other hand, every vertex v is an ednvertex of
d(v) edges, so inc = ∑v∈V d(v).

The maximum degree of G is ∆(G) = max{dG(v) | v ∈ V (G)}. The minimum degree of G
is δ(G) = max{dG(v) | v ∈ V (G)}. If the graph G is clearly understood, we often write ∆ and
δ instead of ∆(G) and δ(G). A graph is k-regular if every vertex has degree k. The average
degree of G is Ad(G) = 1

|V (G)| ∑v∈V (G) d(v) = 2|E(G)|
|V (G)| . The maximum average degree of G is

Mad(G) = max{Ad(H) | H is a subgraph of G}.
Let G be a graph. A stable set or independent set in G is a set of pairwise non-adjacent

vertices. In other words, a set S is stable if G�S� is empty. The stability number of G, denoted
α(G) is the maximum cardinality of a stable set in G. Conversely, a clique in G is a set of
pairwise adjacent vertices. In other words, a set S is a clique if G�S� is a complete graph. The
clique number of G, denoted ω(G) is the maximum cardinality of a stable set in G.

1.2 Digraphs

A multidigraph D is a pair (V (D),E(D)) of disjoint sets (of vertices and arcs) together with
two maps tail : E(D)→V (D) and head : E(D)→V (D) assigning to every arc e a tail, tail(e),
and a head, head(e). The tail and the head of an arc are its endvertices. An arc with tail u and
head v is denoted by uv and is said to leave u and to enter v; we say that u dominates v and
write u → v; we also say that u and v are adjacent. Note that a directed multidigraph may have
several arcs with same tail and same head. Such arcs are called multiple arcs. A multidigraph
without multiple arcs is a digraph. It can be seen as a pair (V,E) with a E ⊂V 2. An arc whose
head and tail are equal is a loop. All the digraphs we will consider in this monograph have no
loops.

The multigraph G underlying a multidigraph D is the multigraph obtained from D by re-
placing each arc by an edge. Note that the multigraph underlying a digraph may not be a graph:
there are edges uv of multiplicity 2 whenever uv and vu are arcs of D. Subdigraphs and submul-
tidigraphs are defined similarly to subgraphs and submultigraphs.

Let D be a multidigraph. If uv is an arc, we say that u is an inneighbour of v and that v is an
outneighbour of u. The outneighbourhood of v in D, is the set N+

D (v) = N+(v) of outneighbours
of v in G. Similarly, the inneighbourhood of v in D, is the set N−

D (v) = N−(v) of inneighbours
of v in G. The outdegree of a vertex v is the number d+

D (v) = d+(v) of arcs leaving v and the
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indegree of v is the number d−
D (v) = d−(v) of arcs entering v. Note that if D is a digraph then

d+(v) = |N+(v)| and d−(v) = |N−(v)|. The degree of a vertex v is d(v) = d−(v)+ d+(v). It
corresponds to the degree of the vertex in the underlying multigraph.

Proposition 1.2. Let D = (V,E) be a digraph. Then

∑
v∈V

d+(v) = ∑
v∈V

d−(v) = |E|.

The maximum outdegree of D is ∆+(D) = max{d+(v),v ∈V (D)}, the maximum indegree of
D is ∆−(D) = max{d−(v),v ∈V (D)}, and the maximum degree of D is ∆(D) = max{d(v),v ∈
V (D)}. When D is clearly understood from the context, we often write ∆+, ∆− and ∆ instead
of ∆+(D), ∆−(D) and ∆(D) respectively.

The converse of the digraph D=(V,E) is the digraph D=(V (D),E) where E = {(v,u) | (u,v)∈
E}. A digraph D is symmetric if D = D.

An orientation of a graph G is a digraph D obtained by substituting each edge {x,y} by
exactly one of the two arcs (x,y) and (y,x). An oriented graph is an orientation of graph.

1.3 Walks, paths, cycles

Let G be a multigraph. A walk in G is a finite (non-empty) sequence W = v0e1v1e2v2 . . .ekvk
alternating vertices and edges such that, for 1 ≤ i ≤ k, vi−1 and vi are the endvertices of ei.
The vertex v0 is called start of W and vk terminus of W . They both are endvertices of W . The
vertices vi,1 ≤ i ≤ k−1 are the internal vertices. One says that W links v0 to vk and that W is a
(v0,vk)-walk.

Let A and B be to set of vertices. An (A,B)-path is a path whose start is in A, whose end
is in B and whose internal vertices are not in A∪B. We usually abbreviate ({a},B)-path to
(a,B)-path, (A,{b})-path to (A,b)-path and ({a},{b})-path to (a,b)-path.

If W1 = u0e1u1e2u2 . . .epup and W2 = v0 f1v1 f2v2 . . . fqvq are two walks such that up = v0, the
concatenation of W1 and W2 is the walk u0e1u1e2u2 . . .epup f1v1 f2v2 . . . fqvq. The concatenation
of k walks W1, . . . ,Wk such that for all 1 ≤ i ≤ k− 1 the terminus of Wi is the start of Wi+1 is
then defined inductively as the concatenation of W1 and the concatenation of W2, . . . ,Wk.

If G is a graph, then the walk W is entirely determined by the sequence of its vertices. Very
often, we will then denote W = (v0,v1, . . . ,vk). The length of W is k, which is its number of
edges (with repetitions). A walk is said to be even (resp. odd) if its length is even (resp. odd).

A walk whose start and terminus are the same vertex is closed. A walk whose edges are all
distinct is a trail. A closed trail is a tour. A walk whose vertices are all distinct is a path and a
walk whose vertices are all distinct except the start and the terminus is a cycle. Observe that a
path is necessarily a trail and a cycle is a tour.

A path may also be seen as a non-empty graph P = (V,E) of the form V = {x0,x1, . . . ,xk}
and E = {x0x1,x1x2, . . . ,xk−1xk} where the vertices xi are all distinct. Similarly, a cycle may be
seen as a non-empty graph C =(V,E) of the form V = {x0,x1, . . . ,xk} and E = {x0x1,x1x2, . . . ,xk−1xk,xkx0}
where the xi are all distinct.
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Proposition 1.3. Let G be a multigraph.

(i) There is a (u,v)-walk in G if and only if there is a (u,v)-path.

(ii) An edge is in a closed trail if and only if it is in a cycle.

(iii) There is an odd closed walk, if and only if there is an odd cycle.

Proof. (i) Let P= v0e1v1e2v2 . . .ekvk be a shortest (u,v)-walk. Then P is a path. Indeed suppose
for a contradiction that there exists i < j such that vi = v j. Then v0e1 . . .eivie j+1 . . .ekvk is a
(u,v)-walk shorter than P, a contradiction.

(ii) Let C = ve1v1e2v2 . . .ekv be a shortest closed trail. Then C is a cycle. Indeed suppose
for a contradiction that there exists 1 ≤ i < j < k such that vi = v j. Then v0e1 . . .eivie j+1 . . .ekv
is a (u,v)-trail shorter than C, a contradiction.

(iii) Let C = ve1v1e2v2 . . .ekv be a shortest odd closed walk. Then C is an odd cycle.
Indeed suppose for a contradiction that there exists 1 ≤ i < j < k such that vi = v j. Then
v0e1 . . .eivie j+1 . . .ekv and viei+1 . . .e jv j are shorter closed walks than C. But the sum of the
lengths of these two walks is the length of C and so is odd. So, one of the lengths is odd, a
contradiction.

The distance between two vertices u and v in a multigraph is the length of a shortest (u,v)-
walk or +∞ if such a walk does not exists. It is denoted distG(u,v), or simply dist(u,v) if G
is clearly understood from the context. The proof of (i) in the above proposition shows that a
shortest (u,v)-walk (if one exists) is a (u,v)-path.

The word ”distance” is well chosen because dist is a distance in the mathematical sense, that
is a binary relation which is symmetric (for all u,v ∈ V (G), dist(u,v) = dist(v,u)) and which
satisfies the triangle inequality: for all u,v,w ∈ V (G), dist(u,w) ≤ dist(u,v)+ dist(v,w). See
Exercise 1.12.

In multidigraphs, a directed walk is a finite (non-empty) sequence W = v0e1v1e2v2 . . .ekvk
alternating vertices and arcs such that, for 1 ≤ i ≤ k, vi−1 is the start and vi the terminus of ei.
Directed trail, directed tour, directed path and directed cycle are then defined similarly to trail,
tour, path and cycle. Clearly, Proposition 1.3 has its analog for digraphs. Its proof is left in
Exercise 1.11.

Proposition 1.4. Let D be a multidigraph.

(i) There is a directed (u,v)-walk in D if and only if there is a directed (u,v)-path.

(ii) An edge is in a closed directed trail if and only if it is in a directed cycle.

(iii) There is an odd closed directed walk, if and only if there is an odd directed cycle.

The distance between two vertices in a multidigraph is defined analogously to the distance
in a mutigraph. However, it is no more a distance in the mathematical sense because it is not
symmetric. However it satisfies the triangle inequality. See Exercise 1.12.
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1.4 Connectivity and trees

A graph G is connected if for any two vertices u,v, there exists a (u,v)-path in G.

Proposition 1.5. Let G be a graph and x a vertex of G. The graph G is connected if and only if
for any vertex u in G, there is a (u,x)-path.

The connected components of a graph are its maximal connected subgraph.
A graph with no cycle is a forest. It is also said to be acyclic. A connected forest is a tree.

The leafs of a tree T are the vertices of degree at most 1.

Proposition 1.6. Let G be a graph. If δ(G)≥ 2 then G has a cycle.

Proof. Let P = (v1,v2, . . . ,vk) be a path of maximal length. Since v1 has degree 2 it is adjacent
to a vertex w �= v2. The vertex w is in P otherwise (w,v1,v2, . . . ,vk) would be a longer path than
P. Thus w = v j for some j > 2 and so (v1,v2, . . . ,v j,v1) is a cycle.

Proposition 1.6 implies that every forest has at least one leaf. In fact, it implies that every
forest has at least two leaves.

Corollary 1.7. Every forest on at least two vertices has at least two leaves.

Proof. By induction on the number of vertices, the result holding trivially for the two forests on
two vertices.

Let F be a tree on n vertices, with n ≥ 3. By Proposition 1.6, F has at least one leaf x. The
graph F − x is a forest on n−1 vertices. By the induction hypothesis, it has two leaves y1 and
y2. One of these two vertices, say y, is not adjacent to x since d(x)≤ 1. Hence y is also a leaf of
F .

Corollary 1.8. For every tree T we have |E(T )|= |V (T )|−1.

Proof. By induction on the number of vertices of T , the result holding trivially if T is the unique
tree on one vertex (K1).

Let T be a tree on at least two vertices. By Corollary 1.7, T has a leaf x. Since T is
connected, x has degree at least one, so d(x) = 1. Thus, |E(T − x)| = |E(T )|− 1. By the
induction hypothesis, |E(T − x)| = |V (T − x)|− 1 = |V (T )|− 2. Hence, |E(T )| = |V (T )|−
1.

Proposition 1.9. Let T be a graph. Then the following four statements are equivalent:
(i) T is a tree;
(ii) for any two vertices u,v of T , there exists a unique (u,v)-path;
(iii) T is connected-minimal, i.e. T is connected and T \e is not connected for all e ∈ E(T );
(iv) T is acyclic-maximal, i.e. T is acyclic but T ∪ xy has a cycle for any pair {x,y} of

non-adjacent vertices in T .
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Proof. (i)⇒(ii): By the contrapositive. Suppose that there exist two distinct (u,v)-paths P =
(p1, p2, . . . , pk) and Q = (q1,q2, . . . ,ql). Let i be the smallest index such that pi+1 �= qi+1 and
let j be the smallest integer greater than i such that p j ∈ {qi+1,qi+2, . . . ,ql}. Let j� be the index
for which q j� = p j. Then (pi, pi+1, . . . , p j,q j�−1,q j�−2, . . . ,qi) is a cycle.

(ii)⇒(iii): If there exists a unique path between any two vertices, then T is connected. Let
e = xy be an edge. Then (x,y) is the unique (x,y)-path in T . Thus T \ e contains no (x,y)-path
and so T is not connected. Hence T is connected-minimal.

(iii)⇒(i): By the contrapositive. Suppose that T is not tree. If T is not connected then it
is not connected-minimal. Thus we may assume that T is connected and so T contains a cycle
C. Let e be an edge of C. Let us show that T \ e is connected which implies that T is not
connected-minimal. Let x and y be two vertices. Since T is connected there is an (x,y)-path P
in T . If P does not contain e then it is also a path in T − e. If P contains e then replacing e by
C \ e in P, we obtain an (x,y)-walk in T \ e. By Proposition 1.3, there is an (x,y)-path in T \ e.

(i)⇒(iv): If T is a tree then it is acyclic. Let us show that it is acyclic-maximal. Let x and
y be two non-adjacent vertices. Then in T there is an (x,y)-path P since T is connected. The
concatenation of P and (y,x) is a cycle in T ∪ xy.

(iv)⇒(i): By the contrapositive. Suppose that T is not a tree. If it is not acyclic then it is not
acyclic-maximal. Thus we may assume that T is not connected. So there are two vertices x and
y for which there is no (x,y)-path in T . Let us show that T ∪ xy is acyclic which implies that
T is not acyclic-maximal. Indeed if there were a cycle C, then it must contain xy because T is
acyclic. Then C \ xy would be an (x,y)-path in T , a contradiction.

A subgraph H of a graph G is spanning if V (H) =V (G).

Corollary 1.10. A graph G is connected if and only if it has a spanning tree.

Proof. By induction on the number of edges of G. If G is connected-minimal, then by Propo-
sition 1.9, G is a tree and thus a spanning tree of itself. If G is not connected-minimal, then by
definition there is an edge e such that G\ e is connected. By the induction hypothesis, G\ e has
a spanning tree which is also a spanning tree of G.

1.5 Strong connectivity and handle decomposition

A digraph is strongly connected or strong if for any two vertices u,v there is a directed (u,v)-
path. Observe that swapping u and v implies that there is also a directed (v,u)-path. The strongly
connected components of a digraph G are its maximum strongly connected subgraphs.

The following proposition follows easily from the definition.

Proposition 1.11. Let D be a strongly connected digraph. Then every arc is in a directed cycle.

Proof. Let uv be an arc. Since D is strongly connected then there is a directed (v,u)-path in D.
Its concatenation with (u,v) is a directed cycle containing uv.



1.6. EULERIAN GRAPHS 15

Definition 1.12. The union of two digraphs D1 and D2 is the digraph D1∪D2 defined by V (D1∪
D2 =V (D1)∪V (D2) and E(D1 ∪D2) = E(D1)∪E(D2).

Let D be a digraph and H be a subdigraph of D. A H-handle is a directed path or cycle
(all vertices are distinct except possibly the two endvertices) such that its endvertices are in
V (H) and its internal vertices are in V (D)\V (H). A handle decomposition of D is a sequence
(C,P1, . . . ,Pk) such that:

• C = D0 is a directed cycle;

• for all 1 ≤ i ≤ k, Pi is a Di−1-handle and Di = Di−1 ∪Pi;

• Dk = D.

The following proposition follows easily from the definitions.

Proposition 1.13. Let H be a strongly connected subdigraph of D. For any H-handle P, then
H ∪P is strongly connected.

Proof. Left in Exercise 1.25

Since every strongly connected digraph contains a directed cycle (Proposition 1.11), an easy
induction immediately yields the following.

Corollary 1.14. Every digraph admitting a handle decomposition is strongly connected.

The converse is also true: every strongly connected digraph admits a handle decomposition.
In addition, it has a handle decomposition starting at any directed cycle.

Theorem 1.15. Let D be a strongly connected digraph and C a directed cycle in D. Then D has
a handle decomposition (C,P1, . . . ,Pk).

Proof. Let H be the subdigraph of D that admits a handle decomposition (C,P1, . . .Pk) with
the maximum number of arcs. Since every arc xy in E(D) \E(H) with both endvertices in
V (H) is a H-handle, H is an induced subdigraph of D. Assume for a contradiction that H �= D.
Then V (H) �= V (D). Since D is strongly connected, there is an arc vw with v ∈ V (D) and
w ∈V (D)\V (H). Since D is strongly connected, D contains a (w,H)-path P. Then, (v,w,P) is
a H-handle in D, contradicting the maximality of H.

1.6 Eulerian graphs

A trail in a graph G is eulerian G if it goes exactly once through every edge of G. A graph is
eulerian if it has an eulerian tour.

Theorem 1.16 (Euler 1736). A connected graph is eulerian if and only if all its vertices have
even degree.
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Proof. The condition can easily seen to be necessary. Indeed if a vertex appears k times (or
k+1 if it appears as start and terminus) of an eulerian tour, it is incident to exactly 2k edges in
the tour and so it has degree 2k.

Let us now show that the condition is sufficient. The proof follows the lines of the following
algorithm.

Algorithm 1.1.

1. Initialise W := v for an arbitrary vertex v.

2. If all the edges of G are in W then return W .

3. If not an edge is not in W = v0e1v1 . . .elvl ,

4. If an edge incident to vl , say e = vlvl+1 is not in W , then W := v0e1v1 . . .elvlevl+1; go to 2.

5. If not all the edges incident to vl are in W . Since there is an even number of them, v0 = vl .
Then G has an edge e /∈W incident to a vertex vi in W , for it is connected. Let e = viu be
this edge.
W := viei+1vi+1 . . .elvle1v1 . . .eivieu; go to 2.

1.7 Exercises

Exercise 1.1. Show that Kn, the complete graph on n vertices, has
�n

2
�

edges.

Exercise 1.2. Build a cubic graph with 11 vertices. (cubic: d(v) = 3 for all vertex v.)

Exercise 1.3. Show that every graph has two vertices of same degree.

Exercise 1.4. Let G be a graph on at least 4 vertices such that for every vertex v, G−v is regular.
Show that G is either a complete graph or an empty graph.

Exercise 1.5. Let n and k be two integers such that n > k and H be a graph on n vertices. Show
that if |E(H)|> (k−1)(n− k/2) then H has a subgraph of minimum degree at least k.

Exercise 1.6 (Jealous husbands).
Three jealous husbands and their wives want to cross a river. But they just have a small boat
in which at most two persons can fit. None of the husbands would allow his wife to be with
another man unless he is present. Draw the graph of all the possible distributions across the
river and advice the walkers on the method to cross the river.

Exercise 1.7 (Dog, goat, cabbage).
A man wants to cross a river with his dog, his goat and his (huge) cabbage. Unfortunately, the
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man can cross the river with at most one of them. Furthermore, for obvious reasons, the man
cannot leave alone on one bank neither the goat and the dog nor the cabbage and the goat. Draw
the bipartite graph of all permissible situations. How does the man do to cross the river?

Exercise 1.8. Let u and v be two vertices of a graph G. Show that, if u and v have odd degree
and all the other vertices have even degree, then there is a (u,v)-path in G.

Exercise 1.9. Show that in a graph two paths of maximum length have a vertex in common.

Exercise 1.10. Find what is wrong in the following statement: An edge is in a closed trail if
and only if it is in a cycle.

Exercise 1.11. Show Proposition 1.4.

Exercise 1.12. 1) Show that of G is a multigraph then distG is symmetric and satisfies the
triangle inequality.

2) Show that of D is a multidigraph then distD satisfies the triangle inequality but may be
non-symmetric.

Exercise 1.13. Let D be a digraph without directed cycles. Show that D has a vertex with
indegree zero.

Exercise 1.14. Let G = (V,E) be a graph. Show the following.
(1) If |E|≥ |V | then G contains a cycle.
(2) If |E|≥ |V |+4 then G contains two edge-disjoint cycles.

Exercise 1.15. Let G be a graph of minimum degree at least 3. Show that G contains an even
cycle.

Exercise 1.16. Let G be a connected graph. Show that there exists an orientation of G such that
the outdegree of every vertex is even if and only if G has an even number of edges.

Exercise 1.17. Let G be a graph. Its diameter is the maximum distance between two vertices.

1) Show that if G has a diameter at least 3 then its complement G has diameter at most 3.

2) Deduce that every self-complementary graph (G = G) has diameter at most 3.

3) For k = 1,2,3, give an example of a self-complementary graph with de diameter k.

Exercise 1.18. Let T be a tree on at least two vertices. Show that if T has no vertex of degree
2 then T has at least |V (T )|/2+1 leaves.

Exercise 1.19 (Helly property for trees). Let T1, . . . ,Tk be subtrees if a tree T . Show that if
Ti ∩Tj �= /0 for all i, j, then

�k
i=1 Ti �= /0.

Exercise 1.20. Is the complement of a non-connected graph always connected?
Is the complement of a connected graph always non-connected?
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Exercise 1.21. 1) Show that every connected graph G has a vertex x such that G−x is connected.
2) Does the same hold for strongly connected digraphs?

Exercise 1.22. A graph is cherry-free if every vertex has at most one neighbour of degree 1.
Prove that a connected cherry-free graph has two adjacent vertices u and v such that G−{u,v}
is connected.
Hint: Consider a path of maximum length.

Exercise 1.23. Let G be a connected graph and (V1,V2, . . . ,Vn) a partition of V (G) such that
G�Vi� is connected for all 1 ≤ i ≤ n. Show that there exists two indices i and j such that G−Vi
and G−Vj are connected.

Exercise 1.24. The aim of this exercise is to prove that if a graph has n vertices, m edges and k
connected components then n− k ≤ m ≤ 1

2(n− k)(n− k+1).
1) Let G be a graph on n vertices with m edges and k connected components.

a) Show that if G is connected then m ≥ n−1.

b) Deduce that if G has k connected components then m ≥ n− k.

2) Suppose now that G is a graph on n vertices and k connected components with the maximum
number of edges.

a) Show that all the connected components of G are complete graphs.

b) Show that if G has (at least) two connected components then one of them has a unique
vertex.

c) Deduce that G has 1
2(n− k)(n− k+1) edges.

Exercise 1.25. Prove Proposition 1.13.

Exercise 1.26. Let D be a strongly connected digraph and D� a strongly connected subdigraph
of D. Show that any handle decomposition (C,P1, . . . ,Pk) of D� may be extended into a handle
decomposition (C,P1, . . . ,Pk, . . . ,Pl) of D.

Exercise 1.27. Let D be a strongly connected digraph of minimum outdegree 2. Prove that
there exists a vertex v such that D− v is strongly connected.

Exercise 1.28. Show that a graph has an eulerian trail if and only if it has zero or two vertices
of odd degree.

Exercise 1.29. Let G = (V,E) be a graph such that every vertex has even degree and |E|≡ 0[3].
Prove that E can be partitionned into l = |E|

3 sets E1, . . . ,El such that for all 1 ≤ i ≤ l, the graph
induced by Ei is either a path of length 3 or cycle of length 3.
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