
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 5, OCTOBER 2009 1467

Distributed Link Scheduling With Constant Overhead
Loc X. Bui, Sujay Sanghavi, and R. Srikant, Fellow, IEEE

Abstract—This paper proposes a new class of simple, distributed
algorithms for scheduling in multihop wireless networks under the
primary interference model. The class is parameterized by integers

. We show that algorithm of our class achieves
of the capacity region, for every . The algorithms have small
and constant worst-case overheads. In particular, algorithm gen-
erates a new schedule using a) time less than round-trip
times between neighboring nodes in the network and b) at most
three control transmissions by any given node for any . The con-
trol signals are explicitly specified and face the same interference
effects as normal data transmissions. Our class of distributed wire-
less scheduling algorithms are the first ones guaranteed to achieve
any fixed fraction of the capacity region while using small and con-
stant overheads that do not scale with network size. The param-
eter explicitly captures the tradeoff between control overhead
and throughput performance and provides a tuning-knob protocol
designers can use to harness this tradeoff in practice.

Index Terms—Congestion control, distributed algorithms,
matchings, multihop, primary interference, wireless networks
scheduling.

I. INTRODUCTION

T HIS PAPER presents novel distributed algorithms for
scheduling of transmissions in multihop wireless net-

works. The algorithms represent the first instance in which any
arbitrary fraction of the capacity region can be achieved with
constant overhead, independent of the size of the network but
possibly dependent on the chosen fraction. In addition, our
algorithms are very simple. We now motivate our work and
summarize our contributions.

The task of wireless scheduling is challenging due to the
simultaneous presence of two characteristics: interference
between transmissions and the need for practical distributed
implementation. Interference effects result in a fundamental
upper limit on the data rates that any scheduling algorithm—dis-
tributed or otherwise—can hope to achieve. This fundamental
limit, or capacity region, serves as a benchmark against which
the performance of various distributed scheduling algorithms
can be compared.

In practice, the need for distributed implementation invari-
ably leads to an overhead, as the same resources that could have

Manuscript received January 13, 2008; revised September 06, 2008 and De-
cember 15, 2008; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor S. Borst. First published May 26, 2009; current version published Oc-
tober 14, 2009. This work was supported by a Vodafone fellowship, NSF Grant
CCF 06-34891 and Grant CNS 07-21286, and the DARPA CBMANET Project.
An earlier version of this paper appeared in the Proceedings of ACM SIGMET-
RICS, June 2007.

L. X. Bui is with Airvana Inc., Chelmsford, MA 01824 USA (e-mail:
locbui@ifp.uiuc.edu).

R. Srikantis is with the Department of Electrical and Computer Engineering
and Coordinated Science Laboratory, University of Illinois at Urbana-Cham-
paign, Urbana, IL 61801 USA (e-mail: rsrikant@illinois.edu).

S. Sanghavi is with the School of Electrical and Computer Engi-
neering, Purdue University, West Lafayette, IN 47907 USA (e-mail: sang-
havi@purdue.edu).

Digital Object Identifier 10.1109/TNET.2009.2013621

Fig. 1. Each scheduling cycle is divided into a control part and a data part.
The control part consists of phases—each phase being the length of a
round-trip between neighbors—after which a new set of active links will be
decided. This new set is active for the data part of the cycle. The whole process
is repeated in the next cycle with updated queues. counts the cycle number.

been used for data transmission have to, instead, be wasted on
control signals in an effort to combat interference. Most of the
currently proposed scheduling algorithms, which we survey and
compare in Section II, do not explicitly take overheads into ac-
count. As a result, it may be the case (especially for large net-
works) that after using a large—and unaccounted for—portion
of resources for control signaling, the algorithms perform well
with regards to the benchmark in the remaining portion used for
data transmission.

In our paper, we carefully take overheads into account a priori
in the performance evaluation. For our algorithms it is clear:
1) how efficiently the overall wireless resources are utilized;
2) what is the tradeoff between scheduling performance and
control overhead; and 3) how a system designer can choose his
or her operating point on this tradeoff. These three aspects are
elaborated below after a brief description of our results.

We are not the first to recognize the need for protocols
with constant overheads. Some recent pieces of work [1]–[3]
also propose constant-overhead algorithms. Their results and
approaches are summarized and compared to ours in Section II.
These existing constant-overhead algorithms can guarantee at
most half of the capacity region (in the portion of resources
dedicated to data transmission) and essentially involve using
enhanced contention resolution as a way to approximate max-
imal matching in constant time. As opposed to these protocols,
our algorithms can capture any desired fraction of the capacity
region (in the data transmission part) and do not attempt en-
hanced contention resolution.

In this paper, we assume the “node exclusive” or “primary”
interference model. In this model any node in the network can
communicate with at most one other node at any time. This is
an important model with a rich history of dedicated work, which
we survey in Section II.

In our algorithms, bandwidth is assumed to be fixed and time
is divided into scheduling cycles, with a new schedule generated
by the algorithm in every cycle. As in other papers in this area,
the length of a cycle is left to the protocol designer. Our algo-
rithms partition each cycle into two parts: a scheduling (control
signaling) part and a service (data-transmission) part. Fig. 1 de-
picts this partition. The partitioning of the scheduling cycle thus

1063-6692/$26.00 © 2009 IEEE

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 15, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

1468 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 5, OCTOBER 2009

explicitly captures the wastage in control signaling: The fraction
of resources wasted is the ratio of the length of the control part
to the length of the overall cycle.

At the heart of our algorithm is a scheduler that generates a
new schedule based on the queue lengths. For a parameter value

, the scheduler requires that the length of the scheduling part be
round-trip times, where one round-trip time is the amount

of time required for a node to make a very basic two-way hand-
shake with a neighboring node. Also, in any scheduling cycle
and for any , the algorithm requires that each node transmit at
most three control signals, and the size of each control signal is
independent of network size.

Congestion control and routing algorithms are built on top of
this scheduler and control the number and identity of the packets
injected into the network. The congestion controller for a mul-
tihop flow operates only based on the queue length at the source
of the flow.

This algorithm with parameter is guaranteed to achieve a
fraction of the capacity region during the data part of the
cycle for any network and its associated flows. A larger value
of requires a longer absolute length of the control part and, in
return, guarantees better performance in the data part, as explic-
itly detailed above. Thus, captures the overhead-performance
tradeoff and is a tunable knob that the protocol designer can use
to optimize performance, with respect to other system consid-
erations.

One such consideration that has a direct bearing on the ap-
propriate choice of is the length of the scheduling cycle. This
is usually determined by the physical conditions (e.g., mobility,
data rates, etc.) that the network is expected to operate under. If
long cycles are determined to be feasible—where “long” is as
compared to the round-trip time—it may make sense to choose a
protocol with larger . Conversely, short scheduling cycles may
favor a small- implementation. The choice of the parameter
may depend on network characteristics like mobility and arrival
statistics; however, it does not depend on network size.

II. BACKGROUND AND EXISTING WORK

Scheduling in the presence of interference constraints is a
central problem in communication networks. In this summary,
we will mainly concentrate on the work involving primary inter-
ference constraints, also known as the “node-exclusive” model
in wireless networks. Primary interference constraints arise both
in wireless networks and input-queued crossbar switches in In-
ternet routers, and the results of the papers listed below are often
of interest in both applications. In the following, “complexity”
refers to the number of operations/amount of time that has to be
spent every time a new schedule has to be found.

Hajek and Sasaki [4] introduced the primary interference
model, which they studied in the wireless context and for fixed
given arrivals. Tassiulas and Ephremides [5] were the first to
consider stochastic arrivals in general interference models, of
which primary interference is a special case. They characterized
the maximum attainable capacity region and also presented a
centralized algorithm guaranteed to achieve it. In the case of
primary interference, this algorithm boils down to finding max-
imum weight matchings (with queue lengths being weights).
This algorithm thus has complexity. McKeown et al. [6]
also showed the same result for switches.

The need for speedy implementation and low overhead
spurred the development of algorithms with lower complexity
(but possibly higher delays). Tassiulas [7] studied randomized
centralized algorithms that achieve the capacity region with

complexity. This algorithm samples a new candidate
matching uniformly from the set of all matchings and switches
schedules to this new sample if and only if it represents a
larger weight. For the case of switches, this algorithm was
derandomized by Giaccone et al. [8].

Weller and Hajek [9] showed that any algorithm that uses
a maximal matching in every time slot can achieve half the
capacity region. They showed this result for deterministically
upper-constrained traffic. Dai and Prabhakar [10] showed the
same performance holds for stochastic packet arrivals as well.
Lin and Shroff [11] extended this result to the case of flow
arrivals and departures. For tree topologies, Sarkar and Kar
[12] presented a sequential maximal scheduling algorithm that
achieves 2/3 of the capacity region.

Recently, distributed algorithms achieving the entire capacity
region have been proposed (see, e.g., [13]–[16]). This guarantee,
of course, refers to the scheduling efficiency with regards to data
transmission since these papers do not account for resources
used in overheads. Also, these protocols have overheads that
grow with network size.

All of the above algorithms involve complexities that grow
with network size. In some more recent work, scheduling al-
gorithms with constant overheads have been proposed. Lin and
Rasool [1] showed that close to 1/3 of the capacity region can
be achieved with , i.e., constant, overhead. Gupta et al. [2]
and Joo and Shroff [3] build on this result to achieve close to
1/2 of the capacity region with constant overheads. These algo-
rithms attempt to generate (approximately) maximal matchings
in every time slot using local contention algorithms that termi-
nate in time. Our approach in this paper is thus different
from these papers, as we do not attempt to resolve contention.
Furthermore, some recent developments have pushed in the di-
rections of multihop traffic, e.g., [17], or more general interfer-
ence constraints, e.g., [18]–[20].

III. SYSTEM MODEL

We formally describe our system model, which is now stan-
dard in the literature. A wireless network is represented by a
graph, where is the set of nodes and is
the set of links. If a link is in then it is possible to
transmit packets from node to node subject to the interfer-
ence constraints that will be described shortly. We assume that
time is slotted, denoted by . Let be the fixed capacity of
link which is the number of packets per time slot
that can be transferred over that link. Also, let denote the
maximum number of links in any path or cycle in the network.
Since and are finite, is a finite integer.

We let be the set of flows that share the network resources.
For each flow let and denote the source and
destination of respectively. Let us define as the set of des-
tination nodes in the network, i.e.,
for some . For each pair where
and let be the set of flows with source and
destination i.e., .

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 15, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

BUI et al.: DISTRIBUTED LINK SCHEDULING WITH CONSTANT OVERHEAD 1469

At each node, a queue is maintained for each destination.1 We
let denote the length of the queue maintained at node and
storing packets that are destined to node at the beginning of
time slot .

We assume that each flow has a utility function associated
with it. The utility function of flow denoted by , is
defined as a function of the data rate sent by flow and assumed
to be strictly concave, nondecreasing, and twice differentiable.

We now describe the node-exclusive spectrum sharing model,
also referred to as the primary interference model, assumed in
this paper. Under this interference model, a node only commu-
nicates with at most one other node in any time slot. This means
that the set of simultaneously active links is constrained to be a
matching in . We let be the binary vector of length that
denotes the set of active links at time with the convention that

if and only if link is active for transmission at
time . We introduce the notation to distinguish packets
destined to different destinations: At time slot if
link serves packets destined to node and ,
otherwise. Hence

Let be the set of all possible
matching vectors in . The capacity (or stability) region

of the network is defined as the set of flow rates that are
supportable by the network. It is known (in [5] and [21]) that
this region is given by the set of vectors for
which there exists for all and
such that we have the following.

C1) For all and

C2)
where denotes the convex hull of the set . Notice that
condition C1) is the flow conservation constraint at each node,
and condition C2) captures the interference constraints.

IV. ALGORITHMS AND RESULTS

Given the above model, a natural goal is to find the optimal
network resource allocation, i.e., to find the mean flow rate
vector satisfying

(1)
The strict concavity assumption of the utility functions implies
that is unique. Now, let us describe an appropriate suboptimal
solution to the optimization problem (1). Specifically, for any

we define the set as follows:

1Our results can be easily adapted to the case when each flow has a fixed route
in the network. In that case, each node maintains a queue for each flow going
through it.

The set can be viewed as the resulting set of flow rates when
one takes only a “fraction” of the capacity region. Then, the

-suboptimal solution is defined as the optimal solution
to the following optimization problem:

(2)
In this paper, we propose a joint congestion control, routing,

and scheduling mechanism that achieves the -suboptimal so-
lution for any given (see Theorem 2). Cru-
cially, it does so while ensuring that the time/overhead taken to
generate a new schedule for each slot is constant, independent
of the size of the network but dependent on . Specifically, the
overhead of the algorithm is , independent of the size

of the network.
We now present our main algorithms and results.

A. Routing and Scheduling

At time slot we define the -differential backlog for at
link as

where is a system parameter which is positive. The weight of
link at time slot is defined as

(3)

Note that by letting we get back to the differential
backlog weight that is usually used in the literature. Hence, the
weight form that we consider here is more general. It is moti-
vated by the recent work of Shah and Wischik [22] in the con-
text of switches showing that if we use the maximum-weight
matching (MWM) algorithm with weights being in a similar
“ -form,” then the delay performance will be improved as
decreases to zero.

Let be the vector of link weights
and be the old matching used in the previous time slot.
Also, let denote the optimal matching corresponding
to the weight vector i.e.,

It is well known that if the matching is used at each
step, then the resulting network throughput is optimal. How-
ever, computing is computationally prohibitive. (The
worst-case complexity is [23], and it requires a central-
ized authority.) Thus, in Section V, we present an algorithm that
approximates the maximum weight matching with a certain
probability. This algorithm has low overhead and complexity
and can be implemented in distributed manner. It is parameter-
ized by a parameter that provides a tradeoff between perfor-
mance and overhead.

Let be the matching determined by our algorithm. When
the matching is determined, if link is scheduled (i.e.,

), then in the next time slot, packets of the com-
modity that attains the maximum in (3) will be transmitted
over link . The main result of the paper is the following
theorem that establishes the properties of our scheduling algo-
rithm.

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 15, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

1470 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 5, OCTOBER 2009

Theorem 1: In any time slot and for any values of
there exists a such that the matching

augmentation scheduling algorithm, operating using a fixed
, generates a matching with the following properties.

• The weight of new matching is larger than or equal to
the weight of old matching , i.e.,

(4)

• If , then with probability, at least is
an optimal weight matching corresponding to the weight
vector i.e.

• If , then with probability at least has
weight at least fraction of the optimal weight

• The overhead in deriving a new schedule is round-
trip times.2

We will prove this theorem in Section VI.

B. Congestion Control

At the beginning of time slot each flow, say has access
to the queue length of their first nodes, i.e., . Then, the
instantaneous mean data rates of flow is set as follows:

where , which is chosen to be large enough, represents the
largest possible value of the flow rates. The positive constant
will be used to guarantee convergence of the achieved rates to
the fair allocation. In particular, we are interested in the perfor-
mance of the system for large .

Each source has to convert the instantaneous mean data rate
determined by the congestion controller into a packet injection
rate. While the instantaneous rate could be a nonnegative real
number, the number of packets injected into the network has
to be a nonnegative integer that could be determined by some
complicated mechanism that converts rates to packets. Instead
of modeling this conversion, at each time slot the number of
arrivals for flow is assumed to be a Poisson random variable
with mean . The Poisson assumption is not important; any
distribution with finite variance would work as well. This as-
sumption can be easily relaxed in a number of ways without
affecting our main conclusions.

C. Fair Resource Allocation

Theorem 1 naturally allows us to establish the following prop-
erty of the joint congestion control, routing, and scheduling al-
gorithm.

Theorem 2: For any given , if the joint conges-
tion control, routing, and scheduling algorithm described above
is used with parameter , then the queues in the network

2One round-trip time is the amount of time it takes for a pair of neighbors in
the network to execute a basic two-way handshake.

Fig. 2. An illustration of the augmenting process.

are stable (i.e., the Markov chain of queue occupancies is posi-
tive recurrent), and the source rates satisfy

where and are finite
constants. Also, if , then the above expression
also holds for .

Proof: Theorem 2 is a consequence of Theorem 1 and can
be established along the lines of the proofs in [15] and [24]–[27].
The reader is also referred to the related work in [28]. For details,
see Appendix A.

V. THE MATCHING AUGMENTATION SCHEDULING ALGORITHM

In this section, we present our algorithm for determining the
new schedule from . To do so, we will need a
few simple definitions. In the following, we will abuse notation
by letting denote the matching as well as the associated binary
vector of length : if and only if link is in the
matching .

Recall that, in , no two adjacent links can be active. An aug-
mentation of a matching is a path or cycle in which every
alternate link is in , with the property that if all links in are
removed from and all links in are added3 to , then the
resulting set of links will remain a matching in . This process
of changing using is called augmenting with , and the
resulting augmented matching is denoted by . The process
is illustrated in Fig. 2.

The bold lines in the left-most figure indicate links in
, the existing matching. The dotted lines in the central figure

indicate the links in augmentation . The bold-dotted lines are
in , and the thin-dotted lines are in . The
bold lines in the last figure are the links in ,
the new matching obtained by augmenting with .

The size of augmentation is the number of links in
. Two augmentations, and , are disjoint if they have

no common links. This implies that can be simultaneously
augmented by and and still be a valid matching. is
a set of disjoint augmentations if every pair in is disjoint.
Clearly, if is a set of disjoint augmentations, then
will be a matching in .4 Finally, for any time , the gain of
an augmentation to is defined as

(5)
Hence, represents the change in the weight of
if it is augmented by . Similarly, the gain of a set of disjoint

3Here, denotes the set of links in but not in .
4 is augmented by every . The fact that the augmentations

are disjoint means that this can be done in any order.

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 15, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

BUI et al.: DISTRIBUTED LINK SCHEDULING WITH CONSTANT OVERHEAD 1471

Fig. 3. Augmentation building in our algorithm (Example 1). The indicates
active nodes. Dashed lines are links are in . Bold lines in the first 5 graphs are
links in , and in the last graph are links in . indicates
terminus.

augmentations is the sum of the gains of each augmentation in
that set. Here, the weights are as defined in (3).

Our algorithm, with parameter value , can be summarized as
follows: Build a random set of disjoint augmentations to ,
each of size at most , and switch the ones with positive
gain.5

In our algorithm, augmentations are built in a random dis-
tributed fashion. We now present a simplified example to aid in
the visualization of how our algorithm makes one augmentation.

Example 1: Augmentation Building in the Absence of Con-
tention: Consider Fig. 3, which depicts our algorithm operating
in phases on a simple graph. The bold links in the top left graph
of Fig. 3 are the links of .

In our algorithm, an augmentation begins at a seed and ends
at a terminus. This seed is active in phase 1. When a node is
active, it tries to elongate its augmentation by adding links as
follows.

1) If the node has a link in that is not already in , it
adds that link to .

2) Else, it adds a random new link to .
Every time a link is added, for the next phase the currently active
node becomes inactive, and the other endpoint of the new link
becomes active instead.

As seen in the first figure, node is the only seed and is active
in phase 1. It adds link to its (currently empty) augmenta-
tion in phase 1, since , and it is not currently in

’s augmentation. For phase 2, is inactive and is active.

5The idea of using fixed-length augmentations to obtain approximations
to maximum-weight matching has been used previously (see, e.g., Pettie and
Sanders [29]) in a different, pure graph-theoretic context to find an approxima-
tion to maximum-weight matching with linear complexity.

Node can choose to add any one of the links or .
Say it chooses . Therefore, for phase 3, node is active and

is inactive.
Node adds the link because it is a new link in .

Then, in phase 4, becomes active. picks randomly from links
and . Say it picks .

Node would have become active as a result, but it has no
further links to add to the augmentation. It instead becomes the
terminus of the augmentation.

The net weight is communicated forward in each hop. Ter-
minus then evaluates the gain

using the link weight information that has been passed on along
during the building of the augmentation. In our ex-

ample, it finds that and decides to switch. This
decision is then passed on back along the links

, and over the next 4 phases. Then, the links in are
switched to obtain the final graph in Fig. 3, where bold links are
the ones in .

The above example illustrates the simple basic ideas under-
lying our algorithm, namely 1) randomly seed and grow disjoint
augmentations, and 2) switch all the augmentations that have
positive gain.

The above example illustrated the augmentation building pro-
cedure in an idealized network where it was the only augmenta-
tion. In an actual wireless network, however, augmentations are
seeded at random. This means that there will be multiple aug-
mentations, which will have to contend for access to links while
ensuring that they remain consistent (i.e., valid augmentations)
and disjoint.

We now succinctly describe the algorithm that constructs
from . A more realistic, and more detailed, ex-
ample and a brief discussion follow the description.

In our algorithm, each augmentation builds up in phases
starting from a seed and ending in a terminus. For any phase
and node , let denote the augmentation (if any) that
is a part of in that phase. Also, the term “new link” for a node
refers to any link that is not already in . For any
active except the seed, one of its links will be in , and
all the others will be new. Similarly, a “new neighbor” for is
any node that shares with a link that is new for .

A. Algorithm Description

1) Initialization: Before phase 1,
a) each node randomly decides to be a seed with proba-

bility ;
b) each seed chooses an intended size for its augmenta-

tion, uniformly from the set .
The seeds are the active nodes in phase 1.

2) Iteration: Every seed that has some link
adds to and sends a REQ to the corresponding

in phase 1. Every other seed sends a REQ along a random
link. In each phase from 2 to , each active node
tries to extend its as follows.

a) If needs a new link , and if one such
link exists, then is added to

. Also, sends a REQ to along . If no
such link exists, becomes terminus.

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 15, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

1472 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 5, OCTOBER 2009

b) If needs a new link outside , but
is already as intended, sends no REQ

and becomes terminus. Otherwise, sends REQ to a
random, uniformly chosen, new neighbor. If no new
neighbor exists, becomes terminus.

Contention: The REQs above may face contentions. In
any phase, if active sends REQ to ,

a) another active also sends REQ to in that phase,
and a collision occurs. does not ACK, and be-
comes terminus.

b) If is a used node, i.e., it is already part of an aug-
mentation, then does not ACK, and becomes ter-
minus.

c) If is unused and there is no collision, then sends
ACK to . The link is added to . will
become active in the next phase, and will become
inactive.

Every node that becomes terminus is inactive in subsequent
phases.

3) Termination: After phases, every terminus
checks the following three conditions:

a) if it is adjacent to its seed ,
b) if began and ended with links in , and
c) if has not reached its intended size.

If all of above are true, link is added to .
Also, in either case, every terminus evaluates

and makes the decision of switching
if and only if .

4) Back-propagation and Switching: Switching decision is
relayed back in phases to from terminus
to seed, along the path of each augmentation. These com-
munications will be noninterfering. After phase , all
nodes in augmentation implement decision.

B. Discussion

Note that, in our algorithm, there is a small but crucial dif-
ference between links in and links outside
with regards to the timing of link addition to an augmentation.
Specifically, a link in is added before a REQ is sent (and
irrespective of whether an ACK is received), while a link out-
side is added only after a REQ is sent and an ACK is
received. This difference in timing ensures that augmentations
are consistent, i.e., whenever a link is added to ,
all the links in adjacent to are also added to .

It is easy to see that our algorithm will ensure disjointness of
augmentations. Consider the addition of a link
to by an active node in some phase. This will only
happen if sends a REQ to in that phase and responds with
an ACK. Now, if is already a member of an augmentation by
that phase (including the case of it already being a member of

itself), then will not respond with an ACK. Also, if
any other augmentation tries to add some other link

at the same phase, then neither augmentation will be
successful. Thus, no two adjacent links outside will be
part of augmentations, and all augmentations are consistent and
disjoint. Note, of course, that any link in can be
added to another augmentation. This, however, does not hurt the
disjointedness.

Fig. 4. The working of our algorithm in phases (Example 2). Bold lines in
the first 7 graphs are links in , and in the last graph are links in .
Dashed lines are links in augmentations. denotes active nodes, and denotes
terminus nodes. Arrows depict the REQ signals in each phase.

We now illustrate how our algorithm works by means of a
slightly detailed example.

Example 2: Illustration of the Algorithm: Consider the net-
work shown in Fig. 4. The first graph shows the schedule
of the previous time slot. The second graph shows the nodes ac-
tive in phase 1, which are the seeds of the network. Assume

and that the intended size chosen by every seed is also 2.
Note that the active nodes that have a link in incident
on them immediately include it in their augmentations, and also
send the REQ along that link. Other active nodes do not include
any links in their augmentations, and send REQs at random.

Since all REQs went to different targets, there were no colli-
sions, and so there are four new nodes active in phase 2. Again,
the newly active nodes that have a new link in incident on

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 15, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

BUI et al.: DISTRIBUTED LINK SCHEDULING WITH CONSTANT OVERHEAD 1473

them immediately add it to their augmentation and send REQs
along them. Other newly active nodes send REQs at random.

We see that two of the REQs sent in phase 2 will collide. This
means that the corresponding transmitters of the collided REQs
will become terminus of their augmentations, which then stop
growing. The other two augmentations continue growing.

In phase 4, the active node at the bottom sends REQ to a
used node (its own seed in this case). Hence, it does not receive
an ACK and becomes the terminus. The other active node in
phase 4 adds its link without problems. However, the addition
of another link to this augmentation would make it exceed its
intended size. Thus, after the addition, the new node becomes
terminus and does not further add links.

After the last phase 5, note that one of the augmentations (the
bottom one) satisfies the conditions in step 4 of the algorithm:
Namely, it began and ended with links in , its seed and
terminus are joined by a link not in , and the addition
of this link does not violate the intended size. Thus, this link is
added to get the final set of disjoint augmentations after phase

.
These augmentations are switched depending on their gains.

In our example, two of the four augmentations are switched and
the other two are not. The switching decisions are relayed back
in phases 6 to 10, after which the switching happens. The final
graph depicts the resulting .

The example illustrates the fact that without the last link addi-
tion in the “termination” part of the above algorithm, we would
not be able to build augmentations that are (small) cycles.

Note that the information relayed on at each phase does not
grow with or the network size. Indeed, all that is needed is
the net gain of the augmentation up until the current phase and
the identity of the first node (so that the termination part of the
algorithm can be implemented).

The probability in the above algorithm is a parameter that
can be chosen by the system designer. If is too high, there will
be too many seeds in the network, which will result in too much
contention and not enough augmentations. If is too small, there
will not be enough seeds to ensure a good enough set of augmen-
tations.

VI. PROPERTIES OF THE SCHEDULING ALGORITHM

In this section, we present the Proof of Theorem 1. Recall that
is the vector of link weights at time , and is the

optimal matching for . For Lemmas 1–3, we drop the index
with the understanding that and .
Lemma 1: Given any vector of queue lengths and existing

matching , there exists a set of disjoint augmentations of
such that:

• if , then

• if , then

and every augmentation in has .
Lemma 1 says there exists a “good set” of augmentations,

where each augmentation is not too large, and that augmenting
using the set represents a certain amount of gain. We build up

toward the proof of Lemma 1 by designing a candidate set
having augmentations of size at most . We will then prove the
gain it represents is as claimed by Lemma 1.

The symmetric difference of matchings
and is the set of links that are in exactly one of or

. Links that are in both or in neither are excluded from .
Consider the graph containing only the links in .
Since each is a matching, a vertex in has degree at most 2
and each connected component of is either an alternating path
or even-length cycle. Also, each component is an augmentation
of , so we can define the size of a component in the same way
as we defined the size of an augmentation of .

For any component of let denote the
links of in the optimal matching and be the links
in the current matching. Note that and are also matchings
in , and the terms and are as defined before for
matchings. Also, note that .

We build the set from by finding a suitable set in
each component of . The following two lemmas ensure this
can be done.

Lemma 2: If any component of is a path (i.e., not a cycle),
then there exists a set of disjoint augmentations such that:

1) every is contained in and has ;
2) if , then

3) if , then

Proof: If is small, with , then let
be the set containing only . This obviously satisfies all of

the above conditions since . Specially,
if , then for every path of .

Now, consider a path with . Starting from
any endpoint of the path, number all links in . Let
be the links in . For the first few , build a set

of disjoint augmentations by deleting every th link in
, starting with ; i.e., link is deleted if and only if

or is divisible by . Fig. 5 shows this process for
a simple example. After the deletions, each remaining fragment
of will be an augmentation of and will have size at most

. These fragments together make the set of disjoint
augmentations.

Consider now the sets , made from the links
, respectively. It is clear that each link in will

be a member of all of these sets, and each link in will
be a member of of the sets. Recall from (5) that the gain of any
set is the weight of all its links outside minus the weight of
all its links in . Thus

which means that there exists at least one such that

Setting proves the lemma.

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 15, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

1474 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 5, OCTOBER 2009

Fig. 5. The path on the left is a path component of , with nonbold links
denoting and bold ones for . Links in
are numbered, and . is cut up starting at link number 2, going coun-
terclockwise, to obtain the set on the right. Note that contains disjoint
augmentations of size at most .

Lemma 2 shows the existence of a good set of disjoint aug-
mentations in path components of . We now use this to prove
a slightly weaker result for cycle components of .

Lemma 3: If component of is a cycle, then there exists
a set of disjoint augmentations such that:

1) every is contained in and has ;
2) if , then

3) if , then

Note that the ratio is instead of as it was for paths.
Proof: If , set , and we are

done. Specially, if , then for every
path of .

Now, consider cycles in with . Let
be the link with the smallest weight: for all

. Consider path , and define
and as before. Obviously, . Also,
since was chosen to be the link in with smallest weight
and

Also, by Lemma 2, there exists a set of disjoint augmenta-
tions of size at most in such that

Setting proves the lemma.

We are now ready to build the set : For each component
of , add to the augmentations in the corresponding
—where is as specified by Lemmas 2 and 3 for paths

and cycles, respectively. We are now ready to prove Lemma 1.
Proof of Lemma 1: Let be as constructed above. Its gain

will be the sum of the gains of each of the ’s of which it is
composed. Therefore, if then we have

where is the matching consisting of links that are in
both and .

Similarly, if then

The lemma’s proof follows from the fact that

by definition.
Now that we have shown the existence of a suitable set , all

we need to do to prove Theorem 1 is to uniformly lower bound
the probability of the algorithm generating .

Proof of Theorem 1: Recall that in our algorithm a disjoint
set of augmentations is created, and the ones with positive
gain are switched to obtain from . Thus

Therefore, it suffices to lower bound

by a quantity that is independent of but can
depend on graph structure and . Note, of course, that is
not independent of .

We will now provide a very naive lower bound to the above
probability. Let be the number of disjoint augmenta-
tions in . Choose one node in each of these augmentations
as follows. If the augmentation is a path, choose one of its end-
points, and if it is a cycle, choose any node. Let be the event
that all of the following are true:

• the algorithm generates ;
• the only seeds active in phase 1 are the nodes chosen above,

and
• each augmentation’s intended length (chosen at its seed) is

equal to the actual length of that augmentation in (i.e.,
no augmentation is a result of a cutoff due to contention).

Clearly

We now lower-bound the right-hand side. The probability that
the nodes turn active or remain inactive as specified by is

. Furthermore, the probability that the intended
lengths are exactly as chosen is since they are chosen uni-
formly from . Finally, we need each of the random link-

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 15, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

BUI et al.: DISTRIBUTED LINK SCHEDULING WITH CONSTANT OVERHEAD 1475

addition choices (step 2 of the algorithm) of each of the above
augmentations to exactly parallel the corresponding ones in .
There are a total of at most such choices to be made, and the
probability of each being the correct one is at least , where
is the maximum degree of the graph. Thus, the probability of
correct link choices is at least .

Putting everything together, we have that

The right-hand side of the last inequality is now independent
of , providing us with the required uniform
lower bound. Setting completes
the proof of the theorem.

VII. SIMULATIONS

In this section, we investigate the performance of our class of
algorithms via simulations. The primary purpose of this investi-
gation is to look at the delay performance of our algorithms. In
these simulations, we compare our algorithm to the following
algorithms.

• Maximal Matching (MM): At every time step, a maximal
matching6 is generated, and links in this matching are made
active while others are made inactive.

• (Delayed) Max-Weight Matching- : Every time steps,
the max-weight matching, with weights being the queue
lengths, is chosen as the schedule. This schedule is then
used for the subsequent steps.

Note that both of the above algorithms, at least as stated here
and as simulated by us, are centralized.

It is natural to compare our algorithms to the existing con-
stant-overhead algorithms [1]–[3]. Each of these algorithms es-
sentially tries to emulate maximal matching via enhanced con-
tention resolution. Therefore, for our simulations, we compare
our algorithm directly with the maximal matching algorithm it-
self, with the implicit understanding that the performance of
MM would be better than that of the existing constant-time pro-
tocols. All of these algorithms, including the centralized MM
algorithm, can guarantee at best half of the capacity region, and
hence, from the capacity viewpoint, they are not comparable;
our algorithms can capture any fraction of the ca-
pacity region for any . We emphasize that, in this section,
we compare only the delay performance.

Our algorithm has constant overhead in each scheduling
cycle, and, hence, the long-term overhead is also constant. If,
however, one is only interested in the weaker requirement that
the long-run overhead be low, one could use a potentially more
complex algorithm to find a schedule, and then use the schedule
for a long time to amortize the complexity. Such an approach
may be feasible in high-speed router switches, but it presents
significant implementation and coordination challenges for
wireless networks. We discuss these in Section VIII; in the
present section, we only consider the delay performance of one
such high-complexity algorithm, MWM, when it is delayed in
this fashion. Max-weight matching has been observed, both in
theory and practice, to have very good delay performance.

6Recall that a maximal matching is any matching to which no link can be
added without removing an existing link.

Fig. 6. Network Topology.

We ran our simulations on a simple grid network, shown in
Fig. 6. The network is an 11 11 grid with 121 nodes (repre-
sented by circles) and 220 links (represented by lines). Each link
has the unit capacity—i.e., it can transmit one unit of data in one
time slot—when active. The data arrival model is as follows: On
each link, in each time slot, one unit of data arrives with proba-
bility equal to the load on the link; otherwise, no data arrives.

Link loads in our example are parameterized by and are ei-
ther or , as marked in the figure. It is clear, from the
node-exclusive interference model, that the capacity region of
this network corresponds to . The numbers 0.1 and 0.7
thus specify the direction in which we are investigating the ca-
pacity region, while specifies the extent of the capacity region
that is captured along that direction.

Fig. 7 compares the performance of our algorithm with that
of MM. We plot the average maximum queue backlog of all
links in the networks, in terms of , after 48 000 time slots.
Our algorithm has been run for the cases

and .
Notice first of all that even small- implementations of our

algorithm can stabilize higher loads than MM in reasonable
networks like the one in the simulation. In particular, while both
MM and our algorithm for both guarantee only half the
capacity region in the worst case, our algorithm achieves
close to 100% throughput in the simulation, while MM achieves
only close to 85%. Also, the fact that is already so close
to 100% means that performs similar to in terms
of achievable capacity. It, however, does have a slightly better
delay performance.

Also observe that, for small loads, our algorithm has higher
queue sizes as compared to MM. This is because MM ensures
that every link will be scheduled, or there will be an interfering
link scheduled instead. When loads are low, the number of in-
terfering links is small because the corresponding queues are
empty for large portions of the time. This leads to good utiliza-
tion. Our algorithms are randomized and do not ensure maximal
usage. However, our simulations indicate that the queue lengths
of our algorithms are not unreasonable.

The parameter of a node becoming a seed is a free parameter
that can be set by the designer. Our simulations seem to indicate

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 15, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

1476 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 5, OCTOBER 2009

Fig. 7. Performance comparison to MM.

Fig. 8. Performance comparison to delayed versions of MWM.

that for reasonable values of , the exact value does not seem
to have an overwhelming effect on performance. This seems to
suggest that performance may not be too sensitive to the exact
choice of the parameter.

In Fig. 8, we compare our algorithm to delayed versions of
the MWM algorithm. For example, MWM-100 corresponds to
the algorithm where a max-weight matching is found every 100
time slots, and the resulting schedule is used for the subse-
quent 100 slots. MWM-1 corresponds to finding the max-weight
matching in every time slot; this is a very high-complexity al-
gorithm and, as can be seen, has very good delay performance
even close to capacity. The simulation running time in this case
is a million slots. As expected, average delays increase when the
delay of MWM- increases; conversely, the amortized com-
plexity decreases as increases.

Finding the max-weight matching can take as long as
time in the worst case. Note that in our simulations,
which makes quite a large number. Hence, amortizing to get
constant long-run overhead means that schedules would be up-
dated after very long intervals. In practice, finding the MWM

may be much faster; in our simulations, we compare our algo-
rithm with parameters arbitrarily fixed at and
to MWM- , with delay values and
(values much smaller than).

Each MWM- is a capacity-achieving algorithm, and, hence,
has lower delays when the load is very close to capacity. How-
ever, for most moderate values of loads, our algorithm has lower
delays than all except the undelayed MWM-1. Also, higher (but
fixed) values of in our algorithm may lead to smaller delays
even at rates closer to the capacity. These simulations suggest
that the probability in Theorem 1 of forming a matching of
requisite weight is quite conservative.

VIII. DISCUSSION

The algorithms in this paper pertain to the primary interfer-
ence constraint, a widely used model for wireless scheduling.
However, it is not the most general model, and indeed it would
be very interesting to see if the ideas in this paper can be ex-
tended to cover more general interference models like 2-hop
or -hop. The crucial innovation would have to be a way to
generate “local” updates to the existing schedule such that the
probability of a local update achieving any given fraction of
the max-weight schedule will be nonzero. For primary interfer-
ence, we used the augmentation structure of matchings to do
this. Augmentations are an alternating structure, and one would
need to find similar alternating structures for more general inter-
ference cases (e.g., one can find similar alternating sets between
two independent sets in a graph).

The main motivation of this paper was to develop scheduling
algorithms that can be implemented without explicit regard for
the network on which it is deployed. A crucial ingredient of that
is the requirement of constant overheads every time a schedule
needs to be developed. However, if one is only concerned
about long-run average overhead, one could conceive run-
ning a high-overhead algorithm infrequently, thus amortizing
the complexity but raising the delay. This poses significant
problems because, unlike in switch scheduling, in a wireless
implementation: 1) the computations are decentralized, and
2) the same resource is used for the overhead transmissions
and the data service. For example, an implementation of in-
frequent max-weight matching would need to detect when the
global max-weight matching has been reached, then globally
disseminate this information to all nodes. A little thought
shows that these steps need network-wide coordination whose
implementation would require complicated protocols. Finally,
Section VII shows that our algorithm, run every slot, compares
favorably in terms of delay, as compared to infrequently run
max-weight matching (except for rates extremely close to
capacity).

Our algorithm is based on the idea of making local changes to
an existing schedule; each local change results in an increase in
the weight. This idea has its origins in the work of Tassiulas [7].
In that paper, a new schedule is globally compared with the ex-
isting one, and the better one is chosen. This global comparison
leads to a complexity growing in network size but allows the
full capacity to be achieved. In our paper, the crucial step is to
ensure that local changes are guaranteed to have some nonzero
probability of capturing the required fraction of the maximum
weight.

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 15, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

BUI et al.: DISTRIBUTED LINK SCHEDULING WITH CONSTANT OVERHEAD 1477

IX. CONCLUSION

This paper presents a novel class of simple distributed wire-
less scheduling algorithms. Our algorithms can achieve any
fraction of the capacity region for data transmission and require
constant overheads that do not scale with network size. Our
results are also interesting from a practical standpoint due to the
simple structure of our algorithms and our explicit accounting
of the tradeoff between overhead and scheduling performance.

The objective of this paper is to design simple algorithms
with appealing properties, not to announce a complete wireless
protocol ready for implementation. In particular, careful studies
need to be done to arrive at the value of that would give the best
performance in practice. This will likely depend on the max-
imum length a scheduling cycle can have, given mobility and
other aspects of the network that have been abstracted away in
our model. An interesting avenue for possible algorithmic in-
vestigation is to see how our ideas adapt to designs for more
general interference constraints.

APPENDIX A
PROOF OF THEOREM 2

In this Appendix, we prove Theorem 2. The proof is along the
lines of [15] and [27], the main difference being that the general-
ization of the back-pressure algorithm requires additional work
to complete the proof.

Note that the packets travel hop by hop, i.e., packets arrive to
the next queue after departing from the previous queue. Hence,
we assume the following convention for the dynamics of the
queues: At any time slot based on the schedule the
departures from queues happen at the beginning of the time slot,
then the arrivals at the end of the time slot. Thus, the evolution
of queue lengths is governed by the following rules:

(6)

where is the number of flow ’s arrivals in time slot and
is the number of packets, destined to destination ,

which are actually sent over link . Notice that

We have that defines an irreducible
and aperiodic Markov chain. Then, let us consider the following
Lyapunov function:

We first state two lemmas, and then prove them. The proof of
Theorem 2 follows thereafter.

Lemma 4: There exist positive constants and such that

Lemma 5: There exist constants and such that

where is defined in Section IV-A.
Proof of Lemma 4: First, consider any queue with the

following updating rule:

where if and , otherwise.
We would like to get the bound of

as follows:

where is real number satisfying that
if or if . Hence,

, where is the upper
bound of for all . Also, let be the upper bound of
for all .

One can show (by considering separately two cases when
and when) that

(7)

where and
.

Now, to simplify the notation, let us define

Since , and are all upper-
bounded, we apply (7) for the queue with updating the
rule in (6) to get

(8)
Manipulating (8) by adding and subtracting terms, we have

(9)

(10)

(11)

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 15, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

1478 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 5, OCTOBER 2009

(12)

(13)

(14)

where and are defined similarly to
and respectively.

First, by the congestion control algorithm (Section IV-B), we
have that (9) (10) .

Next, note that is within the region . By definition
of the capacity region, there exists a vector such
that:

• where and
are defined similarly to and respec-

tively, and
•

Therefore, we have

where the last inequality is because is the optimal
matching given . Following similar steps as in [5, p. 1947],
we can get

Thus, there exists a positive constant such that

Finally, we can rewrite (13) (14) as

Combining these results yields

(15)

Now, fix a constant such that . It is easy to
see that if , where , then

. Therefore, we have

Also, note that Jensen’s inequality yields

Therefore, after some manipulation, we get the result

where

Proof of Lemma 5: Given let be
the event

Then

Next, we write the evolution of the weight vector as

where denotes the vector of packets added to , and
denotes the vector of packets subtracted from . Note that
both of them are upper-bounded. Hence, we can write

We have that the latter term is upper-bounded by a finite con-
stant. To bound the first term, we have the following observa-
tions:

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 15, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

BUI et al.: DISTRIBUTED LINK SCHEDULING WITH CONSTANT OVERHEAD 1479

• since is the
optimal weighted matching corresponding to the weight
vector ;

• by the inequality (4).
Combining these, we can find finite positive constants
such that

which completes the proof.
Proof of Theorem 2: Combining the results of Lemmas 4

and 5, we have

(16)

Since there exists a constant
such that . Thus

Let us consider the set , which is a finite
subset of the state space of . We will show that has
negative drift outside this set for large enough.

If , then and,
hence, the above inequality becomes

where . Now, for large enough,
we can get the bound

Thus, if . Given
this condition, Foster’s criterion implies the stability of the
Markov chain , and, thus, of the queues ’s.

Next, note that we can easily find a constant such that

Then, inequality (16) becomes

Taking expectations of both sides and summing over
we get

Taking the limit as goes to infinity, and applying Jensen’s
inequality, we get the result

REFERENCES

[1] X. Lin and S. Rasool, “Constant-time distributed scheduling policies
for ad hoc wireless networks,” in Proc. IEEE Conf. Decision Control,
San Diego, CA, Dec. 2006, pp. 1258–1263.

[2] A. Gupta, X. Lin, and R. Srikant, “Low-complexity distributed sched-
uling algorithms for wireless networks,” in Proc. IEEE INFOCOM,
Anchorage, AK, May 2007, pp. 1631–1639.

[3] C. Joo and N. Shroff, “Performance of random access scheduling
schemes in multi-hop wireless networks,” in Proc. IEEE INFOCOM,
Anchorage, AK, May 2007, pp. 19–27.

[4] B. Hajek and G. Sasaki, “Link scheduling in polynomial time,” IEEE
Trans. Inf. Theory, vol. 34, no. 5, pp. 910–917, Sep. 1988.

[5] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936–1948, Dec. 1992.

[6] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100%
throughput in an input-queued switch,” in Proc. IEEE INFOCOM, San
Francisco, CA, Mar. 1996, vol. 1, pp. 296–302.

[7] L. Tassiulas, “Linear complexity algorithms for maximum throughput
in radio networks and input queued switches,” in Proc. IEEE IN-
FOCOM, San Francisco, CA, Mar. 1998, vol. 2, pp. 533–539.

[8] P. Giaccone, B. Prabhakar, and D. Shah, “Towards simple, high-per-
formance schedulers for high-aggregate bandwidth switches,” in Proc.
IEEE INFOCOM, New York, NY, Jun. 2002, vol. 3, pp. 1160–1169.

[9] T. Weller and B. Hajek, “Scheduling non uniform traffic in a packet
switching system with small propagation delay,” IEEE/ACM Trans.
Netw., vol. 5, no. 6, pp. 813–823, Dec. 1997.

[10] J. G. Dai and B. Prabhakar, “The throughput of data switches with and
without speedup,” in Proc. IEEE INFOCOM, Tel Aviv, Israel, Mar.
2000, vol. 2, pp. 556–564.

[11] X. Lin and N. Shroff, “The impact of imperfect scheduling on cross-
layer rate control in multihop wireless networks,” in Proc. IEEE IN-
FOCOM, Miami, FL, Mar. 2005, vol. 3, pp. 1804–1814.

[12] S. Sarkar and K. Kar, “Achieving 2/3 throughput approximation
with sequential maximal scheduling under primary interference
constraints,” in Proc. Allerton Conf. Commun., Control Comput.,
Monticello, IL, Sep. 2006, pp. 729–740.

[13] E. Modiano, D. Shah, and G. Zussman, “Maximizing throughput in
wireless networks via gossiping,” ACM SIGMETRICS Perf. Evaluation
Rev., vol. 34, no. 1, pp. 27–38, Jun. 2006.

[14] A. Brzezinski, G. Zussman, and E. Modiano, “Enabling distributed
throughput maximization in wireless mesh networks: A partitioning
approach,” in Proc. ACM MOBICOM, Los Angeles, CA, Sep. 2006,
pp. 26–37.

[15] A. Eryilmaz, A. Ozdaglar, and E. Modiano, “Polynomial complexity
algorithms for full utilization of multi-hop wireless networks,” in Proc.
IEEE INFOCOM, Anchorage, AK, May 2007, pp. 499–507.

[16] Y. Yi, G. de Veciana, and S. Shakkottai, “Learning contention pat-
terns and adapting to load/topology changes in a MAC scheduling al-
gorithm,” in Proc. WiMesh, 2006, pp. 23–32.

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 15, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

1480 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 5, OCTOBER 2009

[17] X. Wu and R. Srikant, “Regulated maximal matching: A distributed
scheduling algorithm for multi-hop wireless networks with node-ex-
clusive spectrum sharing,” in Proc. IEEE Conf. Decision Control, Dec.
2005, pp. 5342–5347.

[18] P. Chaporkar, K. Kar, and S. Sarkar, “Achieving queue length stability
through maximal scheduling in wireless networks,” in Proc. Inf. Theory
Appl. Workshop, Feb. 2006.

[19] X. Wu, R. Srikant, and J. Perkins, “Queue length stability of max-
imal greedy schedules in wireless networks,” in Proc. Inf. Theory Appl.
Workshop, Feb. 2006.

[20] S. Ray and S. Sarkar, “Arbitrary throughput versus complexity trade-
offs in wireless networks using graph partitioning,” in Proc. Inf. Theory
Appl. Workshop, Jan. 2007.

[21] M. Neely, E. Modiano, and C. Rohrs, “Dynamic power allocation
and routing for time varying wireless networks,” IEEE J. Sel. Areas
Commun., vol. 23, no. 1, pp. 89–103, Jan. 2005.

[22] D. Shah and D. Wischik, “Optimal scheduling algorithms for input-
queued switches,” in Proc. IEEE INFOCOM, Barcelona, Spain, Apr.
2006.

[23] H. N. Gabow, “Data structures for weighted matching and nearest
common ancestors with linking,” in Proc. ACM-SIAM Symp. Discrete
Algorithms (SODA), San Francisco, CA, 1990, pp. 434–443.

[24] A. Stolyar, “Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm,” Queueing Syst., vol. 50, no. 4, pp.
401–457, Aug. 2005.

[25] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless net-
works using queue-length based scheduling and congestion control,” in
Proc. IEEE INFOCOM, Miami, FL, Mar. 2005, pp. 1794–1803.

[26] A. Eryilmaz and R. Srikant, “Joint congestion control, routing and
MAC for stability and fairness in wireless networks,” in IEEE J. Sel.
Areas Commun., Aug. 2006, vol. 24, no. 8, pp. 1514–1524.

[27] M. Neely, E. Modiano, and C. Li, “Fairness and optimal stochastic con-
trol for heterogeneous networks,” in Proc. IEEE INFOCOM, Miami,
FL, Mar. 2005, pp. 1723–1734.

[28] X. Lin and N. Shroff, “Joint rate control and scheduling in multihop
wireless networks,” in Proc. IEEE Conf. Decision Control, Paradise
Island, Bahamas, Dec. 2004, pp. 1484–1489.

[29] S. Pettie and P. Sanders, “A simpler linear time 2/3- approximation
for maximum weight matching,” Inf. Process. Lett., vol. 91, no. 6, pp.
271–276, 2004.

Loc X. Bui received the B.S. degree in electronics
and telecommunications from the Posts and Telecom-
munications Institute of Technology, Ho Chi Minh
City, Vietnam, in 2003, and the M.S. and Ph.D. de-
grees in electrical and computer engineering from the
University of Illinois at Urbana-Champaign, in 2006
and 2008, respectively.

Since October 2008, he has been with Airvana Inc.,
Chelmsford, MA, where he currently is a Software
Engineer. His research interests include communi-
cation networks, wireless communications, network

control, and optimization.

Sujay Sanghavi received the B.Tech. degree from
the Indian Institute of Technology, Bombay, India,
in 2000, and the M.S. degree in electrical and com-
puter engineering (ECE), the M.S. degree in mathe-
matics, and the Ph.D. degree in ECE from the Univer-
sity of Illinois at Urbana-Champaign in 2002, 2005,
and 2006, respectively.

He joined the faculty of the Department Electrical
and Computer Engineering at Purdue University,
West Lafayette, IN, in Fall 2008 as an Assistant
Professor. Prior to that, he spent two years as a

Post-Doctorate Fellow in the Laboratory for Information and Decision Sys-
tems, Massachusetts Institute of Technology, Cambridge. His research interests
lie in probability, algorithms, and optimization, as applied to large-scale
problems in communications, networking, and signal processing.

R. Srikant (S’90–M’91–SM’01–F’06) received
the B.Tech. degree from the Indian Institute of
Technology, Madras, India, in 1985, and the M.S.
and Ph.D. degrees in electrical engineering from the
University of Illinois at Urbana-Champaign in 1988
and 1991, respectively.

He was a Member of Technical Staff at AT&T
Bell Laboratories from 1991 to 1995. He is currently
with the University of Illinois at Urbana-Champaign,
where he is a Professor in the Department of Elec-
trical and Computer Engineering and a Research

Professor in the Coordinated Science Laboratory. His research interests include
communication networks, stochastic processes, queueing theory, information
theory, and game theory.

Prof. Srikant was an Associate Editor of Automatica, IEEE TRANSACTIONS
ON AUTOMATIC CONTROL, and IEEE/ACM TRANSACTIONS ON NETWORKING.
He has also served on the Editorial Boards of special issues of the IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS and IEEE TRANSACTIONS
ON INFORMATION THEORY. He was the Chair of the 2002 IEEE Computer
Communications Workshop, Santa Fe, NM, and a program Co-Chair of IEEE
INFOCOM 2007.

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 15, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

