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Abstract: This paper proposes closed loop controls for microorganisms in the chemostat, which
make it possible to select species with fastest growth rate in chosen environmental conditions. In
particular, by controlling the dilution rate and the input substrate concentration, it is possible
to select a species which maximizes a criterion. In a first step a control is proposed for Monod’s
and Droop’s models in order to regulate the total biomass concentration. We show that this
causes the selection of the fastest growing species if the system has a periodic behavior. Then we
propose a way of achieving periodic stresses, and of selecting the species with maximal potential
growth rate. Finally, the method is simulated using Droop’s model for selecting a species which
can both grow fast and increase its internal substrate storage.
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1. INTRODUCTION

The chemostat is an open bioreactor where a microor-
ganism can grow in suboptimal conditions of substrate
limitation. The chemostat model supports several ecolog-
ical theories (S.R. Hansen and S.P. Hubell [1980] - R.
Arditi and H. Saiah [1992] - B.J.M. Bohannan and R.E.
Lenski [2000]) that were then extrapolated and tested in
real life. Among these theories, the competition theory
is one of the most famous. It states that if n competing
species are introduced in a chemostat, generically (in the
adequate working modes) only one species will stay in the
chemostat, while the n−1 other will disappear. This prin-
ciple was validated with real experiments in S.R. Hansen
and S.P. Hubell [1980] where the species that ”wins” the
competition could be predicted; it was the one that can
grow at a constant rate (equal to the dilution rate as
detailed further on) with the smallest amount of limiting
nutrient s∗. This theoretical result could be used to select
among a blend of species, the ones of interest. This idea
was first introduced by S.W. Brown and S.G. Oliver [1982]
and then by Juan Jimnez and Taha Bentez [1988], who
have made chemostat experiments for selecting ethanol-
tolerant mutants. By adjusting a particular stress such as
an inhibitor’s concentration, a substrate limitation, or the
dilution rate, it can lead to the isolation of species with
optimal yield. This is of particular importance since it is
a rather simple way of making a particular species emerge
within a population. However, in most biotechnological
applications, the selection criterion based on the idea of
”optimal yield” is not appropriate. A selection that would
e.g. select the microorganism with the highest growth
potential would be preferable, especially if one wants to
identify organisms that grow in hostile conditions. More
generally, the objective of this paper is to propose new
selection criteria. For this, the chemostat is not run in

open loop, but a control law is proposed to run the system
in closed loop. We show how the competition outcome is
modified and we propose new criteria that could be used
for species separation.

The paper is structured as follows. In a first part we recall
two classical models of microorganisms in the chemostat,
and the classical competition principle. In section 2 we
study a first control law that puts the chemostat into a
turbidostat mode, and we show that this control causes
the selection of the fastest growing species if the system
has a periodic behavior. Finally we propose a control
to achieve periodic substrate stresses. In section 4 we
maintain a periodical substrate limitation. A simulation
example illustrates the benefit of the approach and shows
how three species can be separated on this principle.

2. SHORT REVIEW OF COMPETITION ON A
SINGLE SUBSTRATE IN THE CHEMOSTAT

2.1 Basic model for microorganisms growing in the chemostat

Monod’s model (1) is the basic model for describing mi-
croorganisms’ growth on a single substrate in a chemostat. ṡ = D(sin − s)−

N∑
i=1

1
yi

µi(s)xi

ẋi = (µi(s)−D)xi

(1)

where s stands for the substrate concentration in the
chemostat, sin its input concentration, and xi the ith
species biomass concentration. The µi functions represent
the growth rates of these species, and the yi constants
are their biomass/substrate conversion yields. D is the
input/output dilution rate. The system can be controlled
with sin and D.



In this model the growth rate functions µi are taken as
positive monotonic increasing functions

sa < sb ⇔ µi(sa) < µi(sb) (2)

They are bounded by their supremum values µmi
:

µi(s) < µmi
and lim

s→+∞
µi(s) = µmi

(3)

2.2 Variable yield model

Droop’s model (4) is more complex but describes the
internal substrate storage q of the microorganisms. It is
more appropriate to describe microalgae’s growth.

ṡ = D(sin − s)−
N∑

i=1

ρi(s)xi

q̇i = ρi(s)− µi(qi)qi

ẋi = (µi(qi)−D)xi

(4)

In this model the ρi functions represent the substrate ab-
sorption rates, while the µi functions represent the growth
rates. These functions are positive monotonic increasing
functions. They are bounded by the supremum values ρmi

and µ̄i.

For each fixed substrate concentration s, the q̇i equation
indicates that qi goes towards Qi(s), defined as the unique
solution of

µi(Qi(s))Qi(s) = ρi(s) (5)

Indeed, the uniqueness of Qi(s) and its attractivity are
straightforward since µi(qi)qi is increasing in qi.

Let us define the maximum internal substrate storage
Qmi = lim

s→+∞
Qi(s) (6)

Qmi is thus the solution of µi(Qmi)Qmi = ρmi . It defines
an upper-bound for qi along the solutions of (4). Indeed,
if qi = Qmi

, then q̇i = ρi(s)− ρmi
< 0, and if qi < Qmi

is
verified at the initial time, then it is always verified. The
fact that there is a maximum internal substrate storage
Qmi for each species is biologically relevant.

Corresponding to this maximum internal substrate stor-
age, there exists a maximum growth rate µmi for each
species

µmi
= µi(Qmi

) =
ρmi

Qmi

(7)

2.3 The Competitive Exclusion Principle (CEP)

Under constant controls D and sin, for some species, there
exists a substrate concentration s?

i for which the growth
rate µi is (or becomes) equal to the dilution rate D :

µi(s?
i ) = D in Monod’s model

µi(Qi(s?
i )) = D in Droop’s model (8)

If this substrate concentration does not exist for a given
species, it means that µi(s) < D ∀s (or µi(Qi(s)) <
D ∀s in Droop’s model) and the species will be washed
out of the chemostat. If µi(sin) (or µi(Qi(sin)) < D) for
a particular species, that species will also be washed out
of the chemostat because we will have s(t) < sin after

some finite time t0, and then µi(s(t)) or µi(Qi(s(t))) <
µi(sin) < D for all t > t0

The CEP stipulates that in a chemostat with N species
that satisfy (8) (so that they are not guaranteed to be
washed out) , single substrate growth limitation, and
constant controls D and sin, all but one of the species
converge to 0 :

If ∃n ∈ {1, 2, ..., N − 1, N} so that s?
n < s?

i ∀i 6= n
then lim

t→+∞
xi(t) = 0 ∀i 6= n (9)

Criterion 1. CEP’s Competitiveness Criterion
The species with smallest s?

i , who needs less substrate
than the others for reaching a growth rate µi(s) equal to
the dilution rate D, wins the competition and excludes all
other species from the chemostat.

This result can be found in H.L. Smith and P. Waltman
[1995] for the Monod model with N species and for
the Droop model with 2 species, and validated with
several species (S.R. Hansen and S.P. Hubell [1980] - H.
Ducobu, J. Huisman, R.R. Jonker, and L.R. Mur [1998] -
J. Passarge, S. Hol, M. Escher, and J. Huisman [2006]).

The CEP is crucial for the understanding of natural
ecosystems. That is why so many people discussed it. Some
(B.T. Li , H.L. Smith [2003] - C. Lobry, F. Mazenc, and
A. Rapaport [2005] - J. Hesseler, J.K. Schmidt, U. Reichl,
D. Flockerzi [2006] - C. Lobry and J. Harmand [2006])
developped alternative models for which the CEP is not
verified, in order to explore some coexistence cases. S.S.
Pilyugin, G.T. Reeves, and A. Narang [2004] worked on
multiple substrate limitations, and showed in these condi-
tions that it is possible to infer the result of competition
from the dynamics of single species cultures.

Some works have already been done to control the compe-
tition in the chemostat, generally to enable the coexistence
of several species (N.S. Rao and E.O. Roxin [1990] - P. de
Leenheer, B. Li, and H.L. Smith [2003] - J. Gouzé and
G. Robledo [2005]). What we aim at doing here is to
find controls which change the result of the competition
keeping a single species. More precisely, we want to select
species of interest who maximize a criterion other than
the smallest s?

i , by imposing a periodic behaviour to the
system.

O. Bernard, G. Malara, and A. Sciandra [1996] have stud-
ied the effect of periodic substrate stresses, which is a real-
istic ecological situation. In section 4 we have determined
controls which permit to reproduce such stresses, and in
section 5.2 we have shown that this causes a new selection
criterion other than Criterion 1.

3. SELECTING THE FASTEST GROWING SPECIES

3.1 Control of the total biomass concentration

For selecting such a species in the chemostat, we need to
regulate the total biomass concentration XT =

∑N
i=1 xi

so that the chemostat does not become saturated with
microorganisms. We achieve this by controlling D so that

ẊT = D(X?
T −XT ) (10)



In both models this leads us to
∑N

i=1 µi(.)xi − DXT =
D(X?

T −XT ) and

D =
N∑

i=1

xi

X?
T

µi(.) (11)

When XT is close to X?
T , D is the weighted mean of the

growth rates µi of the microorganisms.

It is also possible to regulate KT =
∑N

i=1 kixi with ki

coefficients who can represent turbidity coefficients. This
is what is approximatively done in a particular family of
chemostat, the turbidostat.

3.2 The fastest species excludes all others from the
chemostat

For this study the growth functions in both models will
be considered only time-dependent functions µi(t), with
Ti-periodic behaviors. As we shall later see such periodic
behaviors can be obtained by different means. We use the
following notation for the mean growth of the species :

µmeani
=

1
Ti

Ti∫
0

µi(t)dt (12)

Hypothesis 2. Let us assume that
∃n ∈ [1;N ] so that µmeann > µmeani ∀i 6= n

Theorem 3. Selection for any periodic behavior
With a bounded total biomass concentration XT =∑N

i=1 xi, species n with biggest mean growth µmeani is
selected : it excludes all other species from the chemostat.

Proof We denote di = ln
(

xn

xi

)
With ẋi = (µi −D)xi we obtain
ḋi(t) = ẋn(t)

xn(t) −
ẋi(t)
xi(t)

= µn(t)− µi(t) and

di(t) = di(0) +

t∫
0

ḋi(τ)dτ

= di(0) +

t∫
0

µn(τ)dτ −
t∫

0

µi(τ)dτ

We then use the following notations :

pi(t) =
t− t ≡ Ti

Ti
ri(t) = t ≡ Ti

t = pi(t)Ti + ri(t)

(13)

where t ≡ Ti represents tmoduloTi, and pi(t) is the number
of Ti-periods for species i until time t. which leads us to

t∫
0

ḋi(τ)dτ = pn(t)

Tn∫
0

µn(τ)dτ − pi(t)

Ti∫
0

µi(τ)dτ + Rn
i (t)

= pn(t)

 Tn∫
0

µn(τ)dτ − pi(t)
pn(t)

Ti∫
0

µi(τ)dτ

+ Rn
i (t)

= pn(t)
(

Tnµmeann
− pi(t)

pn(t)
Tiµmeani

)
+ Rn

i (t)

with notation Rn
i (t) =

∫ rn(t)

0
µn(τ)dτ −

∫ ri(t)

0
µi(τ)dτ

and with pi(t)
pn(t) = t−t≡Ti

t−t≡Tn

Tn

Ti
, since limt→+∞

t−t≡Ti

t−t≡Tn
= 1 ,

and di(0) and Rn
i (t) are bounded, limt→+∞di(t) = +∞

because limt→+∞pi(t) = +∞ and µmeann > µmeani

Thus limt→+∞
xn(t)
xi(t)

= +∞ and, as xn is upper bounded
by the upper-bound on XT , then limt→+∞ xi(t) = 0 and
the proof is complete. 2

3.3 Selection of the species with biggest µmi

We have shown that it is possible to select a species with
fastest growth in given environmental conditions. Here we
try to determine conditions which will allow us to select
the species with biggest µmi .
Criterion 4. µmi Competitiveness Criterion
With a bounded total biomass concentration XT =∑N

i=1 xi, and with s big enough so that µi(t) ≈ µmi
∀t,

the species with fastest growth µmi is selected : it excludes
all other species from the chemostat.

Proof and effective realization
The demonstration of Criterion 4 is the same as for
Theorem 3, with µi(t) = µmi

. 2

In order to have µi(t) ≈ µmi , we regulate s at a large value
s0 (so that µi(s0) or µi(Qi(s0)) ≈ µmi) by imposing

ṡ = D(s0 − s) (14)

which is achieved through sin = s0 + 1
D

∑N
i=1 ρi(s)xi

As
∑N

i=1 ρi(s)xi is not always measurable, we have imag-
ined a simpler way to realize µi(Qi(s)) ≈ µmi : with a
big constant sin and a small X?

T we have ṡ ≈ D(sin −
s) and the substrate concentration will converge close to
sin, which is chosen big enough to have µi(sin) ≈ µmi

(µi(Qi(sin)) ≈ µmi in Droop’s model).

4. ACHIEVING PERIODIC SUBSTRATE STRESSES

We propose an approach for the generation of a periodic
behavior in the case of Droop’s model, under control
D (11). It consists in approximating an ideal T-periodic
behavior of interest. In the Droop model for instance, we
have reproduced a situation of periodic substrate stresses,
with the following T-periodic shape for ρi(s) :

s(t) =
{

sM for t ≡ T ≤ τ
0 for t ≡ T > τ

(15)

with sM such that ρi(sM ) ≈ ρmi
. The ratio τ/T is

the proportion of time the microorganisms are fed, and
(T − τ)/T is the proportion of time during which a stress
is imposed to the microorganisms. Such a shape can be
approached as shown in Figure 1, with two steps : a rising
phase and a falling one. The approximation is good if
s(t) ≈ sM for most of the time interval [0, τ ].

Rising phase during time τrise

We choose sin such that ṡ = λ(sM − s) :

sin = s +
1
D

(
λ(sM − s) +

N∑
i=1

ρi(s)xi

)
(16)



Fig. 1. Approaching ideal periodic substrate stresses (15)
(dashed), with a rising and a falling phase (solid)

There is no positivity problem for sin here because sM > s.
Then s(t) = sM (1− e−λt) with s(0) = 0, and with a big λ
we obtain s(t) ≈ sM for most of the time interval [0, τrise]

Falling phase during time τfall = τ − τrise

We choose sin such that ṡ = −γφ(s), with φ(s) <
ρi(s) ∀i ∈ {1, ..., N} , ∀s ∈ [0, sM ]

sin = s +
1
D

(
XT

(
N∑

i=1

xi

XT
ρi(s)

)
− γφ(s)

)
(17)

Since
∑N

i=1
xi

XT
ρi(s) is a convex combination of the ρi(s),

we have for all s : XT

∑N
i=1

xi

XT
ρi(s) ≥ XT mini ρi(s) >

XT φ(s), so that sin > 0 if XT > γ ∀t For having
sin > 0 we need φ(s)γ <

(∑N
i=1

xi

XT
ρi(s)

)
XT . This can

be achieved with γ < min(X?
T , XT (0)) under control (11).

Finally, as we will see in section 5, it is possible to estimate
the falling time τfall with ds

dt = −γφ(s), and to obtain a
periodic s which permits us to approach control (15). By
choosing X?

T big enough and waiting for XT to be close
to X?

T before starting the sin control, γ can be chosen big
and s(t) ≈ 0 is reached fast.

Thus, controls (16) and (17) permit us to achieve periodic
behavior near (15) for s(t).

With control (15) we get approximately the following q̇i :

q̇i = ρi − µi(qi)qi

with ρi(t) =
{

ρmi for t ≡ T ≤ τ
0 for t ≡ T > τ

(18)

and it is now possible to show that
Theorem 5. There exists a unique periodic solution q̄i(t)
to (18). This periodic solution is attractive for any initial
condition qi(0) inside [0, Qmi ]

Proof In the case qi(0) = 0 we have qi(τ) > 0
because µi(qi)qi < ρmi , and qi(τ) > 0 implies qi(T ) > 0
because µi(qi)qi < µmiqi and the decrease is slower than
an exponential decrease with time constant µmi . With
qi(0) = 0 we obtain qi(T ) > qi(0).

In the case qi(0) = Qmi we have qi(τ) = Qmi because
µi(Qmi)Qmi = ρmi , and qi(T ) < Qmi because q̇i =
−µi(qi)qi < 0. With qi(0) = Qmi we obtain qi(T ) < qi(0).

Thus, by continuity of qi(T ) with regard to the initial
condition, there exists an initial condition qi(0) = q̄i(0)
such that q̄i(T ) = q̄i(0) and qi is T -periodic under control
(15).

We can also show that Vi(t) = |qi(t)− q̄i(t)| is decreasing
along the solutions : V̇i(t) = sign(qi(t) − q̄i(t))(q̇i(t) −
˙̄qi(t)) < 0 because sign(q̇i − ˙̄qi) = sign(−µi(qi)qi +
µi(q̄i)q̄i) = −sign(qi − q̄i). Vi being a Lyapunov function
converging to zero, limt→+∞qi(t) = q̄i(t). 2

Therefore, with control (15), q̄i(t) attracts all solutions
qi(t), qi converges towards a T -periodic behavior, and so
does µi(qi(t)). We will see in section 5.2 that this periodic
behavior, caused by the periodic stresses, can lead us to a
new competitiveness criterion.

5. SIMULATIONS WITH THREE SPECIES

These simulations have been carried out on the Droop
model (4) with control (11) so that the total biomass
concentration converge toward X?

T .

We have used Michaelis-Menten absorption rates ρi(s) and
Droop’s growth rates µi(qi).

ρi(s) = ρmi

s

s + Ksi

µi(qi) = µ̄i

(
1− Kqi

qi

) (19)

And the following parameters for the species, whose ap-
proximate values come from I. Vatcheva, H. de Jong, O.
Bernard, N. J.I. Mars [2006] :

species Ks(µmol/L) ρm(10−9 · (µmol/(µm)3)/day)

1 0.05 9

2 0.01 14

3 0.15 8

species Kq(10−9 · µmol/(µm)3) µ̄(1/day)

1 1.5 1.5

2 5 6

3 2 3

species µm(1/day) µm ·Qm/Kq(1/day)

1 1.2 6

2 1.91 2.8

3 1.71 4

5.1 Selection of the biggest µmi

We have used a big constant sin = 10µmol/L and a small
X?

T = 1·109 ·(µm)3/L, as was previously advised in section
3.3. We have thus obtained ṡ ≈ D(sin−s) and s converges
to sin with µi(Qi(sin)) ≈ µmi

.

Figure 2 shows the result of the simulation, where species
2 with biggest µmi

excludes all others.



Fig. 2. Simulation of the selection of the species with
biggest µmi

Lines & species : Solid -1, Dashed -2, Dotted -3

5.2 Selection under periodic substrate stresses

For these simulations we have used controls (16) and
(17) to approximate ideal control (15), with T = 1day,
X?

T = 400 · 109(µm)3/L, and XT (0) = 220 · 109(µm)3/L

For the rising phase we have used sM = 5µmol/L with
sM � Ksi

so that ρi(sM ) ≈ ρmi
, and λ = 1000 so that s

rises fast.
For the falling phase we have used γ = 100 ·109(µm)3/L <
min(XT (0), X?

T ), and φ(s) = ρmφ

s
s+Ksφ

with ρmφ
= 5 ·

109µmol/(µm)3 < ρmi and Ksφ
= 1µmol/L > Ksi so

that φ(s) < ρi(s) ∀i ∈ {1, ..., N} , ∀s. In section 4 We
have obtained ṡ = −γφ(s). The fall is thus equivalent to
the consumption of the substrate by a virtual species with
absorption parameters ρmφ

and Ksφ
, and with biomass

concentration γ.

We know how to predict τfall, until s reaches a small value
s0 = 0.005µmol/L :
ds
dt = −γρmφ

s
s+Ksφ

leads us to dt = − 1
γρmφ

(1 +
Ksφ

s )ds

and to τfall = 1
γρmφ

(
sM − s0 + Ksφ

ln
(

sM

s0

))
It is thus possible to choose τrise so that τ = τfall + τrise,
and to approach control (15).

With (18) and with functions (19), after some algebraic
calculus, we have demonstrated that the internal substrate
storages qi converge towards T -periodic functions :

q̄i(t) =

{
Qmi

(
1− e−µ̄it

)
+ q̄i(0)e−µ̄it if 0 ≤ t ≡ T ≤ τ

Kqi

(
1− e−µ̄i(t−τ)

)
+ q̄i(τ)e−µ̄i(t−τ) else

with q̄i(0) = Qmi − (Qmi −Kqi)
1− e−µ̄i(T−τ)

1− e−µ̄iT

and q̄(τ) = Kqi
+ (Qmi

−Kqi
)
1− e−µ̄iτ

1− e−µ̄iT

(20)

with limt→+∞ qi(t) = q̄i(t) : the growth rate functions
µi(qi(t)) become T -periodic.

We have then calculated :

µmeani
=

1
T

µmi

µ̄i
ln

1 +
Qmi/Kqi

1
1−e−µ̄iτ + (Qmi

/Kqi
)e−µ̄iT−1

1−e−µ̄iT

(21)

Criterion 6. Periodic stresses’ Competitiveness Criterion
Under control (15),
with τ ≈ T the species with biggest µmeani ≈ µmi excludes
all others from the chemostat;
with τ � T and τ � 1

µ̄i·Qmi
/Kqi

the species with biggest
T
τ µmeani

≈ µmi

Qmi

Kqi
excludes all others from the chemo-

stat.

where Qmi

Kqi
represents the capacity of the species to in-

crease its internal substrate storage.

Figure 3 shows that different species can be selected
with different environmental condition τ , because for each
species i here, there exists a τ value such that µmeani is
higher than the other species’ mean growth.

Fig. 3. µmeani
(τ) for the three species. The species with

biggest µmeani will be selected. It is thus possible to
select each of the three secies with different τ
Lines & species : Solid -1, Dashed -2, Dotted -3

Finally, Figure 4 presents the simulations.

6. CONCLUSION

This work shows that it is in theory possible to select
species exhibiting a desired feature in the chemostat.
Moreover the selection criterion, which is the maximum
growth rate under given environmental conditions, seems
promising for various biotechnological applications.

The selection occurs because the total biomass concen-
tration XT =

∑N
i=1 xi is upper bounded. It is possible to

bound XT by other means than controlling D (for instance
with the light). It is also most certainly possible to find new
selection criteria by changing the environmental conditions
with D, sin, and with other controls such as an inhibitor’s
concentration.

This selection method makes it possible to select quite
easily a species for its study or culture. It could be used
to identify species which grow in hostile conditions, to
amplify and verify the presence of a species in a medium,
or to select a species which is interesting for a specific
biotechnological objective.

This work could be extended to models describing preda-
tion or parasitism by other types of microorganisms, or



Fig. 4. Simulations of competition in the Droop model,
under controls (11), (16) and (17).
top : τ = 0.1T , middle : τ = 0.5T , bottom : τ = 0.9T
Lines & species : Solid -1, Dashed -2, Dotted -3

agressive interactions between the species such as the pro-
duction of a chemical which inhibates other species growth
(see A.G. Fredrickson and G. Stephanopoulos [1981] for a
presentation of factors which can mitigate the severity of
the competition).
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