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Chapter 1

Basic concepts

All the definitions given in this section are mostly standard and may be found in several books
on graph theory like [1, 2, 3].

1.1 Graphs
A graph G is a pair (V,E) of sets satisfying E ⊂ [V ]2, where [V ]2 denotes the set of all 2-element
subsets of V . We also assume tacitly that V ∩E = /0. The elements of V are the vertices of the
graph G and the elements of E are its edges. The vertex set of a graph G is referred to as V (G)
and its edge set as E(G). An edge {x,y} is usually written as xy. A vertex v is incident with an
edge e if v ∈ e. The two vertices incident with an edge are its endvertices. An edge is said to
join or link its two endvertices. Note that in our definition of graphs, there is no loops (edges
whose endvertices are equal) nor multiple edges (two edges with the same endvertices).

Sometimes we will need to allow multiple edges. So we need the notion of multigraph
which generalises the one of graph. A multigraph G is a pair (V,E) where V is the vertex
set and E is a collection of elements of [V ]2. In a multigraph G, we say that xy is an edge of
multiplicity m if there are m edges with endvertices x and y. We write µ(x,y) for the multiplicity
of xy, and write µ(G) for the maximum of the edges multiplicities in G.

The complement of a graph G = (V,E) is the graph G with vertex set V and edge set [V ]2\E.
A graph is empty if it has no edges. A graph is complete of for all pair of distinct vertices u,v,
{u,v} is an edge. The complete graph on n vertices is denoted Kn. Trivially, the complement of
an empty graph is a complete graph.

A subgraph of a graph G is a graph H such that V (H) ⊂ V (G) and E(H) ⊂ E(G). Note
that since H is a graph we have E(H) ⊂ E(G)∩ [V (H)]2. If H contains all the edges of G
between vertices of V (H), that is E(H) = E(G)∩ [V (H)]2, then H is the subgraph induced by
V (H) = S. It is denoted G〈S〉. The notion of submultigraph and induced submultigraph are
defined similarly. If S is a set of vertices, we denote by G− S the (multi)graph induced by
V (G)\S. For simplicity, we write G− v rather than G−{v}. For a collection F of elements of
[V 2], we write G\F = (V (G),E(G)\F) and G∪F = (V (G),E(G)∪F). As above G\{e} and
G∪{e} are abbreviated to G\ e and G∪ e respectively. If H is a subgraph of G, we say that G
is a supergraph of H.
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6 CHAPTER 1. BASIC CONCEPTS

Let G be a multigraph. When two vertices are the endvertices of an edge, they are adjacent
and are neighbours. The set of all neighbours of a vertex v in G is the neighbourhood of G and
is denoted NG(v), or simply N(v). The degree dG(v) = d(v) of a vertex is the number of edges
to which it is incident. If G is a graph, then this is equal to the number of neighbours of v.

Proposition 1.1. Let G = (V,E) be a multigraph. Then

∑
v∈V

d(v) = 2|E|.

Proof. By counting inc the number of edge-vertex incidence in G. On the one hand, every edge
has exactly two endvertices, so inc = 2|E|. On the other hand, every vertex v is an ednvertex of
d(v) edges, so inc = ∑v∈V d(v).

The maximum degree of G is ∆(G) = max{dG(v) | v ∈ V (G)}. The minimum degree of G
is δ(G) = max{dG(v) | v ∈ V (G)}. If the graph G is clearly understood, we often write ∆ and
δ instead of ∆(G) and δ(G). A graph is k-regular if every vertex has degree k. The average
degree of G is Ad(G) = 1

|V (G)|∑v∈V (G) d(v) = 2|E(G)|
|V (G)| . The maximum average degree of G is

Mad(G) = max{Ad(H) | H is a subgraph of G}.
Let G be a graph. A stable set or independent set in G is a set of pairwise non-adjacent

vertices. In other words, a set S is stable if G〈S〉 is empty. The stability number of G, denoted
α(G) is the maximum cardinality of a stable set in G. Conversely, a clique in G is a set of
pairwise adjacent vertices. In other words, a set S is a clique if G〈S〉 is a complete graph. The
clique number of G, denoted ω(G) is the maximum cardinality of a stable set in G.

1.2 Digraphs
A multidigraph D is a pair (V (D),E(D)) of disjoint sets (of vertices and arcs) together with
two maps tail : E(D)→V (D) and head : E(D)→V (D) assigning to every arc e a tail, tail(e),
and a head, head(e). The tail and the head of an arc are its endvertices. An arc with tail u and
head v is denoted by uv and is said to leave u and to enter v; we say that u dominates v and
write u→ v; we also say that u and v are adjacent. Note that a directed multidigraph may have
several arcs with same tail and same head. Such arcs are called multiple arcs. A multidigraph
without multiple arcs is a digraph. It can be seen as a pair (V,E) with a E ⊂V 2. An arc whose
head and tail are equal is a loop. All the digraphs we will consider in this monograph have no
loops.

The multigraph G underlying a multidigraph D is the multigraph obtained from D by re-
placing each arc by an edge. Note that the multigraph underlying a digraph may not be a graph:
there are edges uv of multiplicity 2 whenever uv and vu are arcs of D. Subdigraphs and submul-
tidigraphs are defined similarly to subgraphs and submultigraphs.

Let D be a multidigraph. If uv is an arc, we say that u is an inneighbour of v and that v is an
outneighbour of u. The outneighbourhood of v in D, is the set N+

D (v) = N+(v) of outneighbours
of v in G. Similarly, the inneighbourhood of v in D, is the set N−D (v) = N−(v) of inneighbours
of v in G. The outdegree of a vertex v is the number d+

D (v) = d+(v) of arcs leaving v and the
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indegree of v is the number d−D (v) = d−(v) of arcs entering v. Note that if D is a digraph then
d+(v) = |N+(v)| and d−(v) = |N−(v)|. The degree of a vertex v is d(v) = d−(v)+ d+(v). It
corresponds to the degree of the vertex in the underlying multigraph.

Proposition 1.2. Let D = (V,E) be a digraph. Then

∑
v∈V

d+(v) = ∑
v∈V

d−(v) = |E|.

The maximum outdegree of D is ∆+(D) = max{d+(v),v∈V (D)}, the maximum indegree of
D is ∆−(D) = max{d−(v),v ∈V (D)}, and the maximum degree of D is ∆(D) = max{d(v),v ∈
V (D)}. When D is clearly understood from the context, we often write ∆+, ∆− and ∆ instead
of ∆+(D), ∆−(D) and ∆(D) respectively.

The converse of the digraph D =(V,E) is the digraph D =(V (D),E) where E = {(v,u) | (u,v)∈
E}. A digraph D is symmetric if D = D.

An orientation of a graph G is a digraph D obtained by substituting each edge {x,y} by
exactly one of the two arcs (x,y) and (y,x). An oriented graph is an orientation of graph.

1.3 Walks, paths, cycles
Let G be a multigraph. A walk in G is a finite (non-empty) sequence W = v0e1v1e2v2 . . .ekvk
alternating vertices and edges such that, for 1 ≤ i ≤ k, vi−1 and vi are the endvertices of ei.
The vertex v0 is called start of W and vk terminus of W . They both are endvertices of W . The
vertices vi,1≤ i≤ k−1 are the internal vertices. One says that W links v0 to vk and that W is a
(v0,vk)-walk.

Let A and B be to set of vertices. An (A,B)-path is a path whose start is in A, whose end
is in B and whose internal vertices are not in A∪B. We usually abbreviate ({a},B)-path to
(a,B)-path, (A,{b})-path to (A,b)-path and ({a},{b})-path to (a,b)-path.

If W1 = u0e1u1e2u2 . . .epup and W2 = v0 f1v1 f2v2 . . . fqvq are two walks such that up = v0, the
concatenation of W1 and W2 is the walk u0e1u1e2u2 . . .epup f1v1 f2v2 . . . fqvq. The concatenation
of k walks W1, . . . ,Wk such that for all 1 ≤ i ≤ k− 1 the terminus of Wi is the start of Wi+1 is
then defined inductively as the concatenation of W1 and the concatenation of W2, . . . ,Wk.

If G is a graph, then the walk W is entirely determined by the sequence of its vertices. Very
often, we will then denote W = (v0,v1, . . . ,vk). The length of W is k, which is its number of
edges (with repetitions). A walk is said to be even (resp. odd) if its length is even (resp. odd).

A walk whose start and terminus are the same vertex is closed. A walk whose edges are all
distinct is a trail. A closed trail is a tour. A walk whose vertices are all distinct is a path and a
walk whose vertices are all distinct except the start and the terminus is a cycle. Observe that a
path is necessarily a trail and a cycle is a tour.

A path may also be seen as a non-empty graph P = (V,E) of the form V = {x0,x1, . . . ,xk}
and E = {x0x1,x1x2, . . . ,xk−1xk} where the vertices xi are all distinct. Similarly, a cycle may be
seen as a non-empty graph C =(V,E) of the form V = {x0,x1, . . . ,xk} and E = {x0x1,x1x2, . . . ,xk−1xk,xkx0}
where the xi are all distinct.
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Proposition 1.3. Let G be a multigraph.

(i) There is a (u,v)-walk in G if and only if there is a (u,v)-path.

(ii) An edge is in a closed trail if and only if it is in a cycle.

(iii) There is an odd closed walk, if and only if there is an odd cycle.

Proof. (i) Let P = v0e1v1e2v2 . . .ekvk be a shortest (u,v)-walk. Then P is a path. Indeed suppose
for a contradiction that there exists i < j such that vi = v j. Then v0e1 . . .eivie j+1 . . .ekvk is a
(u,v)-walk shorter than P, a contradiction.

(ii) Let C = ve1v1e2v2 . . .ekv be a shortest closed trail. Then C is a cycle. Indeed suppose
for a contradiction that there exists 1≤ i < j < k such that vi = v j. Then v0e1 . . .eivie j+1 . . .ekv
is a (u,v)-trail shorter than C, a contradiction.

(iii) Let C = ve1v1e2v2 . . .ekv be a shortest odd closed walk. Then C is an odd cycle.
Indeed suppose for a contradiction that there exists 1 ≤ i < j < k such that vi = v j. Then
v0e1 . . .eivie j+1 . . .ekv and viei+1 . . .e jv j are shorter closed walks than C. But the sum of the
lengths of these two walks is the length of C and so is odd. So, one of the lengths is odd, a
contradiction.

The distance between two vertices u and v in a multigraph is the length of a shortest (u,v)-
walk or +∞ if such a walk does not exists. It is denoted distG(u,v), or simply dist(u,v) if G
is clearly understood from the context. The proof of (i) in the above proposition shows that a
shortest (u,v)-walk (if one exists) is a (u,v)-path.

The word ”distance” is well chosen because dist is a distance in the mathematical sense, that
is a binary relation which is symmetric (for all u,v ∈ V (G), dist(u,v) = dist(v,u)) and which
satisfies the triangle inequality: for all u,v,w ∈ V (G), dist(u,w) ≤ dist(u,v)+ dist(v,w). See
Exercise 1.12.

In multidigraphs, a directed walk is a finite (non-empty) sequence W = v0e1v1e2v2 . . .ekvk
alternating vertices and arcs such that, for 1 ≤ i ≤ k, vi−1 is the start and vi the terminus of ei.
Directed trail, directed tour, directed path and directed cycle are then defined similarly to trail,
tour, path and cycle. Clearly, Proposition 1.3 has its analog for digraphs. Its proof is left in
Exercise 1.11.

Proposition 1.4. Let D be a multidigraph.

(i) There is a directed (u,v)-walk in D if and only if there is a directed (u,v)-path.

(ii) An edge is in a closed directed trail if and only if it is in a directed cycle.

(iii) There is an odd closed directed walk, if and only if there is an odd directed cycle.

The distance between two vertices in a multidigraph is defined analogously to the distance
in a mutigraph. However, it is no more a distance in the mathematical sense because it is not
symmetric. However it satisfies the triangle inequality. See Exercise 1.12.
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1.4 Connectivity and trees

A graph G is connected if for any two vertices u,v, there exists a (u,v)-path in G.

Proposition 1.5. Let G be a graph and x a vertex of G. The graph G is connected if and only if
for any vertex u in G, there is a (u,x)-path.

The connected components of a graph are its maximal connected subgraph.
A graph with no cycle is a forest. It is also said to be acyclic. A connected forest is a tree.

The leafs of a tree T are the vertices of degree at most 1.

Proposition 1.6. Let G be a graph. If δ(G)≥ 2 then G has a cycle.

Proof. Let P = (v1,v2, . . . ,vk) be a path of maximal length. Since v1 has degree 2 it is adjacent
to a vertex w 6= v2. The vertex w is in P otherwise (w,v1,v2, . . . ,vk) would be a longer path than
P. Thus w = v j for some j > 2 and so (v1,v2, . . . ,v j,v1) is a cycle.

Proposition 1.6 implies that every forest has at least one leaf. In fact, it implies that every
forest has at least two leaves.

Corollary 1.7. Every forest on at least two vertices has at least two leaves.

Proof. By induction on the number of vertices, the result holding trivially for the two forests on
two vertices.

Let F be a tree on n vertices, with n≥ 3. By Proposition 1.6, F has at least one leaf x. The
graph F− x is a forest on n−1 vertices. By the induction hypothesis, it has two leaves y1 and
y2. One of these two vertices, say y, is not adjacent to x since d(x)≤ 1. Hence y is also a leaf of
F .

Corollary 1.8. For every tree T we have |E(T )|= |V (T )|−1.

Proof. By induction on the number of vertices of T , the result holding trivially if T is the unique
tree on one vertex (K1).

Let T be a tree on at least two vertices. By Corollary 1.7, T has a leaf x. Since T is
connected, x has degree at least one, so d(x) = 1. Thus, |E(T − x)| = |E(T )| − 1. By the
induction hypothesis, |E(T − x)| = |V (T − x)| − 1 = |V (T )| − 2. Hence, |E(T )| = |V (T )| −
1.

Proposition 1.9. Let T be a graph. Then the following four statements are equivalent:
(i) T is a tree;
(ii) for any two vertices u,v of T , there exists a unique (u,v)-path;
(iii) T is connected-minimal, i.e. T is connected and T \e is not connected for all e ∈ E(T );
(iv) T is acyclic-maximal, i.e. T is acyclic but T ∪ xy has a cycle for any pair {x,y} of

non-adjacent vertices in T .
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Proof. (i)⇒(ii): By the contrapositive. Suppose that there exist two distinct (u,v)-paths P =
(p1, p2, . . . , pk) and Q = (q1,q2, . . . ,ql). Let i be the smallest index such that pi+1 6= qi+1 and
let j be the smallest integer greater than i such that p j ∈ {qi+1,qi+2, . . . ,ql}. Let j′ be the index
for which q j′ = p j. Then (pi, pi+1, . . . , p j,q j′−1,q j′−2, . . . ,qi) is a cycle.

(ii)⇒(iii): If there exists a unique path between any two vertices, then T is connected. Let
e = xy be an edge. Then (x,y) is the unique (x,y)-path in T . Thus T \ e contains no (x,y)-path
and so T is not connected. Hence T is connected-minimal.

(iii)⇒(i): By the contrapositive. Suppose that T is not tree. If T is not connected then it
is not connected-minimal. Thus we may assume that T is connected and so T contains a cycle
C. Let e be an edge of C. Let us show that T \ e is connected which implies that T is not
connected-minimal. Let x and y be two vertices. Since T is connected there is an (x,y)-path P
in T . If P does not contain e then it is also a path in T − e. If P contains e then replacing e by
C \ e in P, we obtain an (x,y)-walk in T \ e. By Proposition 1.3, there is an (x,y)-path in T \ e.

(i)⇒(iv): If T is a tree then it is acyclic. Let us show that it is acyclic-maximal. Let x and
y be two non-adjacent vertices. Then in T there is an (x,y)-path P since T is connected. The
concatenation of P and (y,x) is a cycle in T ∪ xy.

(iv)⇒(i): By the contrapositive. Suppose that T is not a tree. If it is not acyclic then it is not
acyclic-maximal. Thus we may assume that T is not connected. So there are two vertices x and
y for which there is no (x,y)-path in T . Let us show that T ∪ xy is acyclic which implies that
T is not acyclic-maximal. Indeed if there were a cycle C, then it must contain xy because T is
acyclic. Then C \ xy would be an (x,y)-path in T , a contradiction.

A subgraph H of a graph G is spanning if V (H) = V (G).

Corollary 1.10. A graph G is connected if and only if it has a spanning tree.

Proof. By induction on the number of edges of G. If G is connected-minimal, then by Propo-
sition 1.9, G is a tree and thus a spanning tree of itself. If G is not connected-minimal, then by
definition there is an edge e such that G\ e is connected. By the induction hypothesis, G\ e has
a spanning tree which is also a spanning tree of G.

1.5 Strong connectivity and handle decomposition

A digraph is strongly connected or strong if for any two vertices u,v there is a directed (u,v)-
path. Observe that swapping u and v implies that there is also a directed (v,u)-path. The strongly
connected components of a digraph G are its maximum strongly connected subgraphs.

The following proposition follows easily from the definition.

Proposition 1.11. Let D be a strongly connected digraph. Then every arc is in a directed cycle.

Proof. Let uv be an arc. Since D is strongly connected then there is a directed (v,u)-path in D.
Its concatenation with (u,v) is a directed cycle containing uv.
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Definition 1.12. The union of two digraphs D1 and D2 is the digraph D1∪D2 defined by V (D1∪
D2 = V (D1)∪V (D2) and E(D1∪D2) = E(D1)∪E(D2).

Let D be a digraph and H be a subdigraph of D. A H-handle is a directed path or cycle
(all vertices are distinct except possibly the two endvertices) such that its endvertices are in
V (H) and its internal vertices are in V (D)\V (H). A handle decomposition of D is a sequence
(C,P1, . . . ,Pk) such that:

• C = D0 is a directed cycle;

• for all 1≤ i≤ k, Pi is a Di−1-handle and Di = Di−1∪Pi;

• Dk = D.

The following proposition follows easily from the definitions.

Proposition 1.13. Let H be a strongly connected subdigraph of D. For any H-handle P, then
H ∪P is strongly connected.

Proof. Left in Exercise 1.26

Since every strongly connected digraph contains a directed cycle (Proposition 1.11), an easy
induction immediately yields the following.

Corollary 1.14. Every digraph admitting a handle decomposition is strongly connected.

The converse is also true: every strongly connected digraph admits a handle decomposition.
In addition, it has a handle decomposition starting at any directed cycle.

Theorem 1.15. Let D be a strongly connected digraph and C a directed cycle in D. Then D has
a handle decomposition (C,P1, . . . ,Pk).

Proof. Let H be the subdigraph of D that admits a handle decomposition (C,P1, . . .Pk) with
the maximum number of arcs. Since every arc xy in E(D) \E(H) with both endvertices in
V (H) is a H-handle, H is an induced subdigraph of D. Assume for a contradiction that H 6= D.
Then V (H) 6= V (D). Since D is strongly connected, there is an arc vw with v ∈ V (D) and
w ∈V (D)\V (H). Since D is strongly connected, D contains a (w,H)-path P. Then, (v,w,P) is
a H-handle in D, contradicting the maximality of H.

1.6 Eulerian graphs
A trail in a graph G is eulerian G if it goes exactly once through every edge of G. A graph is
eulerian if it has an eulerian tour.

Theorem 1.16 (Euler 1736). A connected graph is eulerian if and only if all its vertices have
even degree.
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Proof. The condition can easily seen to be necessary. Indeed if a vertex appears k times (or
k +1 if it appears as start and terminus) of an eulerian tour, it is incident to exactly 2k edges in
the tour and so it has degree 2k.

Let us now show that the condition is sufficient. The proof follows the lines of the following
algorithm.

Algorithm 1.1.

1. Initialise W := v for an arbitrary vertex v.

2. If all the edges of G are in W then return W .

3. If not an edge is not in W = v0e1v1 . . .elvl ,

4. If an edge incident to vl , say e = vlvl+1 is not in W , then W := v0e1v1 . . .elvlevl+1; go to 2.

5. If not all the edges incident to vl are in W . Since there is an even number of them, v0 = vl .
Then G has an edge e /∈W incident to a vertex vi in W , for it is connected. Let e = viu be
this edge.
W := viei+1vi+1 . . .elvle1v1 . . .eivieu; go to 2.

1.7 Exercises
Exercise 1.1. Show that Kn, the complete graph on n vertices, has

(n
2

)
edges.

Exercise 1.2. Build a cubic graph with 11 vertices. (cubic: d(v) = 3 for all vertex v.)

Exercise 1.3. Show that every graph has two vertices of same degree.

Exercise 1.4. Let G be a graph on at least 4 vertices such that for every vertex v, G−v is regular.
Show that G is either a complete graph or an empty graph.

Exercise 1.5. Let n and k be two integers such that n > k and H be a graph on n vertices. Show
that if |E(H)|> (k−1)(n− k/2) then H has a subgraph of minimum degree at least k.

Exercise 1.6 (Jealous husbands).
Three jealous husbands and their wives want to cross a river. But they just have a small boat
in which at most two persons can fit. None of the husbands would allow his wife to be with
another man unless he is present. Draw the graph of all the possible distributions across the
river and advice the walkers on the method to cross the river.

Exercise 1.7 (Dog, goat, cabbage).
A man wants to cross a river with his dog, his goat and his (huge) cabbage. Unfortunately, the
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man can cross the river with at most one of them. Furthermore, for obvious reasons, the man
cannot leave alone on one bank neither the goat and the dog nor the cabbage and the goat. Draw
the bipartite graph of all permissible situations. How does the man do to cross the river?

Exercise 1.8. Let u and v be two vertices of a graph G. Show that, if u and v have odd degree
and all the other vertices have even degree, then there is a (u,v)-path in G.

Exercise 1.9. Show that in a graph two paths of maximum length have a vertex in common.

Exercise 1.10. Find what is wrong in the following statement: An edge is in a closed trail if
and only if it is in a cycle.

Exercise 1.11. Show Proposition 1.4.

Exercise 1.12. 1) Show that of G is a multigraph then distG is symmetric and satisfies the
triangle inequality.

2) Show that of D is a multidigraph then distD satisfies the triangle inequality but may be
non-symmetric.

Exercise 1.13. Let D be a digraph without directed cycles. Show that D has a vertex with
indegree zero.

Exercise 1.14. Let G = (V,E) be a graph. Show the following.
(1) If |E| ≥ |V | then G contains a cycle.
(2) If |E| ≥ |V |+4 then G contains two edge-disjoint cycles.

Exercise 1.15. Let G be a graph of minimum degree at least 3. Show that G contains an even
cycle.

Exercise 1.16. Let G be a connected graph. Show that there exists an orientation of G such that
the outdegree of every vertex is even if and only if G has an even number of edges.

Exercise 1.17. Let G be a graph. Its diameter is the maximum distance between two vertices.

1) Show that if G has a diameter at least 3 then its complement G has diameter at most 3.

2) Deduce that every self-complementary graph (G = G) has diameter at most 3.

3) For k = 1,2,3, give an example of a self-complementary graph with de diameter k.

Exercise 1.18. Let T be a tree on at least two vertices. Show that if T has no vertex of degree
2 then T has at least |V (T )|/2+1 leaves.

Exercise 1.19 (Helly property for trees). Let T1, . . . ,Tk be subtrees if a tree T . Show that if
Ti∩Tj 6= /0 for all i, j, then

Tk
i=1 Ti 6= /0.

Exercise 1.20. Is the complement of a non-connected graph always connected?
Is the complement of a connected graph always non-connected?
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Exercise 1.21. 1) Show that every connected graph G has a vertex x such that G−x is connected.
2) Does the same hold for strongly connected digraphs?

Exercise 1.22. Let G be a connected graph and e an edge of G. Show that G has a spanning
tree containing e.

Exercise 1.23. A graph is cherry-free if every vertex has at most one neighbour of degree 1.
Prove that a connected cherry-free graph has two adjacent vertices u and v such that G−{u,v}
is connected.
Hint: Consider a path of maximum length.

Exercise 1.24. Let G be a connected graph and (V1,V2, . . . ,Vn) a partition of V (G) such that
G〈Vi〉 is connected for all 1≤ i≤ n. Show that there exists two indices i and j such that G−Vi
and G−Vj are connected.

Exercise 1.25. The aim of this exercise is to prove that if a graph has n vertices, m edges and k
connected components then n− k ≤ m≤ 1

2(n− k)(n− k +1).
1) Let G be a graph on n vertices with m edges and k connected components.

a) Show that if G is connected then m≥ n−1.

b) Deduce that if G has k connected components then m≥ n− k.

2) Suppose now that G is a graph on n vertices and k connected components with the maximum
number of edges.

a) Show that all the connected components of G are complete graphs.

b) Show that if G has (at least) two connected components then one of them has a unique
vertex.

c) Deduce that G has 1
2(n− k)(n− k +1) edges.

Exercise 1.26. Prove Proposition 1.13.

Exercise 1.27. Let D be a strongly connected digraph and D′ a strongly connected subdigraph
of D. Show that any handle decomposition (C,P1, . . . ,Pk) of D′ may be extended into a handle
decomposition (C,P1, . . . ,Pk, . . . ,Pl) of D.

Exercise 1.28. Let D be a strongly connected digraph of minimum outdegree 2. Prove that
there exists a vertex v such that D− v is strongly connected.

Exercise 1.29. Show that a graph has an eulerian trail if and only if it has zero or two vertices
of odd degree.

Exercise 1.30. Let G = (V,E) be a graph such that every vertex has even degree and |E| ≡ 0[3].
Prove that E can be partitionned into l = |E|

3 sets E1, . . . ,El such that for all 1≤ i≤ l, the graph
induced by Ei is either a path of length 3 or cycle of length 3.
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Chapter 2

Searches in graphs and digraphs

2.1 Searches and connectivity in graphs
Finding the connected component of a vertex v in a graph is not difficult. For this purpose, we
need a list of edges to be explored, initially containing all edges, and a list of already explored
vertices, initially containing only v. At each step, a new edge ab is explored with a already
explored and b is added in the list of explored vertices if it had not been explored yet. When the
procedures stops, the set of explored vertices is the connected component of v. This algorithm
may be modified to return a spanning tree T of the connected component of v.

Algorithm 2.1 (Search).

1. Mark v and initialize L to the set of all edges incident to v; V (T ) := {v}, E(T ) := /0.

2. If L = /0, then return T ; else let ab ∈ L. L := L\{ab}.

3. If b is not marked, then mark it; V (T ) := V (T )∪{b}; E(T ) := E(T )∪{ab}; add all the
edges incident to b to L.

4. Go to 2.

There are two well-known searches which correspond to two different orderings of the
edges:

- the breadth-first search (BFS) (Algorithm 2.2) explores first the neighbours of v, then the
neighbours of its children;

- the depth-first search (DFS) (Algorithm 2.3) explores first all the vertices of a branch
pending in v.

The difference between these two approaches is that the vertices are stored either in a queue
(FIFO) or in a stack (LIFO). A queue is just a list which is updated by either adding a new

17
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element to one end (its tail) or removing an element from the other end (its head). A stack is
simply a list, one end of which is identified as its top; it may be updated either by adding a new
element as its top or else by removing its top element.

The following algorithms also compute the connected component C of v and a spanning tree
of C.

Algorithm 2.2 (Breadth-First Search).

1. Mark v, V (T ) := {v}, E(T ) := /0 and initialize a queue Q to v.

2. If F = /0 then return T . Else, remove the the vertex u fromt the head of Q.

3. For every unmarked vertex w adjacent to u, V (T ) := V (T )∪{w}; E(T ) = E(T )∪{uw};
add w to the tail of Q and mark w.

4. Go to 2.

Algorithm 2.3 (Depth-First Search).

0. For every vertex, L(u) := N(u).

1. Mark v; V (T ) := {v}; E(T ) := /0 and initialize a stack P to v.

2. If P = /0, then return T . Else, let u be the vertex on top of the stack P.

3. If L(u) = /0, then remove u from the top of the stack P and go to 2.

4. Else, remove a vertex w from L(u).

5. If w is marked go to 3. Else, V (T ) := V (T )∪{w}; E(T ) = E(T )∪{uw}; add w on top of
P and mark w.

6. Go to 2.

A tree obtained by running a breadth-first search is called a breadth-first search tree or BFS-
tree. Similarly, a tree obtained by running a depth-first search is called a depth-first search tree
or DFS-tree. If the search is run from vertex v, this vertex is called the root of the search tree.

Observe that in Algorithms 2.1, 2.2 and 2.3 every edge is examined at most twice (once per
endvertex). These algorithms can be modified in order to compute all the connected components
of a graph so that every edge is examined at most twice. For this purpose, while some vertex
does not belong to a connected component (i.e., has not been marked), it is sufficient to compute
its connected component.
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2.1.1 Distance in graphs
A nice property of a breadth-first search tree is that is can give the distance from the root r
to all other vertices. Therefore we need at each vertex a value l(u), called level of u, which
corresponds to distT (r,u) as well as distG(r,u) as we will show later. Hence the following
algorithm is the following:

Algorithm 2.4 (Distance from r).

1. Mark r, l(r) := 0 and initialize a queue Q to v. [[ V (T ) := {v}; E(T ) := /0; ]]

2. If F = /0 then return l. Else, remove the first vertex u of Q.

3. For every unmarked vertex w adjacent to u, l(w) := l(u) + 1; add w to Q and mark w.
[[V (T ) := V (T )∪{w}; E(T ) = E(T )∪{uw}; ]]

4. Go to 2.

Observe that the construction of the tree T (operation between brackets at Step 1 and 3) is
practically useless. It just help us to show that the function l has the properties we announced.
The first ones justifies our referring to l as the level function.

Theorem 2.1. Let r be a vertex of a connected graph G and T be a BFS-tree (as constructed by
Algorithm 2.4). Then:

(i) for every vertex v of G, l(v) = distT (r,v);

(ii) every edge of G joins vertices on the same or consecutive levels of T ; that is

|l(u)− l(v)| ≤ 1, for all uv ∈ E(G).

Proof. The proof of (i) is left to the reader in Exercise 2.1. To establish (ii), it suffices to prove
that if uv ∈ E(G) and l(u) < l(v), then l(u) = l(v)−1.

We first establish, by induction on l(u), that if u and v are any two vertices such that l(u) <
l(v), then u joined Q before v. This evident if l(u) = 0 , because u is then the root r of T .
Suppose that the assertion is true whenever l(u) < k, and consider the case l(u) = k, where
k > 0. Let x be the predecessor of u, that is the vertex which is explored when we add u to
Q. Then it follows from line 3 of Algorithm 2.4 that l(x) = l(u)− 1. Similarly, if y is the
predecessor of v then l(y) = l(v)− 1. By induction, x joined Q before y. Therefore u being a
neighbour of x, joined Q before v.

Now suppose that uv ∈ E(G) and l(u) < l(v). If u is the predecessor of v, then l(u) =
l(v)−1, again by line 3 of Algorithm 2.4. If not, let y be the predecessor of v. Because v was
added to T by the edge yv, and not the edge uv, the vertex y joined Q before u, hence l(y)≤ l(u)
by the claim established above. Therefore l(v)−1 = ly)≤ l(u)≤ l(v)≤ l(v)−1, which implies
l(u) = l(v)−1.
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The following theorem shows that Algorithm 2.4 runs correctly.

Theorem 2.2. Let T be a BFS-tree of a connected graph G, with root r. Then:

distT (r,v) = distG(r,v), for all v ∈V (G).

Proof. Clearly, distT (r,v)≥ distG(r,v) because T is a subgraph of G.
Let us establish the opposite inequality by induction on the length of a shortest (r,v)-path,

the proposition holding trivially when the length is 0.
Let P be a shortest (r,v)-path in G, where v 6= r, and let u be the predecessor of v on

P. The (r,u)-subpath of P is a shortest (r,u)-path, and dG(r,u) = dG(r,v)− 1. By induction,
l(u)≤ dG(r,u), and by Theorem 2.1-(ii), l(v) = l(u)≤ 1. Therefore

distT (r,v) = l(v)≤ l(u)+1≤ dG(r,u)+1 = dG(r,v).

2.2 Searches and strong connectivity in directed graphs
One can explore digraphs in much the same way as graphs, but by growing arborescences rather
than (rooted trees). An arboresence is an orientation of a rooted tree in which all the arcs are
directed from the root to the leaves. It can be seen as a digraph in which every vertex has
indegree 1 except one called the root which has indegree 0. As with search in graph, search in
digraph may be refined by restricting the choice of the arc to be added at each stage. In this
way, we obtain directed versions of breadth-first search and depth-first search. We now discuss
how search can be applied to find the strongly connected components of a digraph.

To test if a digraph D = (V,E) is strongly connected, one has to check for every pair u,v of
vertices if there is a (u,v)-dipath. Checking if such a path exists can be done by performing a
search, so running

(|V (D)|
2

)
searches will do the job. However running a search from a vertex u

finds all the vertices v that can be reached from u. So, in fact, one just need to run at most |V |
searches (one per vertex) yielding a total time O(|V ||E|).

The following proposition will yield an algorithm that test if a digraph is strong by running
only two searches.

Proposition 2.3. Let D be a digraph and v a vertex of D. D is strongly connected if and only if,
for every u 6= v, there are a (u,v)-path and a (v,u)-path.

Proof. If D is strongly connected, by definition, for every u 6= v, there are a (u,v)-path and a
(v,u)-path.

Let us assume now that for every u 6= v, there are a (u,v)-path and a (v,u)-path. Let us show
that D is strongly connected. Let u and w be two distinct vertices of D. There are a (u,v)-path
P and a (v,w) path Q the concatenation of which is a (u,w)-walk. By Proposition 1.3, there is a
(u,w)-path.
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We now describe an algorithm that computes the strongly connected components of a vertex
v of a digraph. It is based on two searches starting from v, the first one in D and the reverse
D̄ of D. During the first search, the vertices u reachable from v are marked 1. During the
second search the vertices u from which v can be reached marked 2 and included in the strongly
connected component of v if they are already marked 1 (See Figure 2.1).

Algorithm 2.5 (Strongly connected component).

1. Search D starting from v marking the vertices with 1.

2. Search D̄ starting from v marking the vertices with 2.

3. Return the vertices marked with 1 and 2.

1
1

1 1

1

1

1

1

1

2

2

2

1

1

1

1,2

1,2

1,21,2

1,2

1,2

vv v

Digraph D State after second search

component of v.
Vertices in the strongly connected

State after first search

Figure 2.1: Execution of Algorithm 2.5

Contrary to Algorithm 2.1, Algoritm 2.5 does not give all strongly connected components
of D in a single search examining each edges twice. Indeed, let us consider the digraph D with
V (D) = {v1,v2, . . . ,vn} andE(D) = {(vi,v j) | i < j}. The components consist of each {vi}.
Hence, |V | executions of Algoritm 2.5 must be done. Moreover, at each execution, all edges are
considered.

2.2.1 Computing strongly connected components in one search
We now describe an algorithm that computes all strongly connected components of a digraph
in time O(|E|). It is a modified depth-first search in which two extra values are stored and
updated. When a vertex is explored u it becomes active and is associated to two values l(u) and
b(u). The first one l(u), called label of u, corresponds to the order of appearance of u during the
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search. It will never change. A vertex w such that l(w)≥ l(u) is called a successor of u. A key
ingredient of the algorithm is that as long as u is active, there is a directed (u,w)-path to each of
its successors w. The second value b(u) corresponds to the smallest label of a vertex reachable
from u in the subdigraph induced by the explored arcs. Thus it needs to be updated when new
arcs are explored.

Algorithm 2.6 (All Strongly Connected Components).

0. Initialize i to 0.

1. If all vertices are marked, then terminate.

2. Else i := i+1.

3. Let u be an unmarked vertex. l(u) := i, b(u) := i, and u becomes active.

4. If at least one arc leaving u, say (u,v), is not marked, then do

4.1 Mark (u,v).

4.2 If v has already been explored and is active, then update b(u) : b(u) :=
min(b(u),b(v)).

4.3 Else v is a new vertex. v becomes active; i := i+1; l(v) := i; b(v) := l(v); u := v.

4.4 Go to 4.

5. Else, all arcs leaving u are marked, the exploration of u is over:

5.1 If b(u) = l(u) then all active successors of u induce a strongly connected component:
return it and all its vertices become inactive; Go to 1.

5.2 Else b(u) < l(u). Let w be the vertex from which u has been explored. Update b(w) :
b(w) := min(b(w),b(u)); u := w; Go to 4.

Correctness of Algorithm 2.6: We will show by induction the following three points.

1) If l(u) < l(v), and if u and v are active, then v is a successor of u;

2) At each step, for any active vertex v, there is a directed path from v to the vertex w with
label l(w) = b(v).

3) When the exploration of u terminates (Step 5), all the active vertices of S(u)= {v active | b(u)≤
l(v)≤ l(u)} are in the same strongly connected component as u.

4) b(u) = l(u) if and only if S(u) is a strongly connected component.
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10 is unmarked;

outneighbour (2)
(2,3) is an arc;

(4,2) is an arc;

no more arcs leaving 5
and b(5) = 5;

no more arcs leaving 3
and b(3) < 3;

(9,1) is an arc;

and b(9) < 9;
no more arcs leaving 9

no more arcs leaving 8
and b(8) < 8;
no more arcs leaving 2
and b(2) < 2;

and b(1) = 1;

(10,11) is an arc;
(11,12) is an arc;
(12,11) is an arc;

no more arcs leaving 1

(3,5) is an arc;
(5,6) is an arc;
(6,7) is an arc;
(7,5) is an arc;

(3,4) is an arc;

and b(4) < 4;
no more arcs leaving 4

(8,9) is an arc;

outneighbour;

(2,8) is an arc;

no more arcs leaving 7
and b(7) < 7;

no more arcs leaving 6
and b(6) < 6;

1 has a (unmarked)

8 has an inactive

Figure 2.2: A run of Algorithm 2.6. The vertex in a circle is the current vertex u. At each
step, (l(v),b(v)) is represented close to every active vertex v. Finally, once a vertex becomes
inactive, it is depicted by a square.
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1) and 2) Left to the reader.
3) From Proposition 2.3, it is sufficient to show that, for every v in S(u), there is a directed

(u,v)-path and a directed (v,u)-path. Let v be a vertex in S(u).
Let us assume first that l(v) < l(u). Then, by 1), there is a directed (v,u)-path. Let w be the ver-
tex such that l(w) = b(u). By 2), there is a directed (u,w)-path, and by 1) there is a (w,v)-path.
The concatenation of these two paths is a directed (u,v)-walk. By Proposition 1.4 (i), there is a
directed (u,v)-path.
Let us now assume that l(v) > l(u). By 1) there is a (u,v)-path. Moreover, b(v) < l(v), since
otherwise, the vertex v would have become inactive at Step 5. Let v1 be the vertex with label
l(v1) = b(v). By 2), there is a directed (v,v1)-path P1. If l(v1) ≤ l(u), then, by 1), there is a
directed (v1,u)-path whose concatenation with P1 is a directed (v,u)-walk. Hence, a directed
(v,u)-path exists according Proposition 1.3 (i). If l(v1) > l(u), then b(v1) < l(v1), for otherwise,
the vertex v1 (and also v) would have become inactive at Step 5. Let v2 be the vertex such that
l(v2) = b(v1). Using similar arguments, while l(vi) > l(u), we have l(vi) > b(vi) and we denote
by vi+1 the vertex such that l(vi+1) = b(vi). Since the label of vi strictly decreases, the sequence
of the vi’s is finite. Let k be the last index of this sequence.Then l(vk) ≤ l(u). By 2), for every
1 ≤ i ≤ k, there is a directed (vi−1,vi)-path. Moreover, by 1), there is a directed (vk,u)-path.
The concatenation of all these paths is a directed (v,u)-walk, and then, by Proposition 1.4 (i),
there is a directed (u,v)-path.

4) If b(u) = l(u), then the arcs leaving S(u) have their heads inactive (vertices in a distinct
strongly connected component, by the induction hypothesis 3). Hence, S(u) is a strongly con-
nected component.
If b(u) < l(u), then the vertex v labelled b(u) is active. By 3), u and v are in the same strongly
connected component but v /∈ S(u). Hence S(u) is no a strongly connected component.

2.3 Bipartite graphs
A bipartition of a graph G is a partition (A,B) of V (G) into two stable sets. Hence, every edge
of G has an endvertex in A and the other in B. We often write G = ((A,B),E) for a bipartite
graph with bipartition (A,B).

Bipartite graphs satisfy some properties.

Proposition 2.4. Let G = ((A,B),E) be a bipartite graph.

(i) for any two vertices u and v, all the (u,v)-walks have the same length parity.

(ii) if G is connected then it has only two bipartitions (A,B) and (B,A).

Proof. (i) Without loss of generality, we may assume that u is in A. Let (v0,v1, . . . ,vk) be a
(u,v)-walk (so v0 = u and vk = v). Since G is bipartite and V0 ∈ A then v1 ∈ B and so v2 ∈ A.
And so on by induction, if i is even then vi ∈ A and if i is odd vi ∈ B. Thus if v ∈ A then k is
even and if v ∈ B k is odd.
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(ii) Let u be a vertex. Let A0 (resp. A1) be the set of vertices at even (resp. odd) distance
to v0 in G. By (i), in any bipartition of G, A0 is included in the part containing u and A1 in the
other. A0∪A1 = V (G) since the graph is connected then there are only two possible partitions
of G: (A0,A1) and (A1,A0).

There are graphs which are not bipartite, for example the odd cycles. Indeed, in the cy-
cle (v0,v1, . . . ,v2k,v0) the path (v0,v2k) and (v0,v1, . . . ,v2k) are two (v0,v2k)-paths of different
length parity. Hence if a graph is bipartite, it contains no odd cycles. This easy necessary
condition to be bipartite is in fact sufficient.

Theorem 2.5. A graph G is bipartite if and only if it has no odd cycle.

Proof. Clearly, it suffices to prove it for connected graphs. Let G be a connected graph. If G
contains an odd cycle, it is not bipartite.

Conversely, assume that G contains no odd cycle. Let v0 be a vertex of G. Let A0 (resp.
A1) be the set of vertices at even (resp. odd) distance to v0 in G. Let us now show that (A0,A1)
is a bipartiton of G. Let uv be an edge of G and Pu (resp. Pv) be a shortest (u,v0)-path (resp.
(v,v0)-path). The concatenation Pu, Pv and (v,u) is a closed walk. By Proposition 1.3, this walk
has even length otherwise G would contain an odd cycle. Hence Pu and Pv have different length
parity and so uv has an endvertex in each of the Ai, i = 0,1.

The above proof may be translated into an algorithm which, given a connected graph G,
returns either a bipartition if G is bipartite or ”G is not bipartite” otherwise. Basicallly, it runs
a Breadth-First Search from a vertex and check if there is no edge between vertices of levels
of differents parity. Hence instead of marking the vertices with their level number as for the
distance (see Subsection 2.1.1), we mark them with the parity of their level and thus we just
need two marks, 0 and 1.

Algorithm 2.1 (Finding a bipartition).

1. Pick a vertex x and mark it with m(x) := 0; N := {x}.

2. If N is non-empty, then remove a vertex v of N and do the following.

For each neighbour w of v do

- If m(w) = m(v), return “G is not bipartite”;
- Otherwise if w is unmarked, then mark it with m(v)+ 1 mod 2 and put w in N;

Go to 2.

3. If N is empty, let Ai, i = 0,1 be the set of vertices marked i and return “G is bipartite with
bipartition” (A0,A1).

Algorithm 2.1 may be easily modified to return an odd cycle when G is not bipartite. See
Exercise 2.10.
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2.4 Exercises
Exercise 2.1. Show Theorem 2.1-(i).

Exercise 2.2 (Entriger, Kleitman and Székely).
For a connected graph G, define σ(G) = ∑u,v∈V (G) dist(u,v).

1) Let G be a connected graph. For v ∈ V (G), let Tv be a BFS-tree of G rooted at v. Show
that ∑v∈V (G) σ(Tv) = 2(n−1)σ(G).

2) Deduce that every connected graph G has a spanning tree T such that σ(T ) ≤ 2(1−
1
n)σ(G).

Exercise 2.3 (Tuza). Let G be a connected graph, let x be a vertex of G, and let T be a spanning
tree of G that maximizes the function ∑v∈V (G) distT (x,v). Show that T is a DFS-tree of G.

Exercise 2.4 (Chartrand and Kronk). Let G be a connected graph in which every DFS-tree is a
path (rooted at the start). Show that G is a cycle, a complete graph, or a bipartite graph in which
both parts have the same number of vertices.

Exercise 2.5 (Pósa). A chord of a cycle C in a graph G is an edge in E(G)\E(C) both of whose
endvertices lie on C. Let G be a graph such that |E(G)| ≥ 2|V (G)|− 3 and |V (G)| ≥ 4. Show
that G contains a cycle with at least one chord.

Exercise 2.6. Let a be vertex of a connected graph G. Prove that G is bipartite if and only if
dist(a,b) 6= dist(a,c) for all edge bc.

Exercise 2.7.
1) Show that every tree is bipartite.
2) Prove that every tree has a leaf in the largest part of its bipartition.

Exercise 2.8. Prove that a bipartite graph G has at most |V (G)|2/4 edges and give a graph
attaining this bound.

Exercise 2.9. Show that a graph is bipartite if and only if each of its subgraphs H has a stable
set of size at least |V (H)|/2.

Exercise 2.10. Give an algorithm that, given a connected graph G, returns either a bipartition if
G is bipartite or an odd cycle if G is non-bipartite.

Exercise 2.11. Describe an algorithm based on a breadth-first search for finding a shortest odd
cycle in a graph.

Exercise 2.12. Let G = ((A,B),E) be a bipartite graph without isolated vertices such that
d(x) ≥ d(b) for all xy ∈ E, where a ∈ A and b ∈ B. Prove that |A| ≤ |B|, with equality if
and only if d(a) = d(b) for all ab ∈ E.



Chapter 3

Algorithms in edge-weighted graphs

Recall that an edge-weighted graph is a pair (G,w) where G = (V,E) is a graph and w : E→ IR
is a weight function. Edge-weighted graphs appear as a model for numerous problems where
places (cities, computers,...) are linked with links of different weights (distance, cost, through-
put,...). Note that a graph can be viewed as an edge-weighted graph where all edges have weight
1.

Let (G,w) be an edge-weighted graph. For any subgraph H of G, the weight of H, denoted
by w(H), is the sum of all the weights of the edges of H. In particular, if P is a path, w(P) is
called the length of P. The distance between two vertices u and v, denoted by distG,w(u,v), is
the length of a shortest (with minimum length) (u,v)-path.

Observe that distG,w is a distance: it is symmetric, that is, distG,w(u,v) = distG,w(v,u), and it
satisfies the triangle inequality: for any three vertices x, y and z, distG,w(x,z) ≤ distG,w(x,y)+
distG,w(y,z).

3.1 Computing shortest paths

Given an edge-weighted graph (G,w), one of the main problems is the computation of distG(u,v)
and finding a shortest (u,v)-path. We have seen in Subsection 2.1.1, that if all the edges have
same weight then one can compute a shortest (u,v)-path by running a breadth-first search from
u. Unfortunately, this approach fails for general edge-weighted graphs. See Exercise 3.1. We
now describe algorithms to solve this problem in general. For this purpose, we solve the fol-
lowing more general problem.

Problem 3.1 (Shortest-paths tree).
Instance: an edge-weighted graph (G,w) and a vertex r.
Find: a subtree T of G such that ∀x ∈V (G),distG,w(r,x) = distT,w(r,x).

Such a tree is called a shortest-paths tree.

27
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3.1.1 Dijkstra’s Algorithm
Dijkstra’s Algorithm is based on the following principle. Let S ⊂ V (G) containing r and let
S̄ = V (G)\S. If P = (r,s1, . . . ,sk, s̄) is a shortest path from r to S̄, then sk ∈ S and P is a shortest
path from r to s̄. Hence,

dist(r, s̄) = dist(r,sk)+w(sks̄)

and the distance from r to S̄ is given by the following formula

dist(r, S̄) = min
u∈S,v∈S̄

{dist(r,u)+w(uv)}

To avoid to many calculations during the algorithm, each vertex v ∈V (G) is associated to a
function d′(v) which is an upper bound on dist(r,v), and to a vertex p(v) which is the potential
parent of v in the tree. At each step, we have:

d′(v) = dist(r,v) if v ∈V (Ti)
d′(v) = min

u∈V (Ti−1)
{dist(r,u)+w(uv)} if v ∈V (Ti)

Algorithm 3.1 (Dijkstra).

1. Initialize d′(r) := 0 and d′(v) := +∞ if v 6= r. T0 is the tree consisting of the single vertex
r, u0 := r and i := 0.

2. For any v ∈V (Ti), if d′(ui)+w(uiv)≤ d′(v), then d′(v) := d′(ui)+w(uiv) and p(v) := ui.

3. Compute min{d′(v) | v∈V (Ti)}. Let ui+1 a vertex for which this minimum is reached. Let
Ti+1 be the tree obtained by adding the vertex ui+1 and the edge p(ui+1)ui+1.

4. If i = |V |−1, return Ti, else i := i+1 and go to Step 2.

Remark 3.2. The algorithm does not work if some weights are negative.

Complexity of Dijkstra’s Algorithm: To every vertex is associated a temporary label corre-
sponding to (d′(v), p(v)). They are depicted in Figure 3.1. We do

- at most |E| updates of the labels;

- |V | searches for the vertex v for which d′(v) minimum and as many removal of labels.

The complexity depends on the choice of the data structure for storing the labels: if it is a
list, the complexity is O(|E||V |+ |V |2). But it can be improved using better data structures.
For example, a data structure known as heap is commonly used for sorting elements and their
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Figure 3.1: A run of Dijkstra’s Algorithm on the edge-weighted graph depicted top left. At each
step, bold vertices and edges are those of Ti. To each vertex t of Ti is associated its name and
the value d′(t) = dist(r, t). Next to each vertex v not in V (Ti) is a box containing the value d′(v)
and p(v) if d′(v) 6= +∞.
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associated values, called keys (such as edges and their weights). A heap is a rooted binary tree
T should we define it? whose vertices are in one-to-one correspondence with the elements in
question (in our case, vertices or edges). The defining property of a heap is that the key of the
element located at vertex v of T is required to be at least as small as the keys of the elements
located at vertices of the subtree of T rooted at v. This condition implies, in particular, that the
key of the element at the root of T is one of smallest value; this element can thus be accessed
instantly. Moreover, heaps can be reconstituted rapidly following small modifications such as
the addition of an element, the removal of an element, or a change in the value of a key. A
priority queue is simply a heap equipped with procedures for performing such readjustments
rapidly.

Using a priority queue, the complexity of Dijkstra’s Algorithm is O(|E| log |V |+ |V | log |V |).

It should be evident that data structures play a vital role in the efficiency of algorithms. For
further information on this topic, we refer the reader to [4, 1, 5, 3].

3.1.2 Bellmann-Ford Algorithm

The algorithm performs n iterations, and gives a label h(v) to any vertex. At iteration i, h(v) is
the minimum weight of a path using at most i edges between r and v.

Note that, it always exists a shortest walk using at most |V (G)|− 1 edges between r and v
(otherwise the walk would contain a cycle of negative weight).

Algorithm 3.2 (Bellmann-Ford).

1. Initialization : h(r) := 0, h(v) := +∞,∀v 6= r.

2. For i = 0 to |V (G)|−1 do :
for all v ∈V (G),h(v) := min(h(v),min{h(u)+w(uv) | uv ∈ E(G)}).

3. Return d(r,v) = h(r,v).

Complexity of Bellmann-Ford’s Algorithm: Each iteration costs O(|E|) (all edges are con-
sidered), so the total complexity is O(|E||V |).

The algorithm works even if some edges have negative weight. It can also detect cycles with
negative weight. There is such a cycle if and only if, after the |V |th iteration, the labels h may
decrease. Finally, if during an iteration, no h(v) decreases, then h(v) = d(r,v). It is possible
to improve the algorithm by continuing the iteration only if h(v) becomes min{h(u)+ w(uv) |
uv ∈ E(G)} for at least one vertex. The algorithm run in time O(L|E|) where L is the maximum
number of edges in a shortest path.
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3.2 Minimum-weight spanning tree

Another important problem is the following: given a connected edge-weighted graph, what is
the connected spanning subgraph with minimum weight? If all weights are non-negative, since
any connected graph has a spanning tree (Corollary 1.10), the problem consists of finding a
spanning tree with minimum weight.

Problem 3.3 (Minimum-Weight Spanning Tree).
Instance: a connected edge-weighted graph (G,w).
Find: a spanning tree T of G with minimum weight, i.e. for which ∑e∈T w(e) is minimum.

For S ⊂ V (G), an edge e = xy is S-transversal, if x ∈ S and y /∈ S. The algorithms to find
a minimum-weight spanning tree are based on the fact that a transversal edge with minimum
weight is contained in a minimum-weight spanning tree.

Lemma 3.4. Let (G,w) be an edge-weighted graph and let S⊂V . If e = ss̄ is an S-transversal
edge with minimum weight, then there is a minimum-weight spanning tree containing e.

Proof. Let T be a tree that does not contains e. There is a path P between s and s̄ in T . At least
one edge of P, say e′, is S-transversal. Hence, the tree T ′ = (T \ e′)∪{e} has weight w(T ′) =
w(T )+ w(e)−w(e′) ≤ w(T ) since w(e) ≤ w(e′). Therefore, if T is a minimum spanning tree,
then so does T ′ and w(e) = w(e′).

In particular, Lemma 3.4 implies that if e is an edge of minimum weight, i.e., w(e) =
min f∈E(G) w( f ) = wmin, then there is a minimum-weight spanning tree containing e.

3.2.1 Jarnı́k-Prim Algorithm

The idea is to grow up the tree T with minimum weight by adding, at each step, a V (T )-
transversal edge with minimum weight. At each step, ET is the set of the V (T )-transversal
edges.

Algorithm 3.3 (Jarnı́k-Prim).

1. Initialize the tree T to any vertex x and ET is the set of edges incident to x.

2. While V (T ) 6= V (G):
Find an edge e ∈ ET with minimum weight. Add e and its end not in T to T . Let Ey be the
set of edges incident to y. Remplace ET by (ET4Ey).
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Complexity of Jarnı́k-Prim Algorithm: During the execution, at most |E(G)| edges are
added in ET , and at most |E(G)| edges are removed. Indeed, an edge e is removed when both
its endvertices are in V (T ). Since V (T ) grows up, e will not be added anymore to ET . |V (G)|
selections of the edge of ET with minimum weight must be performed. To performs such an
algorithm we need a data structure allows the insertion, the removal and the selection of the
minimum-weight element efficiently. Using a priority queue, the total complexity of Jarnı́k-
Prim Algorithm is O(|E| log |E|).

3.2.2 Boruvka-Kruskal Algorithm
Boruvka-Kruskal Algorithm is close to Jarnı́k-Prim Algorithm and its correctness also comes
from Lemma 3.4. The idea is to start from a spanning forest and to make its number of con-
nected components decreases until a tree is obtained. Initially, the forest has no edges and, at
each step, an edge with minimum weight that links two components is added.

For this purpose, we need a fast mechanism allowing to test whether or not u and v are in
the same component. A way to do so consists in associating to each connected component the
list of all the vertices it contains. To every vertex u is associated a vertex p(u) in the same
component. This vertex p(u) is a representative of this component. It points to the set Cp(u) of
vertices of this component and to the size size(p(u)) corresponding to the size it.

Algorithm 3.4 (Kruskal).

1. Initalize T : V (T ) := V (G), E(T ) := /0. Order the edges in increasing order of the weights
and place them in a stack L; For all u ∈V (G), do p(u) := Cu and size(Cu) := 1.

2. If L = /0, terminate. Else, pull the edge e = uv with minimum weight;

3. If p(u) = p(v) (the vertices are in the same component), then go to 2. Else p(u) 6= p(v),
add e in T .

4. If size(p(u)) ≥ size(p(v)), then Cp(u) := Cp(u) ∪ Cp(v), size(p(u)) := size(p(u)) +
size(p(v)), and for any w ∈Cp(v), p(w) := p(u).
Else (size(p(u)) < size(p(v))), Cp(v) :=Cp(v)∪Cp(u), size(p(v)) := size(p(u))+size(p(v)),
and for any w ∈Cp(u), p(w) := p(v).

5. Go to 2.

Complexity of Boruvka-Kruskal Algorithm Ordering the edges takes time O(|E(G)| log |E(G)|).
Then, each edge is considered only once and deciding whether the edge must be added to the
tree or not takes a constant number of operations.

Now, let us consider the operations used to update the data structure when an edge is inserted
in the tree.
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We do the union of to sets Cp(u) and Cp(v). If this sets are represented as lists with a pointor
to its last element, it takes a constant time. Such unions are done |V (G)|−1 times.

We also have to update the values of some p(w). Let x ∈ V (G) and let us estimate the
number of updates of p(x) during the execution of the algorithm. Observe that when p(x) is
updated, the component of x becomes at least twice bigger. Since, at the end, x belongs to a
component of size |V (G)|, then p(x) is updated at most log2(|V (G)|) times. In total, there are
at most |V (G)| log2 |V (G)| such updates.

Since |V (G)| ≤ |E(G)|+1 , the total time complexity is O(|E(G)| log |E(G)|).

3.2.3 Application to the Travelling Salesman Problem
Rosenkrantz, Sterns and Lewis considered the special case of the Travelling Salesman Problem
(??) in which the weights satisfy the triangle inequality: w(xy)+ w(yz) ≥ w(xz), for any three
vertices x, y and z.

Problem 3.5 (Metric Travelling Salesman).
Instance: an edge-weighted complete graph (G,w) whose weights satisfy the triangle inequality.
Find: a hamiltonian cycle C of G of minimum weight, i.e. such that ∑e∈E(C) w(e) is minimum.

This problem is N P -hard (see Exercise 3.12) but a polynomial-time 2-approximation algo-
rithm using minimum-weight spanning tree exists.

Theorem 3.6 (Rosenkrantz, Sterns and Lewis). The Metric Travelling Salesman Problem ad-
mits a polynomial-time 2-approximation algorithm.

Proof. Applying Jarnı́k-Prim or Boruvka-Kruskal algorithm, we first find a minimum-weight
spanning tree T of G. Suppose that C is a minimum-weight hamiltonian cycle. By deleting any
edge of C we obtain a hamiltonian path P of G. Because P is a spanning tree, w(T )≤ w(P)≤
w(C).

We now duplicate each edge of T , thereby obtaining a connected eulerian multigraph H with
V (H) =V (G) and w(H) = 2w(T ). The idea is to transform H into a hamiltonian cycle of G, and
to do so without increasing its weight. More precisely, we construct a sequence H0,H1, . . . ,Hn−2
of connected eulerian multigraphs, each with vertex set V (G), such that H0 = H, Hn−2 is a
hamiltonian cycle of G, and w(Hi+1)≤ w(Hi), 0≤ i≤ n−3. We do so by reducing the number
of edges, one at a time, as follows.

Let Ci be an eulerian tour of Hi, where i < n− 2. The multigraph Hi has 2(n− 2)− i > n
edges, and thus a vertex v has degree at least 4. Let xe1ve2y be a segment of the tour Ci; it
will follow by induction that x 6= y. We replace the edges e1 and e2 of Ci by a new edge e of
weight w(xy) linking x and y, thereby bypassing v and modifying Ci to an eulerian tour Ci+1 of
Hi+1 = (Hi \ {e1,e2})∪{e}. By the triangle inequality, we have w(Hi+1) = w(Hi)−w(e1)−
w(e2)+w(e)≤w(Hi). The final graph Hn−2, being a connected eulerian graph on n vertices and
n edges, is a hamiltonian cycle of G. Furthermore, w(Hn−2)≤ w(H0) = 2w(T )≤ 2w(C).

A 3
2 -approximation algorithm for the Metric Travelling Salesman Problem was found by

Christofides [2].
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3.3 Algorithms in edge-weighted digraphs
Computing shortest paths in directed graphs can be done in much the same way as in undirected
graphs by growing arborescences rather than trees. Dijkstra’s Algorithm and Bellman-Ford
Algorithm translates naturally.

The Minimum-Weight Spanning Tree Problem is equivalent to finding the minimum-weight
spanning connected subgraph. The corresponding problem in digraph, namely, finding a con-
nected subdigraph with minimum weight in a connected digraph is much more complex. Ac-
tually, this problem is N P -hard even when all edges have same weight because it contains the
Directed Hamiltonian Cycle Problem as special case. One can easily describe a polynomial-
time 2-approximation algorithm. (See Exercise 3.13). Vetta [6] found a polynomial-time 3

2 -
approximation algorithm.

3.4 Exercices
Exercise 3.1. Show a edge-weighted graph G having a vertex u such that no breadth first seach
tree from u is a shortest-paths tree.

Exercise 3.2.

Consider the graph depicted in Figure 3.2.

1) Apply Dijkstra’s and Bellmann-Ford algorithms for finding a shortest-paths tree from r.

2) Apply the algorithms for finding a minimum-weight spanning tree.
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Exercise 3.3. Let (G,w) be a connected edge-weighted graph.
1) Prove that if w is a constant function then every shortest-paths tree is a minimum-weight
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spanning tree.
2) Exhibit a connected edge-weighted graph in which there is a shortest-paths tree which is not
a minimum-weight spanning tree.

Exercise 3.4. Four imprudent walkers are caught in the storm and night. To reach the hut, they
have to cross a canyon over a fragile rope bridge which can resist the weight of at most two
persons. In addition, crossing the bridge requires to carry a torch to avoid to step into a hole.
Unfortunately, the walkers have a unique torch and the canyon is too large to throw the torch
across it. Due to dizziness and tiredness, the four walkers can cross the bridge in 1, 2, 5 and 10
minutes. When two walkers cross the bridge, they both need the torch and thus cross the bridge
at the slowest of the two speeds.

With the help of a graph, find the minimum time for the walkers to cross the bridge.

Exercise 3.5. Let T be a minimum-weight spanning tree of an edge-weighted graph (G,w)
and T ′ another spanning tree of G (not necessarily of minimum weight). Show that T ′ can be
transformed into T by successively exchanging an edge of T ′ by an edge of T so that at each
step the obtained graph is a tree and so that the weight of the tree never increases.

Exercise 3.6. Little Attila proposed the following algorithm to solve the Minimum-Weight
Spanning Tree Problem: he considers the edges successively in decreasing order with respect
to their weight and suppress the ones that are in a cycle of the remaining graph. Does this
algorithm give an optimal solution to the problem? Justify your answer.

Exercise 3.7. Let (G,w) be an edge-weighted graph. For all t ≥ 1, a t-spanner of (G,w) is a
spanning edge-weighted graph (H,w) of (G,w) such that, for any two vertices u,v, distH,w(u,v)≤
t×distG,w(u,v).

1) Show that (G,w) is the unique 1-spanner of (G,w).
2) Let k ≥ 1. Prove that the following algorithm returns a (2k−1)-spanner of (G,w).

1. Initalise H : V (H) := V (G), E(H) := /0. Place the edges in a stack in increasing order
with respect to their weight. The minimum weight edge will be on top of the stack.

2. If L is empty then return H. Else remove the edge uv from the top of the stack;

3. If in H there is no (u,v)-path with at most 2k−1 edges, add e to H.

4. Go to 2.

3) Show that the spanner returned by the above algorithm contains a minimum-weight span-
ning tree. (One could show that at each step the connected components of H and the forest
computed by Boruvka-Kruskal Algorithm are the same.)

Exercise 3.8.
We would like to determine a spanning tree with weight close to the minimum. Therefore we

study the following question: What is the complexity of the Minimum-Weight Spanning Tree
Problem when all the edge-weights belong to a fixed set of size s. (One could consider first the
case when the edges have the same weight or weight in {1,2}.
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We assume that the edges have integral weights in [1,M]. We replace an edge with weight
in [2i,2i+1− 1] by an edge of weight 2i. (We sample the weight.) Prove that if we compute a
minimum-weight spanning tree with the simplified weight then we obtain a tree with weight at
most twice the minimum for the original weight.

What happens if we increase the number of sample weights?

Exercise 3.9. 1) Let G be 2-connected edge-weighted graph. (See Chapter ?? for the definition
of 2-connectivity.) Show that all the spanning trees have minimum weight if and only if all the
edges have the same weight.

2) Give an example of a connected edge-weighted graph for which all the spanning tree have
the same weight but whose edges do not all have the same weight.

Exercise 3.10. The diameter of an edge-weighted graph (G,w) is the maximum distance be-
tween two vertices: diam(G) := max{distG,w(u,v) | u ∈V (G),v ∈V (G)}.
Show that the following algorithm computes the diameter of an edge-weighted tree T .

1. Pick a vertex x of T .

2. Find a vertex y whose distance to x is maximum (using Dijkstra’s Algorithm for example).

3. Find a vertex z whose distance to y is maximum.

4. Return distT,w(y,z).

Exercise 3.11. THE POSTMAN PROBLEM

In his job, a postman picks up mail at the post office, delivers it, and then returns to the post
office. He must, of course, cover each street at least once. Subject to this condition, he wishes
to choose a route entailing as little walking as as possible.

1. Show that the Postman Problem is equivalent to the following graph-theoretic problem.

Problem 3.7 (MINIMUM-WEIGHT EULERIAN SPANNING SUBGRAPH).
Instance: an edge-weighted connected graph (G,w) with nonnegative weights.
Find: by duplicating edges (along with their weights), an eulerian weighted spanning
supergraph H of G whose weight w(H) is as small as possible.
(An Euler tour in H can then be found by applying Algorithm 1.1

2. In the special case where G has just two vertices of odd degree, explain how the above
problem can be solved in polynomial time.

Exercise 3.12. Show that the Metric Travelling Salesman Problem is N P -hard.

Exercise 3.13.

1) Let D be a strongly connected digraph on n vertices. A spanning subdigraph of D is strong-
minimal if it is strongly connected and every spanning proper subdigraph is not strongly con-
nected.
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a) Show that in the handle decomposition of a strong-minimal spanning subdigraph all the
handles have length at least 2.

b) Deduce that a strong-minimal spanning subdigraph of D has at most 2n−2 arcs.

2) Describe a polynomial-time 2-approximation for the following problem:
Instance: a strongly connected digraph D.
Find: a strongly connected spanning subdigraph with minimum number of arcs.

Exercise 3.14. An arborescence is an orientation of a tree in which every vertex has inde-
gree 1 except one called the root which has indegree 0. The aim of this exercise is to obtain
a polynomial-time algorithm for finding a minimum-weight spanning arborescence with pre-
scribed root u in an edge-weighted strong digraph (D,w).

1) Show that if xy is an arc with minimum weight in (D,w) and y 6= u, then there is a
minimum-weight spanning arborescence with root u containing xy.

2) Deduce a polynomial-time algorithm for finding a minimum-weight spanning arbores-
cence with root u in (D,w).
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Chapter 4

Flow Problems

4.1 Introduction and definitions
Problems related to transport have been investigated since the early fifties. The problem is to
route some goods, called commodities, from production sites to consumption sites, through
a network consisting of communication links inter-connecting the sites (pipe-lines, routes,
telecommunication networks). Moreover, each link has a maximum admissible throughput,
called the capacity of the link.

In general, most of the sites of the network do not produce nor consume anything, they are
only used to interconnect links. To each production or consumption site is associated some real
number that corresponds to the maximum production or consumption.

The main objective is to maximize the throughput of the traffic.

We first consider networks with directed links, i.e., that can be used in one direction. For-
mally, a flow network is defined as follows.

Definition 4.1 (Flow network). A flow network is a four-tuple (G, prmax,comax,c) such that:

• G is a digraph (or a mulitdigraph), the vertices of which represent the sites and the arcs
represent the links;

• prmax is a function from V (G) to IR+∪+∞; prmax(v) corresponds to the maximum pro-
duction possible in v. If v is not a production site, then prmax(v) = 0.

• comax is a function from V (G) to IR+∪+∞; comax(v) corresponds to the maximum con-
sumption possible in v. If v is not a consumption site, then comax(v) = 0.

• c is a function from E(G) to IR+∪+∞; c(e) corresponds to the capacity of the link e.

Definition 4.2 (Flow). The flow is a triple F = (pr,co, f ) where

- pr is a function of production such that, for any vertex v, 0≤ pr(v)≤ prmax(v);
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- co is a function of consumption such that, for any vertex v, 0≤ co(v)≤ comax(v);

- f is a function over E, called flow function that satisfies the following constraints:
Positivity: ∀e ∈ E(G) , f (e)≥ 0

Capacity constraint: ∀e ∈ E(G), f (e)≤ c(e)
Flow conservation: ∀v ∈V (G), ∑

(u,v)∈E(G)
f ((u,v))+ pr(v) = ∑

(v,u)∈E(G)
f ((v,u))+ co(v)

By summing, the |V (G)| equations of flow conservation, we get:

∑
v∈V (G)

pr(v) = ∑
v∈V (G)

co(v)

In other words, the sum of all produced commodities equals the sum of all consumed commodi-
ties. This value corresponds to the amount of routed traffic, it is the flow value, denoted by
v(F).
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Figure 4.1: Example of flow network (left) and a flow of value 4 in it (right)

Hence, the problem is the following:

Problem 4.3 (Maximum Flow).
Instance: a flow network N.
Find: a flow with maximum value.

A flow with maximum value is said to be a maximum flow.

4.2 Reducing to an elementary network
Before studying this problem, we show that it is equivalent to consider an elementary prob-
lem where there is a unique production site with infinite maximum production and a unique
consumption site with infinite maximum consumption.
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Definition 4.4 (Elementary network). A flow network (G,∞s,∞t ,c) is elementary:

- s and t are two distinct vertices where s is a source (i. e. d−(s) = 0) and t is a sink (i.e.
d+(t) = 0);

- ∞s(s) = +∞ and ∞s(v) = 0 for all v 6= s;

- ∞p(t) = +∞ and ∞p(v) = 0 for all v 6= t.

We denote (G,∞s,∞t ,c) by (G,s, t,c).

Definition 4.5 (Associated elementary network). If N = (G, prmax,comax,c) is a flow network,
its associated elementary network is the following elementary network N = (Ḡ,s, p, c̄) obtained
from N in the following way:

- add a source s and a sink t;

- link s to all vertices v with non-null production with an arc (s,v) of capacity prmax(v);

- link all vertices v with non-null consumption to t with a link (v, t) of capacity comax(v);

0

4

3

3

2

3

3

3

1

1

3
2

1

2

p

s

1

5

2

3

2

2

p

s

1

3

2 1

11 2

0

1

1

0
1

2

1

0

1

Figure 4.2: Elementary network associated to the flow network depicted in Figure 4.1 (right)
and the flow in this network corresponding to the one of Figure 4.1 (left)

It is easy to see that there is a one-to-one correspondence between any flow F = (pr,co, f )
of the elementary network and a flow F ′= (pr′,co′, f ′) of the initial problem defined as follows:
for any production site u, pr′(u) = f ((s,u)); for any consumption site v, co′(v) = f ((v, t)) and
for any arc (x,y), f ′((x,y)) = f ((x,y)).

Clearly, both flows have same value v(F) = v(F ′) = pr(s) = co(t). Hence:
Finding a maximum flow in a flow network is equivalent to finding a maximum flow solve
in its associated elementary network.

In the following, we only consider elementary flow networks.
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Note that, in an (elementary) flow network N = (G,s, t,c), the flow conservation constraint
can be written:

∀v ∈V (G)\{s, t}, ∑
(u,v)∈E(G)

f ((u,v)) = ∑
(v,u)∈E(G)

f ((v,u))

Moreover, a flow F = (pr,co, f ) of an (elementary) flow network is well defined by the flow
function f since, by the flow conservation constraint in s and t, we have

v(F) = pr(s) = ∑
u∈V (G),(s,u)∈E(G)

f ((s,u))

= co(t) = ∑
u∈V (G),(u,t)∈E(G)

f ((u, t))

Therefore, for ease of presentation, we often identify a flow F with its function f , and we
note the flow value by v( f ).

To simplify the notations in the sequel, for a flow f or a capacity c, and an arc (u,v), we
write f (u,v) instead of f ((u,v)), and c(u,v) instead of c((u,v)).

4.3 Cut and upper bound on the maximum flow value
We will show that the value of a maximum flow in a network is limited by the existence of
some bottlenecks through which the traffic must go. Roughly, to go from the source to the sink,
the flow must cross the border of a set of vertices, its size (the sum of the capacities of the
corresponding edges) will limit the value of the flow. Such a border is called a cut.

Definition 4.6 (Cut). In a flow network N = (G,s, t,c), an (s, t)-cut, or simply a cut, is a bipar-
tition C = (Vs,Vt) of the vertices of G such that s ∈ Vs and t ∈ Vt . The arcs form Vs to Vt (i.e.
with tail in Vs and head in Vt) are the arcs of C. Their set is denoted by E(C). The capacity of
the cut C, denoted by δ(C), is the sum of the capacities of its arcs: ∑e∈E(C) c(e).

Let f be a flow and C = (Vs,Vt) be a cut, out( f ,C) denotes the flow on arcs leaving Vs and
in( f ,C) the flow entering Vs :

out( f ,C) = ∑
(u,v)∈E(C), u∈Vs,v∈Vt

f (u,v)

in( f ,C) = ∑
(u,v)∈E(G), u∈Vt ,v∈Vs

f (u,v)

Note that the flow conservation implies that

for all cut C, v( f ) = out( f ,C)− in( f ,C)

In particular, the value of the flow is always at most out( f ,C). But clearly out( f ,C)≤ δ(C),so

v( f )≤ δ(C). (4.1)
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Figure 4.3: A flow network and a cut with capacity 4. Bold arcs are those of the cut

A cut can be viewed as a set of arcs that the flow must cross and whose capacity limits the
value of the flow.

Let vmax = max{v( f ), f a flow} and δmin = min{δ(C), C a cut}. Equation 4.1 applied to a
maximum flow and a minimum-capacity cut yields

vmax ≤ δmin. (4.2)

In fact, the next theorem,due to Ford and Fulkerson, states that there is equality.

Theorem 4.7 (FORD–FULKERSON THEOREM). The maximum value of an (s, t)-flow equals
the minimum capacity of an (s, t)-cut, i.e.,

vmax = δmin.

We often say that max flow equals min cut. It is an example of“min-max theorem”
There are many proofs of this theorem, some being non-constructive proof of this theorem.

In the next section, we present the original proof which is based on an algorithm computing a
maximum flow and a cut with minimum capacity.

4.4 Auxiliary Network and “push” Algorithm
Most of the algorithms for computing maximum flows are based on the following idea: Starting
from an existing flow (initially, it may be null), the flow is increased by going from the source
to the sink by “pushing” the commodity where it is possible.

The difference between the algorithms mainly consists of the way used to decide where and
how to push some flow.

For this purpose, we define an auxiliary network. This graph, denoted by N( f ), depends on
the existing flow f .
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Definition 4.8 (Auxiliary network). Given a flow network N = (G,s, t,c) and a flow f , we build
the auxiliary network N( f ) = (G( f ),s, t,c f ) as follows.
For any pair of vertices (u,v), let

c f (u,v) = c(u,v)− f (u,v)+ f (v,u)

with c(u,v), f (u,v) and f (v,u) equal to 0 when they are not defined (if (u,v) is not an arc of G).
Note that c f (u,v)≥ 0 since c(u,v)− f (u,v)≥ 0. Then, G( f ) is defined as follows

V (G( f )) = V (G)
E(G( f )) = {(u,v) | c f (u,v) > 0}

Note that c f (u,v)+c f (v,u) = c(u,v)+c(v,u). Intuitively, c f (u,v) is the sum of the remain-
ing capacity on the arc (u,v), i.e., c(u,v)− f (u,v), plus a virtual capacity f (v,u), that allows
to ”remove” some flow on the arc (v,u), which corresponds to virtually push some flow along
(u,v). See examples in Figures 4.4 and 4.5.

Note that the auxiliary network has no arc with capacity 0. This is important because it
ensures that, for any directed path P in G( f ), the minimum capacity of the arcs of P is positive.
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Figure 4.4: A flow network, a flow and the corresponding auxiliary network

Let P be a directed (s, t)-path in N( f ) where the minimum capacity of an arc in P is ε > 0.
The flow f ′ obtained by pushing ε units of flow along P is defined by:
For any arc (u,v) ∈ E(P), we push the flow along (u,v), that is, we increase the flow with ε

units on (u,v). Two cases may happen:

- If the remaining capacity of (u,v) is sufficient for the ε units of flow, i.e., f (u,v)+ ε ≤
c(u,v), then f ′(u,v) = f (u,v)+ ε and f ′(v,u) = f (v,u).

- If the remaining capacity of (u,v) is not sufficient for the ε units of flow, i.e., f (u,v)+
ε > c(u,v), then, by definition of the auxiliary network, we have f (v,u) ≥ f (u,v)+ ε−
c(u,v) > 0. Hence, (v,u) has a flow excess of f (u,v) + ε− c(u,v) units that we must
remove. We set f ′(u,v) = c(u,v) and f ′(v,u) = f (v,u)− ( f (u,v)+ ε)+ c(u,v).
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If (u,v) and (v,u) do not belong to P, the flow remains unchanged on these arcs, f ′(u,v) =
f (u,v) and f ′(v,u) = f (v,u).

Lemma 4.9. If f is a flow of value v( f ), then f ′ is a flow of value v( f )+ ε.

Proof. See Exercice 4.5.

For instance, from the flow depicted in Figure 4.4, by taking the directed (s, t)-path depicted
in Figure 4.5 with minimum capacity 1 and pushing the flow, we obtain the new flow and the
new auxiliary network depicted in Figure 4.5.
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Figure 4.5: Push along a directed (s, t)-path of the auxiliary network in Figure 4.4.

Now, we have some elements of an algorithm:

1. Start with any flow f ;

2. Compute the auxiliary network N( f );

3. Find a directed path from s to p in G( f );

4. If such a directed path P exists, then push some flow along P and update f .

Note that, if there is no directed path from the source to the sink in the auxiliary graph, the
previous algorithm does nothing. We will see that, in this case, the existing flow is maximum.

Proposition 4.10. If G( f ) does not contain a path from the source to the sink, then the flow f
is maximum.

Proof. Let Vs be the set of all vertices that can be reached from s in G( f ). Vs does not contain
the sink since there are no (s, t)-paths. Hence, p ∈Vt = V \Vs. Let C be the cut (Vs,Vt).

Let (u,v) be an arc of C. By definition of Vs, the arc (u,v) is not in G( f ). So, by definition
of G( f ), this means that c f (u,v) = 0. Hence, f is such that f (u,v) = c(u,v) and f (v,u) = 0.

We get that out( f ,C) = δ(C) and in( f ,C) = 0. Informally, there is no flow entering Vs and
all arcs of C (that is leaving Vs) are saturated.
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But v( f ) = out( f ,C)− in( f ,C), therefore

v( f ) = δ(C)

The current flow has the same value as the capacity of the cut C. Hence, f is maximum by
Equation (4.2).

Note that this proof also exhibit a cut (Vs,Vt) with same capacity as the maximum value of
a flow. Hence it is a minimum-capacity cut. It shows that it is easy to find a minimum-capacity
cut (Vs,Vt) from a maximum flow: Vs is the set of the vertices reachable from the source in the
auxiliary network and Vt its complement.

Now, we can prove Theorem 4.7.
Proof of Theorem 4.7: Let f be a flow with maximum value in a flow network (G,s, t,c), and
let N( f ) be the auxiliary network. In G( f ), there are no directed (s, t)-paths, otherwise we
obtain a flow with greater value by pushing some flow along this path (Lemma 4.9). Hence,
by the proof of Proposition 4.10, the cut C = (Vs,Vt), where Vs is the set of vertices v such that
there is a directed (s,v)-path in G( f ), has capacity v( f ) = vmax. Therefore, δmin ≤ δ(C)≤ vmax.
�

4.5 Ford-Fulkerson algorithm
We now have the following algorithm:

Algorithm 4.1 (Ford and Fulkerson (1956)).

1. Start with null flow f = 0;

2. Compute the auxiliary network N( f );

3. Look for a directed path from s to t in G( f );

4. If such a directed path P exists, then push some flow along P, update f and go to 2;

5. Else terminate and return f .

This algorithm is correct in the sense that If the algorithms terminates, then it returns a
maximum solution. But

1) does it always terminate?

2) If it terminates, what is its complexity?
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The answer to question 1 is somehow yes and no: we will see that the algorithm always
terminates if the capacities are rational, but it can take infinite time if capacities are real. Be-
sides, even when the capacities are integers, the running time depends linearly on the value of
the maximum flow that may be huge.

Analysis of Ford-Fulkerson Algorithm

Proposition 4.11. (i) If all capacities are integers, then Algorithm 4.1 terminates after at most
vmax searches of a directed path.

(ii) If all the capacities are rational, then Algorithm 4.1 terminates after at most µ · vmax
searches of a directed path, with µ the least common multiple of the denominators of the capac-
ities.

Proof. (i) If capacities are integers, at each iteration, the algorithm pushes at least one unit
of flow (since, in this case, ε is integral). Each iteration requires the search of a path
from s to p in G( f ). This can be done in time O(|E(G)|) by any search algorithm (See
Chapter 2). Hence, its total running time is at most

O( vmax · |E(G)|).

(ii) If capacities are rational, the algorithm terminates since the flow increases of at least 1
µ

at each iteration. µ can be very large, but it is fixed. Actually, we can solve the problem
by multiplying all capacities by µ and by solving the integral problem obtained: it is
proportional the initial one.

Remark 4.12. If some capacities are integers, then the Ford-Fulkerson algorithm returns an
integral maximum flow.

Proposition 4.13. If the capacities are real, the algorithm may not terminate. Moreover, the
increasing sequence of the flow value may converge to a value a lot smaller than the optimal
value.

Proof. Consider the flow network shown in Figure 4.6 for which the capacities of all edges are
infinite (or if the reader prefers, a huge integer M). Let α denote the positive root of x3 +x−1 =
0. Clearly 1/2 < α < 1. Let the initial flow f0 be as shown in Figure 4.6.

We shall prove that by employing a well (or very badly) chosen sequence of four augmenting
paths over and over, Algorithm 4.1 will produce an infinite sequence of flows, the values of
which are monotone increasing and which converge to a limit not exceeding 16. For any m≥ 0,
start from the flow f4m and push along the directed path (s,c,d,a,b, t). The pushed amount
is α4m+1 because of arc (a,b) in the auxiliary network. The resulting flow is f4m+1. Push
along the directed path (s,c,b,a,d, t) an amount of α4m+2 (because of (c,b)) to produce f4m+2,
push along the directed path (s,a,b,c,d, t) an amount of α4m+3 (because of (c,d)) to produce
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Figure 4.6: A flow network and the initial flow f0

f4m+3 and push along the directed path (s,a,d,c,b, t) an amount of α4m+4 (because of (a,d)) to
produce f4m+4. See Figure 4.7.

For k ≥ 1, the augmentation of the value from fk−1 to fk is αk and hence

v( fk) = v( f0)+α+α
2 + · · ·+α

r

= (1+α+α
2)+α+α

2 + · · ·+α
r

=
1
α

(α+α
2 +α

3 +α
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3 + · · ·+α
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=
1
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2 +α

3 + · · ·+α
r+1)

<
1
α

(1+α+α
2 +α

3 + · · ·+α
r+1)

<
1

α−α2 =
1

α4 < 16.

From this construction, it is easy to construct an example of a network where some ca-
pacities are irrational such that even starting with a null flow, the sequence of flows obtained
by pushing along some directed paths converges to a value less than 16, while the value of a
maximum flow is infinite (or arbitrarily large). See Exercise 4.9.

Remark 4.14. While the termination is not ensured in case of irrational capacities, Theorem 4.7
(vmax = δmin) remains valid. We prove the real case by taking the limit of the rational case. In
practice, the rational case is the only important problem, since computers works with a finite
precision.
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The bound of Proposition 4.11 on the number of pushes is not good because it depends on
the value of the maximum flow which may be huge. Figure 4.8 shows an example where vmax
pushes, if they are badly chosen, are necessary to reach a flow with maximum value. Indeed, if

1s p
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k

b

a

k

k

Figure 4.8: Example where 2k = vmax pushes may be performed.

the pushes are alternatively performed along P1 = (s,a,b, t) and P2 = (s,b,a, t), then one unit
of flow is pushed at each iteration because the capacity of (a,b) or (b,a) equals 1. Therefore,
2k = vmax pushes are necessary (k along P1 and k along P2).

To improve the previous algorithm and to ensure its quick termination in all cases, the idea
is to consider the pushes on some specific directed paths.

4.6 Pushing along shortest paths
Instead of pushing the flow along an arbitrary directed path (s, t)-path in the auxiliary network,
a better algorithm consists in pushing along a shortest directed (s, t)-path. Here, by shortest
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path, we mean a shortest path in terms of number of arcs, not of total capacity.

Algorithm 4.2 (Edmonds-Karp, 1970).

1. Start with null flow f = 0;

2. Compute the auxiliary network N( f ) ;

3. Look for a shortest directed path from s to p in G( f );

4. If such a path P exists, push some flow along P, update f and go to 2;

5. Else terminate and return f .

We will show that such an algorithm performs at most |E(G)||V (G)|
2 iterations. That is, its time

complexity is at most |E(G)||V (G)|
2 times the complexity of finding a shortest path. Note that,

contrary to the Ford-Fulkerson Algorithm (4.1), this bound is independent from the capacities.
The proof is based on two simple properties.

1) During the iterations, the distance between s and t in the auxiliary graph cannot decrease.

2) During the iterations, the distance between s and t remains unchanged at most |E(G)|
consecutive iterations.

Let f0 be a flow and let G0 = G( f0); We set:

- E ′ the set of arcs of G0 that belong to a shortest path from s to t in G0;

- E ′− the arcs obtained by reversing the ones in E ′ ;

- G1 the graph obtained from G0 by adding the arcs in E ′−.

Lemma 4.15. The graph G1 has the following properties:

(i) A directed path from s to t with length distG0(s, t) does not use any arc in E ′−.

(ii) The distance from s to p in G1 is distG0(s, t);

Proof. (i) Let P be a directed (s, t)-path in G1 that contains some arcs in E ′−, and let (v,u) be
the last arc of E ′− that belongs to P. Let us show that P is not a shortest directed (s, t)-path.
Since (u,v) belongs to a shortest directed (s, t)-path, we have distG0(u, p) = distG0(v, p) + 1.
Since between u and p, the path P uses only arcs in G0, its length is l +1+distG0(u, p) (where l
is the length of the subpath of P between s and v). Hence, P has length l +2+distG0(v, p). The
path P′ obtained by following P until v and then using a shortest directed (v, p)-path has length
l +distG0(v, p) = l +distG0(v, p). Therefore, P is not a shortest directed (s, t)-path.

(ii) Follows from (i).
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Theorem 4.16. Algorithm 4.2 performs at most |E(G)||V (G)| iterations. Its time-complexity is
|E(G)||V (G)| searches of shortest directed paths, so O(|E(G)|2|V (G)|).

Proof. During a push, we add to the auxiliary network the arcs in E ′−. By Lemma 4.15, it does
not decrease the distance between s and p. The algorithm consists of |V | steps corresponding to
the set of all possible distances between s and p. A step consists of a set of iterations when the
distance between s and p remains unchanged.

Let us consider successive iterations that let the distance dist(s, t) unchanged. During some
iterations, the auxiliary network G0 changes since some arcs are added and other arcs are re-
moved. However, since d(s, t) remains the same, the paths along which pushes are performed
use only arcs of G0. Since at each iteration, at least one arc of G0 is removed (we push the max-
imum possible along the chosen path, so one arc is removed), at most |E(G)| such iterations are
performed.

Since dist(s, t) ≤ |V (G)|, we have at most |V (G)| steps of at most |E(G)| iterations each.
At each iteration we mainly have to find a shortest directed (s, t)-path. This can be done
in time O(|E(G)|) by any search algorithm (See Chapter 2). Hence the total complexity is
O(|E(G)|2|V (G)|).

4.7 Algorithm using a scale factor
If the capacities are integral then Algorithm 4.1 may take time to find the maximum flow be-
casue of the disparity of the values of the capacities. In the example in Figure 4.8, the pushes
may be performed along an arc with capacity 1, while there is a path between the source and
the sink with capacity k. This problem may be overcome by using a scale factor. The idea is to
try to work with capacities with similar values, to saturate them and then to consider capacities
with smaller values. The idea is to start with the greatest capacities, to push some flow in a
network that consists only of these links and to try to saturate them as much as possible. Then,
the network is replaced by the current auxiliary network to which we add new links with smaller
capacities than the one considered yet.

Algorithm 4.3 (Scaling Algorithm).

0. Compute the smallest integer m such that c(e) < 2m for any arc e.
For all e ∈ E(G), set c(e) = ∑

m−1
j=0 2 jc j(e) with c j(e) ∈ {0,1}.

1. k := m−1; for all e ∈ E(G), c′(e) := 0 and f (e) := 0;

2. If k < 0, then terminate, else for all e ∈ E(G), c′(e) := c′(e)+2kck(e).

3. Increase as much as possible the flow f in (G,s, t,c′); k := k−1; go to Step 2.
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Clearly, this algorithm computes a maximum flow because, at the end, all capacities are
taken into account.

Let us consider the complexity of this algorithm. For this purpose, we need the following
proposition the proof of which is left in Exercise 4.10.

Proposition 4.17. Let N = (G,s, t,c) be a flow network and α a positive real. Let e be an arc of
G and N′ be the flow network (G,s, t,c′) where c′ is defined by c′(e) = c(e)+α and c′( f ) = c( f )
for all f 6= e. Then vmax(N′)≤ vmax(N)+α.

Theorem 4.18. Algorithm 4.3 performs less than (log2(vmax)+1) · |E(G)| pushes.

Proof. Let c′i = ∑
m−1
j=i 2 jc j be the capacity at Step 3 when k = i, gi be the flow added during this

step, and fi+1 be the total flow before this step. Hence fi = fi+1 +gi.

Let us prove by decreasing induction that at Step 3-(i) Algorithm 4.3 performs at most
|E(G)| pushes and that fi(e) is a multiple of 2i for every arc e.
The results holds trivially for i = n. Suppose now that the results holds for i + 1. Since the
capacity c′i and the flow f i+1 are multiple of 2i, in the auxiliary network, the capacity of the arcs
are multiples of 2i. Hence finding gi corresponds to finding a maximum flow g′i in the network
with integral capacities (G,s, t,(c′i− fi+1)/2i) with v(g′i) ≤ v(gi)/2i. Moreover, at the end of
Step 3-(i + 1), the flow could not be increased anymore, therefore, there are no directed paths
with minimum capacity 2i+1. Hence, at Step 3.(i), any directed path in the auxiliary network
has minimal capacity 2i. Hence, each iteration pushes exactly 2i units of flow at Step 3.(i). Thus
v(gi) ≤ 2i · |E(G)| and so v(g′i) ≤ 2i|E(G)|. By Proposition 4.11, finding g′i and gi is done in
at most |E(G)| pushes. In addition, by Remark 4.12, the flow g′i has integral values and so the
values of gi are multiple of 2i.

Let i0 be the largest integer such that a push has been done at i0. If 2i0 ≥ vmax, then after
pushing once at Step 3-(i0), we obtained a flow of value 2i0 , which must be a maximum flow.

Otherwise, i0 < log2(vmax) and for each i, 0 ≤ i ≤ i0, Algorithm 4.3 performs at most
|E(G)| pushes. Hence in total, the number of pushes it at most (i0 +1)|E(G)| ≤ (log2(vmax)+
1) · |E(G)|.

4.8 Flows in undirected graphs
Until now, we have considered the problem in directed graphs. However, there are some con-
texts in which the corresponding network is undirected. For instance, when the links are bidi-
rectional. In this case, each link has one maximum capacity but the flow may circulate in both
directions if the sum of the two traffics is at most the capacity of the link.

A undirected flow network N = (G, prmax,comax,c) is defined similarily to the directed case.
The definition of the flow is a bit modified since two values must be associated to each edge uv:
f (u,v) corresponds to the traffic from u to v and f (v,u) corresponds to the traffic from v to u.

Definition 4.19 (Undirected Flow). The flow is a three-tuple F = (pr,co, f ) where
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- pr is a function of production such that, for any vertex v, 0≤ pr(v)≤ prmax(v);

- co is a function of consumption such that, for any vertex v, 0≤ co(v)≤ comax(v);

- f is a function over the ordered pair (u,v) (with u and v adjacent), called flow function
that satisfies the following constraints:

Positivity: ∀e ∈ E , f (e)≥ 0
Capacity constraint: ∀uv ∈ E, f ((u,v))+ f ((v,u))≤ c(uv)
Flow conservation: ∀v ∈V , ∑

(u,v)∈E
f ((u,v))+ pr(v) = ∑

(v,u)∈E
f ((v,u))+ co(v)

As in the directed case, the value of the flow F is

v(F) = ∑
v∈V

pr(v) = ∑
v∈V

co(v)

Let N = (G, prmax,comax,c) be an undirected flow network. The (directed) flow network as-
sociated to N is ~N = (~G, prmax,comax,~c) obtained by replacing each edge uv by an arc (u,v) and
an arc (v,u) each of which has capacity c(u,v). Formally, (~G = (V (G),

[
uv∈E(G)

{(u,v),(v,u)})

and~c((u,v)) =~c((v,u)) = c(uv).
Clearly, a flow function f in N and a flow function ~f in ~N satisfy the same constraints but

the capacity constraint. The one in N:

∀uv ∈ E(G), f ((u,v))+ f ((v,u))≤ c(uv)

is stronger than the one in ~N:

∀uv ∈ E(G), ~f ((u,v))≤ c(uv) et ~f ((v,u))≤ c(uv)

Hence, any flow of N is a flow in ~N. Hence, the maximum value of a flow in N is at most
the maximum value of a flow in ~N. In other words, vmax(N)≤ vmax(~N). We show that they are
equal.

Definition 4.20 (simple flow). A flow is simple if, for any pair of vertices {u,v}, we have either
f (u,v) = 0 or f (v,u) = 0. To any flow, there is a corresponding simple flow defined as follows.
If f (u,v) ≥ f (v,u) > 0 then f̃ (u,v) = f (u,v)− f (v,u) and f̃ (v,u) = 0. It is easy to see that
v( f ) = v( f̃ ) since f (v,s) = 0 for any vertex v because d−(s) = 0 and so f (s,v) = f̃ (s,v).

Proposition 4.21. Let N be an undirected flow network and let ~N be the associated flow net-
work:

vmax(N) = vmax(~N)

Proof. Let ~F = (pr,co, ~f ) be a flow in ~N. Let F = (pr,co, f ) be the simple flow of ~F . Then
v(F) = v(~F). Since F is simple, for any edge uv ∈ E(G), we have f (u,v) = 0 or f (v,u) = 0.
Besides, the capacity constraint in ~N gives f (u,v) ≤ c(uv) ou f (v,u) ≤ c(uv). Hence, for any
uv ∈ E(G), f ((u,v))+ f ((v,u))≤ c(uv). Then, F is a flow for N.

Therefore, any flow of ~N corresponds to a flow of N with same value.

This proposition allows us to reduce the undirected problem to the directed case. To find a
maximum flow in an undirected network, it is sufficient to solve the problem in the associated
directed network and to take the corresponding simple flow.
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4.9 Applications of flows

4.9.1 Connectivity in graphs

Menger’s Theorem (Theorem ?? is very closely related to Theorem 4.7. Observe that the arc set
of an (s, t)-cut in a flow network corresponds to an (s, t)-edge-separator. Hence one can deduce
Menger’s Theorem from Theorem 4.7. We now do it for Theorem ??-(ii) for digraphs. In fact
the proof of this results we gave in Section ?? was using the push technique (in disguise).

Proof of Theorem ??-(ii) for digraphs. Let G be a digraph. The edge-connectivity κ′(s, t) is the
value of the capacity of a cut in the flow network N obtained by assigning to each arc a capacity
of 1, and choosing s as source and t as sink. Indeed, if C = (Vs,Vt) is a cut, then after the
removal of the arcs of C, there remain no (s, t)-paths. Hence κ′(s, t) ≤ δmin(N). Reciprocally,
let E ′ be an arc-separator of G and G′ = G \E ′. Let Vs be the set of vertices w of G′ such that
there exists a directed (s,w)-path in G′, and Vt = V \Vu. By definition of Vs, any arc (x,y) with
x ∈Vs and y ∈Vt is in E ′. Hence, δ((Vs,Vt))≤ |E ′|. Therefore, δmin(N)≤ κ′(s, t).

From Theorem 4.7, there is a flow of value κ′(s, t) in this network. Moreover, by Re-
mark 4.12, we may assume that this flow is integral. Since the edges have unit capacity, the
flow of value κ′(s, t) can be decomposed into a set of κ′(s, t) pairwise edge-disjoint (s, t)-paths.
Hence κ′(s, t) = Π′(s, t).

The other cases of Menger’s Theorem may also be derived from Theorem 4.7. See Exer-
cise 4.13. Thus Menger’s Theorem can be viewed as a particular case of Theorem 4.7. In fact,
they are equivalent and it is not too difficult to prove Theorem 4.7 from Menger’s Theorem. See
Exercise 4.14.

4.9.2 Maximum matching in bipartite graphs

The theorems on matching in bipartite graphs that we proved in Chapter ?? are direct appli-
cations of flows. Indeed to every bipartite graph G = ((A,B),E), one can associate the flow
network NG = (H,s, t,c) defined as follows: H is the digraph obtained from G by orienting all
edges of G from A to B and adding a source s and a sink t, all arcs (s,a) for a ∈ A and (b, t) for
b ∈ B; the capacity equals 1 for all arcs. See Figure 4.9.
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Figure 4.9: A bipartite graph and its associated flow network
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There is a one-to-one correspondence between the matchings of G and the integral flows in
NG: to every matching M corresponds the flow fM with value 1 on the arc set

S
(a,b)∈E(G){(s,a),(a,b),(b, t)}.

Moreover the size of M is equal to the value of the flow fM. In addition, an M-augmenting path
in G corresponds to a directed (s, t)-path in the auxiliary network NG( fM). Hence Algorithm ??
is a particular case of Algorithm 4.1.

One can also deduce all the results of Chapter ?? from Theorem 4.7. For example, we now
give a proof of Theorem ?? (“Let G = (A,B) bipartite, there is a matching of size k if and only
if ∀S⊂ A, |A|− |S|+ |N(S)| ≥ k”) using flows.

Proof of Theorem ??. Let us prove that the maximum size µ of a matching in G is equal to the
maximum value of a flow in NG. If M is a matching of size µ in G, then fM has value µ. Hence
µ ≤ vmax. Reciprocally, from Remark 4.12, there is a maximum flow f with integral values. It
is in one-to-one correspondence with a matching M of size v( f ) = vmax. Hence, µ≥ vmax.

Let C = (Vs,Vt) be a minimum cut. Let As = A∩Vs and Bs = B∩Vs. If there is a vertex
b ∈ (B∩N(As))\Bs, then setting C′ = (Vs∪{b},Vt \{b}), we get δ(C′)≤ δ(C)−1+1 = δ(C).
So, by adding the vertices of (B∩N(As))\Bs in Vs if needed, we may assume that the minimum
cut that we consider is such that N(As)⊆ Bs.

Let us consider the capacity of C.

δmin = δ(C) = |{(s,a) | a ∈ A\As}|+ |{(b, t) | b ∈ Bs}|+ |{(a,b)} | a ∈ As,b ∈ B\Bs}|
= |A|− |As|+ |Bs|

Since N(As) ⊆ Bs, it follows that δmin ≥ |A| − |As|+ |N(As)|. Moreover, the cut (As ∪
N(As),V (H) \ (As ∪N(As))) has capacity |A| − |As|+ |N(As|. So δmin = |A| − |As|+ |N(As)|.
We conclude that

δmin = min{S⊂ A | |A|− |S|+N(S)}

Hence, from Theorem 4.7, µ = vmax = δmin = min{S⊂ A | |A|− |S|+N(S)}.

4.9.3 Maximum-gain closure
In this problem, we have several jobs. Each job j ∈ J is associated to a gain g( j). The gain may
be negative (if so, it corresponds to a loss). We note J+ (resp. J−) the set of jobs with positive
gain (resp., negative gain).

Besides, there are several closure constraints.That is, the choice of a job may imply the
choice of one or several other jobs. We represent this closure relation (e.g., implication relation)
by an implication digraph DJ: its vertices are the jobs and there is an arc ( j1, j2) if and only if
the choice of j1 implies the choice of j2.

The objective is to find a set of compatiblejobs with maximum gain, that is a subset A of J
such that:

- there are no arcs leaving A (E((A,A)) = /0) i.e. A is a closure in DJ;

- ∑ j∈A g( j) is maximum.
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Let us show how this problem can be reduced to a problem of cut with minimum capacity,
hence to a maximum flow problem. Let N = (G,s, t,c) be the following flow network (See
Figure 4.10:

- V (G) = T ∪{s, t};

- for any job j with positive gain, link the source s to the job j with an arc (s, j) with
capacity c(s, j) = g( j);

- for any job j with non-positive gain, link j to the sink t with an arc ( j, t) with capacity
c( j, t) =−g( j);

- if a job j1 implies a job j2, we add the arc ( j1, j2) with infinite capacity in the network.
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Figure 4.10: An implication digraph and its corresponding flow network

Let us consider a cut C = (Vs,Vt) with finite capacity in the network. We have S = {s}∪A
with A ⊂ J. Moreover, since the cut has finite capacity, its arc set contains no arcs of DJ , so A
is a set of compatible jobs. Let A+ = A∩ J+ and A− = A∩ J−. The capacity of C is:

δ(C) = ∑
j∈J+\A+

c(s, j)+ ∑
j∈A−

c( j, t)

= ∑
j∈J+\A+

g( j)− ∑
j∈A−

g( j)

= ∑
j∈J+

g( j)− ∑
j∈A+

g( j)− ∑
j∈A−

g( j)

= ∑
j∈J+

g( j)−∑
j∈A

g( j)

Since ∑ j∈J+ g( j), the sum of all positive gains, is a constant, minimizing the capacity of the cut
S = {s}∪A is equivalent to maximizing the gain of A.



4.10. EXERCICES 59

4.10 Exercices
Exercise 4.1. Let N be the flow network and f0 the (s, t)-flow in N as depicted in the figure
below.
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1) Start from f0 and find a maximum (s, t)-flow. Detail the steps of the algorithm.
2) Describe a minimum cut of this network.

Exercise 4.2. Find a maximum (s, t)-flow and a minimum (s, t)-cut in the network depicted
below. (Detail the steps of the “push” algorithm.)
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Exercise 4.3. There are 3 production sites A,B,C and 5 consumption sites 1,2,3,4,5; their
production and consumption, respectively, are given in the following tables.

A B C
5 4 7

1 2 3 4 5
3 4 5 2 1

Finally, each production sites can only serve the consumption sites as summarized in the fol-
lowing table.

A B C
13 24 345

The problem is to satisfy the consumption sites. Model the following problem in terms of
flows and give a solution to the problem or explain why it could not exist.

Exercise 4.4. Prove the following property: for all (s, t)-cut C = (Vs,Vt), v( f ) = out( f ,C)−
in( f ,C). Why is the hypothesis s ∈Vs and p ∈Vt important?

Exercise 4.5. Prove Lemma 4.9. Verify that the positivity, the capacity constraint and the flow
conservation are satisfied for f ′.
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Exercise 4.6. The support of a flow is the set of arcs on which the flow function is positive.
Show that there always exists a maximum flow whose support has no directed cycle.

Exercise 4.7. Let N = (G,s, t,c) be a flow network such that, for all arc e, c(e) is an even
integer.
1) Prove that the maximum value of a flow is an even integer.
2) Show that there is a maximum flow f such that, for all arc e, f (e) is an even integer.

Exercise 4.8. Modify Algorithm 4.1 to obtain an algorithm finding a minimum cut in a flow
network.

Exercise 4.9. Construct a flow network for which Algorithm 4.1 produces a sequence of flow
whose values converges to a finite value when pushing on some sequence of directed paths,
while the value of a maximum flow is infinite (or arbitrarily large).

Exercise 4.10. Prove Proposition 4.17.

Exercise 4.11. In this exercise, we study a variant of the algorithm for finding a maximum flow,
in which we push the flow along a directed path of maximum residual capacity.

1) Give an algorithm finding a directed path of maximum residual capacity.
2) Show that if we push an amount of x at one step, then we push an amount of at least x at

each following step.

Exercise 4.12. Let N = (G,s, t,c) be a flow network. To each vertex v ∈ V (G), we associate
an real w(v). We want to compute a flow f of maximum value satisfying the following extra
constraint: ∀v ∈ V (G) the flow entering v is at most w(v) (i.e. ∑u∈N−(v) f (uv) ≤ w(v)). Show
how to find such a flow by computing a maximum flow on a network obtained from N by slight
modifications.

Exercise 4.13. Deduce Menger’s Theorem (??) from Theorem 4.7 . (Hint: One can use Exer-
cise 4.12 to prove Theorem ??-(i).

Exercise 4.14. Deduce Theorem 4.7 from Menger’s Theorem (??).

Exercise 4.15. Several companies send members to a conference; the ith company send mi
members. During the conference, several workshops are organized simulteanously; the ith
workshops can receive at most n j participants. The organizers want to dispatch participants
into workshops so that two members of a same company are not in a same workshop. (The
workshop do not need to be full.)

a) Show how to use a flow network for testing if the constraints may be satisfied.
b) If there are p companies and q workshops indexed in such a way that m1 ≥ ·· · ≥ mp

and n1 ≤ ·· · ≤ nq. Show that there exists a dispatching of participants into groupes satisfying
the constraints if and only if, for all 0≤ k ≤ p and all 0≤ l ≤ q, we have k(q− l)+∑

l
j=1 n j ≥

∑
k
i=1 mi.
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Exercise 4.16 (Unsplittable flow). We consider a flow network with one production site s and
many consumption sites, say t1, t2, . . . tn. The consumption at site ti is di. We want to route
commodities for s to ti with the following additionnal constraint: the traffic from s to ti must be
routed along a unique directed path (it cannot be split).

Show that this problem is NP-complete.
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Chapter 5

Linear programming

The nature of the programmes a computer scientist has to conceive often requires some knowl-
edge in a specific domain of application, for example corporate management, network proto-
cols, sound and video for multimedia streaming,. . . Linear programming is one of the necessary
knowledges to handle optimization problems. These problems come from varied domains as
production management, economics, transportation network planning, . . . For example, one can
mention the composition of train wagons, the electricity production, or the flight planning by
airplane companies.

Most of these optimization problems do not admit an optimal solution that can be computed
in a reasonable time, that is in polynomial time (See Chapter ??). However, we know how to ef-
ficiently solve some particular problems and to provide an optimal solution (or at least quantify
the difference between the provided solution and the optimal value) by using techniques from
linear programming.

In fact, in 1947, G.B. Dantzig conceived the Simplex Method to solve military planning
problems asked by the US Air Force that were written as a linear programme, that is a system
of linear equations. In this course, we introduce the basic concepts of linear programming. We
then present the Simplex Method, following the book of V. Chvátal [2]. If you want to read
more about linear programming, some good references are [6, 1].

The objective is to show the reader how to model a problem with a linear programme when
it is possible, to present him different methods used to solve it or at least provide a good ap-
proximation of the solution. To this end, we present the theory of duality which provide ways
of finding good bounds on specific solutions.

We also discuss the practical side of linear programming: there exist very efficient tools
to solve linear programmes, e.g. CPLEX [3] and GLPK [4]. We present the different steps
leading to the solution of a practical problem expressed as a linear programme.

5.1 Introduction

A linear programme is a problem consisting in maximizing or minimizing a linear function
while satisfying a finite set of linear constraints.

63
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Linear programmes can be written under the standard form:

Maximize ∑
n
j=1 c jx j

Subject to: ∑
n
j=1 ai jx j ≤ bi for all 1≤ i≤ m

x j ≥ 0 for all 1≤ j ≤ n.

(5.1)

All constraints are inequalities (and not equations) and all variables are non-negative. The
variables x j are referred to as decision variables. The function that has to be maximized is
called the problem objective function.

Observe that a constraint of the form ∑
n
j=1 ai jx j ≥ bi may be rewritten as ∑

n
j=1(−ai j)x j ≤

−bi. Similarly, a minimization problem may be transformed into a maximization problem:
minimizing ∑

n
j=1 c jx j is equivalent to maximizing ∑

n
j=1(−c j)x j. Hence, every maximization

or minimization problem subject to linear constraints can be reformulated in the standard form
(See Exercices 5.1 and 5.2.).

A n-tuple (x1, . . . ,xn) satisfying the constraints of a linear programme is a feasible solution
of this problem. A solution that maximizes the objective function of the problem is called an
optimal solution. Beware that a linear programme does not necessarily admits a unique optimal
solution. Some problems have several optimal solutions while others have none. The later case
may occur for two opposite reasons: either there exist no feasible solutions, or, in a sense, there
are too many. The first case is illustrated by the following problem.

Maximize 3x1 − x2
Subject to: x1 + x2 ≤ 2

−2x1 − 2x2 ≤ −10
x1,x2 ≥ 0

(5.2)

which has no feasible solution (See Exercise 5.3). Problems of this kind are referred to as
unfeasible. At the opposite, the problem

Maximize x1 − x2
Subject to: −2x1 + x2 ≤ −1

−x1 − 2x2 ≤ −2
x1,x2 ≥ 0

(5.3)

has feasible solutions. But none of them is optimal (See Exercise 5.3). As a matter of fact, for
every number M, there exists a feasible solution x1,x2 such that x1− x2 > M. The problems
verifying this property are referred to as unbounded. Every linear programme satisfies exactly
one the following assertions: either it admits an optimal solution, or it is unfeasible, or it is
unbounded.
Geometric interpretation.

The set of points in IRn at which any single constraint holds with equality is a hyperplane in
IRn. Thus each constraint is satisfied by the points of a closed half-space of IRn, and the set of
feasible solutions is the intersection of all these half-spaces, a convex polyhedron P.

Because the objective function is linear, its level sets are hyperplanes. Thus, if the maximum
value of cx over P is z∗, the hyperplane cx = z∗ is a supporting hyperplane of P. Hence cx = z∗

contains an extreme point (a corner) of P. It follows that the objective function attains its
maximum at one of the extreme points of P.
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5.2 The Simplex Method
The authors advise you, in a humanist élan, to skip this section if you are not ready to suffer. In
this section, we present the principle of the Simplex Method. We consider here only the most
general case and voluntarily omit here the degenerate cases to focus only on the basic principle.
A more complete presentation can be found for example in [2].

5.2.1 A first example
We illustrate the Simplex Method on the following example:

Maximize 5x1 + 4x2 + 3x3
Subject to:

2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8

x1,x2,x3 ≥ 0.

(5.4)

The first step of the Simplex Method is to introduce new variables called slack variables.
To justify this approach, let us look at the first constraint,

2x1 +3x2 + x3 ≤ 5. (5.5)

For all feasible solution x1,x2,x3, the value of the left member of (5.5) is at most the value
of the right member. But, there often is a gap between these two values. We note this gap x4. In
other words, we define x4 = 5−2x1−3x2− x3. With this notation, Equation (5.5) can now be
written as x4 ≥ 0. Similarly, we introduce the variables x5 and x6 for the two other constraints of
Problem (5.4). Finally, we use the classic notation z for the objective function 5x1 +4x2 +3x3.
To summarize, for all choices of x1,x2,x3 we define x4,x5,x6 and z by the formulas

x4 = 5 − 2x1 − 3x2 − x3
x5 = 11 − 4x1 − x2 − 2x3
x6 = 8 − 3x1 − 4x2 − 2x3
z = 5x1 + 4x2 + 3x3.

(5.6)

With these notations, the problem can be written as:

Maximize z subject to x1,x2,x3,x4,x5,x6 ≥ 0. (5.7)

The new variables that were introduced are referred as slack variables, when the initial
variables are usually called the decision variables. It is important to note that Equation (5.6)
define an equivalence between (5.4) and (5.7). More precisely:

• Any feasible solution (x1,x2,x3) of (5.4) can be uniquely extended by (5.6) into a feasible
solution (x1,x2,x3,x4,x5,x6) of (5.7).
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• Any feasible solution (x1,x2,x3,x4,x5,x6) of (5.7) can be reduced by a simple removal of
the slack variables into a feasible solution (x1,x2,x3) of (5.4).

• This relationship between the feasible solutions of (5.4) and the feasible solutions of (5.7)
allows to produce the optimal solution of (5.4) from the optimal solutions of (5.7) and vice
versa.

The Simplex strategy consists in finding the optimal solution (if it exists) by successive
improvements. If we have found a feasible solution (x1,x2,x3) of (5.7), then we try to find a
new solution (x̄1, x̄2, x̄3) which is better in the sense of the objective function:

5x̄1 +4x̄2 +3x̄3 ≥ 5x1 +4x2 +3x3.

By repeating this process, we obtain at the end an optimal solution.
To start, we first need a feasible solution. To find one in our example, it is enough to set

the decision variables x1,x2,x3 to zero and to evaluate the slack variables x4,x5,x6 using (5.6).
Hence, our initial solution,

x1 = 0,x2 = 0,x3 = 0,x4 = 5,x5 = 11,x6 = 8 (5.8)

gives the result z = 0.
We now have to look for a new feasible solution which gives a larger value for z. Finding

such a solution is not hard. For example, if we keep x2 = x3 = 0 and increase the value of x1,
then we obtain z = 5x1 ≥ 0. Hence, if we keep x2 = x3 = 0 and if we set x1 = 1, then we obtain
z = 5 (and x4 = 3,x5 = 7,x6 = 5). A better solution is to keep x2 = x3 = 0 and to set x1 = 2;
we then obtain z = 10 (and x4 = 1,x5 = 3,x6 = 2). However, if we keep x2 = x3 = 0 and if
we set x1 = 3, then z = 15 and x4 = x5 = x6 =−1, breaking the constraint xi ≥ 0 for all i. The
conclusion is that one can not increase x1 as much as one wants. The question then is: how much
can x1 be raised (when keeping x2 = x3 = 0) while satisfying the constraints (x4,x5,x6 ≥ 0)?

The condition x4 = 5−2x1−3x2−x3 ≥ 0 implies x1 ≤ 5
2 . Similarly, x5 ≥ 0 implies x1 ≤ 11

4
and x6 ≥ 0 implies x1 ≤ 8

3 . The first bound is the strongest one. Increasing x1 to this bound
gives the solution of the next step:

x1 =
5
2
,x2 = 0,x3 = 0,x4 = 0,x5 = 1,x6 =

1
2

(5.9)

which gives a result z = 25
2 improving the last value z = 0 of (5.8).

Now, we have to find a new feasible solution that is better than (5.9). However, this task
is not as simple as before. Why? As a matter of fact, we had at disposal the feasible solution
of (5.8), but also the system of linear equations (5.6) which led us to a better feasible solution.
Thus, we should build a new system of linear equations related to (5.9) in the same way as (5.6)
is related to (5.8).

Which properties should have this new system? Note first that (5.6) express the strictly
positive variables of (5.8) in function of the null variables. Similarly, the new system has to
express the strictly positive variables of (5.9) in function of the null variables of (5.9): x1,x5,x6
(and z) in function of x2,x3 and x4. In particular, the variable x1, whose value just increased



5.2. THE SIMPLEX METHOD 67

from zero to a strictly positive value, has to go to the left side of the new system. The variable
x4, which is now null, has to take the opposite move.

To build this new system, we start by putting x1 on the left side. Using the first equation of
(5.6), we write x1 in function of x2,x3,x4:

x1 =
5
2
− 3

2
x2−

1
2

x3−
1
2

x4 (5.10)

Then, we express x5,x6 and z in function of x2,x3,x4 by substituting the expression of x1
given by (5.10) in the corresponding lines of (5.6).

x5 = 11−4
(

5
2
− 3

2
x2−

1
2

x3−
1
2

x4

)
− x2−2x3

= 1+5x2 +2x4,

x6 = 8−3
(

5
2
− 3

2
x2−

1
2

x3−
1
2

x4

)
−4x2−2x3

=
1
2

+
1
2

x2−
1
2

x3 +
3
2

x4,

z = 5
(

5
2
− 3

2
x2−

1
2

x3−
1
2

x4

)
+4x2 +3x3

=
25
2
− 7

2
x2 +

1
2

x3−
5
2

x4.

So the new system is

x1 = 5
2 − 3

2 x2 − 1
2 x3 − 1

2 x4
x5 = 1 + 5 x2 + 2 x4
x6 = 1

2 + 1
2 x2 − 1

2 x3 + 3
2 x4

z = 25
2 − 7

2 x2 + 1
2 x3 − 5

2 x4.

(5.11)

As done at the first iteration, we now try to increase the value of z by increasing a right
variable of the new system, while keeping the other right variables at zero. Note that raising x2
or x4 would lower the value of z, against our objective. So we try to increase x3. How much?
The answer is given by (5.11) : with x2 = x4 = 0, the constraint x1 ≥ 0 implies x3 ≤ 5, x5 ≥ 0
impose no restriction and x6 ≥ 0 implies that x3 ≤ 1. To conclude x3 = 1 is the best we can do,
and the new solution is

x1 = 2,x2 = 0,x3 = 1,x4 = 0,x5 = 1,x6 = 0 (5.12)

and the value of z increases from 12.5 to 13. As stated, we try to obtain a better solution but
also a system of linear equations associated to (5.12). In this new system, the (strictly) positive
variables x2,x4,x6 have to appear on the right. To build this new system, we start by handling
the new left variable, x3. Thanks to the third equation of (5.11) we rewrite x3 and by substitution
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in the remaining equations of (5.11) we obtain:

x3 = 1 + x2 + 3x4 − 2x6
x1 = 2 − 2x2 − 2x4 + x6
x5 = 1 + 5x2 + 2x4
z = 13 − 3x2 − x4 − x6.

(5.13)

It is now time to do the third iteration. First, we have to find a variable of the right side
of (5.13) whose increase would result in an increase of the objective z. But there is no such
variable, as any increase of x2,x4 or x6 would lower z. We are stuck. In fact, this deadlock
indicates that the last solution is optimal. Why? The answer lies in the last line of (5.13):

z = 13 − 3x2 − x4 − x6. (5.14)

The last solution (5.12) gives a value z = 13; proving that this solution is optimal boils down
to prove that any feasible solution satisfies z≤ 13. As any feasible solution x1,x2, . . . ,x6 satisfies
the inequalities x2 ≥ 0,x4 ≥ 0,x6 ≥ 0, then z≤ 13 directly derives from (5.14).

5.2.2 The dictionaries
More generally, given a problem

Maximize ∑
n
j=1 c jx j

Subject to: ∑
n
j=1 ai jx j ≤ bi for all 1≤ i≤ m

x j ≥ 0 for all 1≤ j ≤ n
(5.15)

we first introduce the slack variables xn+1,xn+2, . . . ,xn+m and we note the objective function z.
That is, we define

xn+i = bi− ∑
n
j=1 ai jx j for all 1≤ i≤ m

z = ∑
n
j=1 c jx j

(5.16)

In the framework of the Simplex Method, each feasible solution (x1,x2, . . . ,xn) of (5.15) is rep-
resented by n+m positive or null numbers x1,x2, . . . ,xn+m, with xn+1,xn+2, . . . ,xn+m defined by
(5.16). At each iteration, the Simplex Method goes from one feasible solution (x1,x2, . . . ,xn+m)
to an other feasible solution (x̄1, x̄2, . . . , x̄n+m), which is better in the sense that

n

∑
j=1

c jx̄ j >
n

∑
j=1

c jx j.

As we have seen in the example, it is convenient to associate a system of linear equations
to each feasible solution. As a matter of fact, it allows to find better solutions in an easy way.
The technique is to translate the choices of the values of the variables of the right side of the
system into the variables of the left side and in the objective function as well. These systems
have been named dictionaries by J.E. Strum (1972). Thus, every dictionary associated to (5.15)
is a system of equations whose variables xn+1,xn+2, . . . ,xn+m and z are expressed in function of
x1,x2, . . . ,xn. These n + m + 1 variables are closely linked and every dictionary express these
dependencies.
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Property 5.1. Any feasible solution of the equations of a dictionary is also a feasible solution
of (5.16) and vice versa.

For example, for any choice of x1,x2, . . . ,x6 and of z, the three following assertions are
equivalent:

• (x1,x2, . . . ,x6,z) is a feasible solution of (5.6);

• (x1,x2, . . . ,x6,z) is a feasible solution of (5.11);

• (x1,x2, . . . ,x6,z) is a feasible solution of (5.13).

From this point of view, the three dictionaries (5.6), (5.11) and (5.13) contain the same
information on the dependencies between the seven variables. However, each dictionary present
this information in a specific way. (5.6) suggests that the values of the variables x1, x2 and x3
can be chosen at will while the values of x4, x5, x6 and z are fixed. In this dictionary, the decision
variables x1, x2, x3 act as independent variables while the slack variables x4, x5, x6 are related to
each other. In the dictionary (5.13), the independent variables are x2,x4,x6 and the related ones
are x3,x1,x5,z.

Property 5.2. The equations of a dictionary have to express m variables among x1,x2, . . . ,xn+m,z
in function of the n remaining others.

Properties 5.1 and 5.2 define what a dictionary is. In addition to these two properties, the
dictionaries (5.6),(5.11) and (5.13) have the following property.

Property 5.3. When putting the right variables to zero, one obtains a feasible solution by eval-
uating the left variables.

The dictionaries that have this last property are called feasible dictionaries. As a matter
of fact, any feasible dictionary describes a feasible solution. However, all feasible solutions
cannot be described by a feasible dictionary. For example, no dictionary describe the feasible
solution x1 = 1, x2 = 0, x3 = 1, x4 = 2, x5 = 5, x6 = 3 of (5.4). The feasible solutions that can
be described by dictionaries are referred as basic solutions. The Simplex Method explores only
basic solutions and ignores all other ones. But this is valid because if an optimal solution exists,
then there is an optimal and basic solution. Indeed, if a feasible solution cannot be improved
by the Simplex Method, then increasing any of the n right variables to a positive value never
increases the objective function. In such case, the objective function must be written as a linear
function of these variables in which all the coefficient are non-positive, and thus the objective
function is clearly maximum when all the right variables equal zero. For example, it was the
case in (5.14).

5.2.3 Finding an initial solution
In the previous examples, the initialization of the Simplex Method was not a problem. As a
matter of fact, we carefully chose problems with all bi non-negative. This way x1 = 0, x2 = 0,
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· · · , xn = 0 was a feasible solution and the dictionary was easily built. These problems are called
problems with a feasible origin.

What happens when confronted with a problem with an unfeasible origin? Two difficulties
arise. First, a feasible solution can be hard to find. Second, even if we find a feasible solution,
a feasible dictionary has then to be built. A way to solve these difficulties is to use another
problem called auxiliary problem:

Minimise x0
Subject to: ∑

n
j=1 ai jx j− x0 ≤ bi (i = 1,2, · · · ,m)

x j ≥ 0 ( j = 0,1, · · · ,n).

A feasible solution of the auxiliary problem is easily available: it is enough to set x j = 0∀ j ∈
[1 . . .n] and to give to x0 a big enough value. It is now easy to see that the original problem has
a feasible solution if and only if the auxiliary problem has a feasible solution with x0 = 0. In
other words, the original problem has a feasible solution if the optimal value of the auxiliary
problem is null. Thus, the idea is to first solve the auxiliary problem. Let see the details on an
example.

Maximise x1 − x2 + x3
Subject to :

2x1 − x2 + 2x3 ≤ 4
2x1 − 3x2 + x3 ≤ −5
−x1 + x2 − 2x3 ≤ −1

x1,x2,x3 ≥ 0

Maximise −x0
Subject to:

2x1 − x2 + 2x3 − x0 ≤ 4
2x1 − 3x2 + x3 − x0 ≤ −5
−x1 + x2 − 2x3 − x0 ≤ −1

x1,x2,x3,x0 ≥ 0

We introduce the slack variables. We obtain the dictionary:

x4 = 4 − 2x1 + x2 − 2x3 + x0
x5 = −5 − 2x1 + 3x2 − x3 + x0
x6 = −1 + x1 − x2 + 2x3 + x0
w = − x0.

(5.17)

Note that this dictionary is not feasible. However it can be transformed into a feasible one by
operating a simple pivot , x0 entering the basis as x5 exits it:

x0 = 5 + 2x1 − 3x2 + x3 + x5
x4 = 9 − 2x2 − x3 + x5
x6 = 4 +3 x1 − 4x2 + 3x3 + x5
w = −5 − 2x1 + 3x2 − x3 − x5.
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More generally, the auxiliary problem can be written as

Maximise −x0
Subject to: ∑

n
j=1 ai jx j− x0 ≤ bi (i = 1,2, · · · ,m)

x j ≥ 0 ( j = 0,1,2, · · · ,n)

and the associated dictionary is

xn+i = bi− ∑
n
j=1 ai jx j + x0 (i = 1,2, · · · ,m)

w = − x0

This dictionary can be made feasible by pivoting x0 with the variable the ”most unfeasible”, that
is the exiting variable xn+k is the one with bk ≤ bi for all i. After the pivot, the variable x0 has
value −bk and each xn+i has value bi−bk. All these values are non negative. We are now able
to solve the auxiliary problem using the simplex method. Let us go back to our example.

After the first iteration with x2 entering and x6 exiting, we get:

x2 = 1 + 0.75x1 + 0.75x3 + 0.25x5 − 0.25x6
x0 = 2 − 0.25x1 − 1.25x3 + 0.25x5 + 0.75x6
x4 = 7 − 1.5x1 − 2.5x3 + 0.5x5 + 0.5x6
w = −2 + 0.25x1 + 1.25x3 − 0.25x5 − 0.75x6.

After the second iteration with x3 entering and x0 exiting:

x3 = 1.6 − 0.2x1 + 0.2x5 + 0.6x6 − 0.8x0
x2 = 2.2 + 0.6x1 + 0.4x5 + 0.2x6 − 0.6x0
x4 = 3 − x1 − x6 + 2x0
w = − x0.

(5.18)

The last dictionary (5.18) is optimal. As the optimal value of the auxiliary problem is null,
this dictionary provides a feasible solution of the original problem: x1 = 0,x2 = 2.2,x3 = 1.6.
Moreover, (5.18) can be easily transformed into a feasible dictionary of the original problem.
To obtain the first three lines of the desired dictionary, it is enough to copy the first three lines
while removing the terms with x0:

x3 = 1.6 − 0.2x1 + 0.2x5 + 0.6x6
x2 = 2.2 + 0.6x1 + 0.4x5 + 0.2x6
x4 = 3 − x1 − x6

(5.19)

To obtain the last line, we express the original objective function

z = x1− x2 + x3 (5.20)

in function of the variables outside the basis x1,x5,x6. To do so, we replace the variables of
(5.20) by (5.19) and we get:

z = x1− (2.2+0.6x1 +0.4x5 +0.2x6)+(1.6−0.2x1 +0.2x5 +0.6x6) (5.21)
z =−0.6+0.2x1−0.2x5 +0.4x6
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The desired dictionary then is:

x3 = 1.6 − 0.2x1 + 0.2x5 + 0.6x6
x2 = 2.2 + 0.6x1 + 0.4x5 + 0.2x6
x4 = 3 − x1 − x6
z = −0.6 + 0.2x1 − 0.2x5 + 0.4x6

This strategy is known as the Simplex Method in two phases. During the first phase, we set
and solve the auxiliary problem. If the optimal value is null, we do the second phase consisting
in solving the original problem. Otherwise, the original problem is not feasible.

5.3 Duality of linear programming

Any maximization linear programme has a corresponding minimization problem called the dual
problem. Any feasible solution of the dual problem gives an upper bound on the optimal value
of the initial problem, which is called the primal. Reciprocally, any feasible solution of the
primal provides a lower bound on the optimal value of the dual problem. Actually, if one of
both problems admits an optimal solution, then the other problem does as well and the optimal
solutions match each other. This section is devoted to this result also known as the Duality
Theorem. Another interesting application of the dual problem is that, in some problems, the
variables of the dual have some useful interpretation.

5.3.1 Motivations: providing upper bounds on the optimal value

A way to quickly estimate the optimal value of a maximization linear programme simply con-
sists in computing a feasible solution whose value is sufficiently large. For instance, let us
consider the following problem formulated in Problem 5.4. The solution (0,0,1,0) gives us a
lower bound of 5 for the optimal value z∗. Even better, we get z∗ ≥ 22 by considering the so-
lution (3,0,2,0). Of course, doing so, we have no way to know how close to the optimal value
the computed lower bound is.

Problem 5.4.
Maximize 4x1 + x2 +5x3 +3x4

Subject to: x1− x2− x3 +3x4 ≤ 1
5x1 + x2 +3x3 +8x4 ≤ 55
−x1 +2x2 +3x3−5x4 ≤ 3

x1,x2,x3,x4 ≥ 0

The previous approach provides lower bounds on the optimal value. However, this intuitive
method is obviously less efficient than the Simplex Method and this approach provides no clue
about the optimality (or not) of the obtained solution. To do so, it is interesting to have upper
bounds on the optimal value. This is the main topic of this section.
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How to get an upper bound for the optimal value in the previous example? A possible
approach is to consider the constraints. For instance, multiplying the second constraint by 5

3 ,
we get that z∗ ≤ 275

3 . Indeed, for any x1,x2,x3,x4 ≥ 0:

4x1 + x2 +5x3 +3x4 ≤
25
3

x1 +
5
3

x2 +5x3 +
40
3

x4 = (5x1 + x2 +3x3 +8x4)×
5
3

≤ 55× 5
3

=
275
3

In particular, the above inequality is satisfied by any optimal solution. Therefore, z∗ ≤ 275
3 .

Let us try to improve this bound. For instance, we can add the second constraint to the third
one. This gives, for any x1,x2,x3,x4 ≥ 0:

4x1 + x2 +5x3 +3x4 ≤ 4x1 +3x2 +6x3−3x4

≤ (5x1 + x2 +3x3 +8x4)+(−x1 +2x2 +3x3−5x4)
≤ 55+3 = 58

Hence, z∗ ≤ 58.
More formally, we try to upper bound the optimal value by a linear combination

of the constraints. Precisely, for all i, let us multiply the ith constraint by yi ≥ 0 and then
sum the resulting constraints. In the previous two examples, we had (y1,y2,y3) = (0, 5

3 ,0) and
(y1,y2,y3) = (0,1,1). More generally, we obtain the following inequality:

y1(x1− x2− x3 +3x4)+ y2(5x1 + x2 +3x3 +8x4)+ y3(−x1 +2x2 +3x3−5x4)
= (y1−5y2− y3)x1 +(−y1 + y2 +2y3)x2 +(−y1 +3y2 +3y3)x3 +(3y1 +8y2−5y3)x4
≤ y1 +55y2 +3y3

For this inequality to provide an upper bound of 4x1 + x2 + 5x3 + 3x4, we need to ensure that,
for all x1,x2,x3,x4 ≥ 0,

4x1 + x2 +5x3 +3x4

≤ (y1−5y2− y3)x1 +(−y1 + y2 +2y3)x2 +(−y1 +3y2 +3y3)x3 +(3y1 +8y2−5y3)x4.

That is, y1−5y2− y3 ≥ 4, −y1 + y2 +2y3 ≥ 1, −y1 +3y2 +3y3 ≥ 5, and 3y1 +8y2−5y3 ≥ 3.
Combining all inequalities, we obtain the following minimization linear programme:

Minimize y1 +55y2 +3y3
Subject to:

y1−5y2− y3 ≥ 4
−y1 + y2 +2y3 ≥ 1
−y1 +3y2 +3y3 ≥ 5
3y1 +8y2−5y3 ≥ 3

y1,y2,y3 ≥ 0

This problem is called the dual of the initial maximization problem.
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5.3.2 Dual problem
We generalize the example given in Subsection 5.3.1. Consider the following general maxi-
mization linear programme:

Problem 5.5.
Maximize ∑

n
j=1 c jx j

Subject to: ∑
n
j=1 ai jx j ≤ bi for all 1≤ i≤ m

x j ≥ 0 for all 1≤ j ≤ n

Problem 5.5 is called the primal. The matricial formulation of this problem is

Maximize cT x
Subject to: Ax≤ b

x≥ 0

where xT = [x1, . . . ,xn] and cT = [c1, . . . ,cn] are vectors in Rn, and bT = [b1, . . . ,bm] ∈ Rm,
and A = [ai j] is a matrix in Rm×n.

To find an upper bound on cT x, we aim at finding a vector yT = [y1, . . . ,ym] ≥ 0 such that,
for all feasible solutions x≥ 0 of the initial problem, cT x≤ yT Ax≤ yT b = bT y, that is:

Minimize bT y
Subject to: AT y≥ c

y≥ 0
In other words, the dual of Problem 5.5 is defined by:

Problem 5.6.
Minimize ∑

m
i=1 biyi

Subject to: ∑
m
i=1 ai jyi ≥ c j for all 1≤ j ≤ n

yi ≥ 0 for all 1≤ i≤ m

Notice that the dual of a maximization problem is a minimization problem. Moreover, there
is a one-to-one correspondence between the m constraints of the primal ∑ j=1...n ai jx j ≤ bi and
the m variables yi of the dual. Similarly, the n constraints ∑

m
i=1 ai jyi ≥ c j of the dual correspond

one-to-one to the n variables xi of the primal.
Problem 5.6, which is the dual of Problem 5.5, can be equivalently formulated under the

standard form as follows.

Maximize ∑
m
i=1(−bi)yi

Subject to: ∑
m
i=(−ai j)yi ≤−c j for all 1≤ j ≤ n

yi ≥ 0 for all 1≤ i≤ m
(5.22)

Then, the dual of Problem 5.22 has the following formulation which is equivalent to Prob-
lem 5.5.

Minimize ∑
n
j=1(−c j)x j

Subject to: ∑
n
j=1(−ai j)x j ≥−bi for all 1≤ i≤ m

x j ≥ 0 for all 1≤ j ≤ n
(5.23)
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We deduce the following lemma.

Lemma 5.7. If D is the dual of a problem P, then the dual of D is P. Informally, the dual of the
dual is the primal.

5.3.3 Duality Theorem
An important aspect of duality is that feasible solutions of the primal and the dual are related.

Lemma 5.8. Any feasible solution of Problem 5.6 yields an upper bound for Problem 5.5. In
other words, the value given by any feasible solution of the dual of a problem is an upper bound
for the primal problem.

Proof. Let (y1, . . . ,ym) be a feasible solution of the dual and (x1, . . . ,xn) be a feasible solution
of the primal. Then,

n

∑
j=1

c jx j ≤
n

∑
j=

(
m

∑
i=

ai jyi

)
x j ≤

m

∑
i=1

(
n

∑
j=1

ai jx j

)
yi ≤

m

∑
i=1

biyi.

Corollary 5.9. If (y1, . . . ,ym) is a feasible solution of the dual of a problem (Problem 5.6)
and (x1, . . . ,xn) is a feasible solution of the corresponding primal (Problem 5.5) such that
∑

n
j=1 c jx j = ∑

m
i=1 biyi, then both solutions are optimal.

Corollary 5.9 states that if we find two solutions for the dual and the primal achieving the
same value, then this is a certificate of the optimality of these solutions. In particular, in that
case (if they are feasible), both the primal and the dual problems have same optimal value.

For instance, we can easily verify that (0,14,0,5) is a feasible solution for Problem 5.4 with
value 29. On the other hand, (11,0,6) is a feasible solution for the dual with same value. Hence,
the optimal solutions for the primal and for the dual coincide and are equal to 29.

In general, it is not immediate that any linear programme may have such certificate of opti-
mality. In other words, for any feasible linear programme, can we find a solution of the primal
problem and a solution of the dual problem that achieve the same value (thus, this value would
be optimal)? One of the most important result of the linear programming is the duality theorem
that states that it is actually always the case: for any feasible linear programme, the primal and
the dual problems have the same optimal solution. This theorem has been proved by D. Gale,
H.W. Kuhn and A. W. Tucker [5] and comes from discussions between G.B. Dantzig and J. von
Neumann during Fall 1947.

Theorem 5.10 (DUALITY THEOREM). If the primal problem defined by Problem 5.5 admits an
optimal solution (x∗1, . . . ,x

∗
n), then the dual problem (Problem 5.6) admits an optimal solution

(y∗1, . . . ,y
∗
m), and

n

∑
j=1

c jx∗j =
m

∑
i=1

biy∗i .
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Proof. The proof consists in showing how a feasible solution (y∗1, . . . ,y
∗
m) of the dual can be

obtained thanks to the Simplex Method, so that z∗= ∑
m
i=1 biy∗i is the optimal value of the primal.

The result then follows from Lemma 5.8.
Let us assume that the primal problem has been solved by the Simplex Method. For this

purpose, the slack variables have been defined by

xn+i = bi−
n

∑
j=1

ai jx j for 1≤ i≤ m.

Moreover, the last line of the last dictionary computed during the Simplex Method gives the
optimal value z∗ of the primal in the following way: for any feasible solution (x1, . . . ,xn) of the
primal we have

z =
n

∑
j=1

c jx j = z∗+
n+m

∑
i=1

c̄ixi.

Recall that, for all i ≤ n + m, c̄i is non-positive, and that it is null if xi is one of the basis
variables. We set

y∗i =−c̄n+i for 1≤ i≤ m.

Then, by definition of the y∗i ’s and the xn+i’s for 1≤ i≤ m, we have

z =
n

∑
j=1

c jx j = z∗+
n

∑
i=1

c̄ixi−
m

∑
i=1

y∗i

(
bi−

n

∑
j=1

ai jx j

)

=

(
z∗−

m

∑
i=1

y∗i bi

)
+

n

∑
j=1

(
c̄ j +

m

∑
i=1

ai jy∗i

)
x j.

Since this equation must be true whatever be the affectation of the xi’s and since the c̄i’s are
non-positive, this leads to

z∗ =
m

∑
i=1

y∗i bi and

c j = c̄ j +
m

∑
i=1

ai jy∗i ≤
m

∑
i=1

ai jy∗i for all 1≤ j ≤ n.

Hence, (y∗1, . . . ,y
∗
m) defined as above is a feasible solution achieving the optimal value of the

primal. By Lemma 5.8, this is an optimal solution of the dual.

5.3.4 Relation between primal and dual
By the Duality Theorem and Lemma 5.7, a linear programme admits a solution if and only if its
dual admits a solution. Moreover, according to Lemma 5.8, if a linear programme is unbounded,
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then its dual is not feasible. Reciprocally, if a linear programme admits no feasible solution,
then its dual is unbounded. Finally, it is possible that both a linear programme and its dual have
no feasible solution as shown by the following example.

Maximize 2x1− x2
Subject to: x1− x2 ≤ 1

−x1 + x2 ≤ −2
x1,x2 ≥ 0

Besides the fact it provides a certificate of optimality, the Duality Theorem has also a prac-
tical interest in the application of the Simplex Method. Indeed, the time-complexity of the Sim-
plex Method mainly yields in the number of constraints of the considered linear programme.
Hence, when dealing with a linear programme with few variables and many constraints, it will
be more efficient to apply the Simplex Method on its dual.

Another interesting application of the Duality Theorem is that it is possible to compute an
optimal solution for the dual problem from an optimal solution of the primal. Doing so gives
an easy way to test the optimality of a solution. Indeed, if you have a feasible solution of some
linear programme, then a solution of the dual problem can be derived (as explained below).
Then the initial solution is optimal if and only if the solution obtained for the dual is feasible
and leads to the same value.

More formally, the following theorems can be proved

Theorem 5.11 (Complementary Slackness). Let (x1, . . . ,xn) be a feasible solution of Prob-
lem 5.5 and (y1, . . . ,ym) be a feasible solution of Problem 5.6. These are optimal solutions if
and only if

m

∑
i=1

ai jyi = c j, or x j = 0, or both for all 1≤ j ≤ n, and

n

∑
j=1

ai jx j = bi, or yi = 0, or both for all 1≤ i≤ m.

Proof. First, we note that since x and y are feasible (bi−∑
n
j=1 ai jx j)yi ≥ 0 and (∑m

i=1 ai jyi−
c j)x j ≥ 0. Summing these inequalities over i and j, we obtain

m

∑
i=1

(
bi−

n

∑
j=1

ai jx j

)
yi ≥ 0 (5.24)

n

∑
j=1

(
n

∑
i=1

ai jyi− c j

)
x j ≥ 0 (5.25)

Adding Inequalities 5.24 and 5.25 and using the Duality Theorem (Theorem 5.10), we obtain

m

∑
i=1

biyi−
m

∑
i=1

n

∑
j=1

ai jx jyi +
n

∑
j=1

m

∑
i=1

ai jyix j−
n

∑
j=1

c jx j =
m

∑
i=1

biyi−
n

∑
j=1

c jx j = 0.
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Therefore, Inequalities 5.24 and 5.25 must be equalities. As the variables are positive, we
further get that

for all i,

(
bi−

n

∑
j=1

ai jx j

)
yi = 0

and for all j,

(
m

∑
i=1

ai jyi− c j

)
x j = 0.

A product is equal to zero if one of its two members is null and we obtain the desired result.

Theorem 5.12. A feasible solution (x1, . . . ,xn) of Problem 5.5 is optimal if and only if there is
a feasible solution (y1, . . . ,ym) of Problem 5.6 such that:

∑
m
i= ai jyi = c j i f x j > 0

yi = 0 i f ∑
m
j=1 ai jx j < bi

(5.26)

Note that, if Problem 5.5 admits a non-degenerate solution (x1, . . . ,xn), i.e., xi > 0 for any
i≤ n, then the system of equations in Theorem 5.12 admits a unique solution.

Optimality certificates - Examples. Let see how to apply this theorem on two examples.
Let us first examine the statement that

x∗1 = 2, x∗2 = 4, x∗3 = 0, x∗4 = 0, x∗5 = 7, x∗6 = 0

is an optimal solution of the problem

Maximize 18x1 − 7x2 + 12x3 + 5x4 + 8x6
Subject to: 2x1 − 6x2 + 2x3 + 7x4 + 3x5 + 8x6 ≤ 1

−3x1 − x2 + 4x3 − 3x4 + x5 + 2x6 ≤ −2
8x1 − 3x2 + 5x3 − 2x4 + 2x6 ≤ 4
4x1 + 8x3 + 7x4 − x5 + 3x6 ≤ 1
5x1 + 2x2 − 3x3 + 6x4 − 2x5 − x6 ≤ 5

x1,x2, · · · ,x6 ≥ 0

In this case, (5.26) says:

2y∗1 − 3y∗2 + 8y∗3 + 4y∗4 + 5y∗5 = 18
−6y∗1 − y∗2 − 3y∗3 + 2y∗5 = −7

3y∗1 + y∗2 − y∗4 − 2y∗5 = 0
y∗2 = 0

y∗5 = 0

As the solution (1
3 ,0, 5

3 ,1,0) is a feasible solution of the dual problem (Problem 5.6), the pro-
posed solution is optimal.
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Secondly, is
x∗1 = 0, x∗2 = 2, x∗3 = 0, x∗4 = 7, x∗5 = 0

an optimal solution of the following problem?

Maximize 8x1 − 9x2 + 12x3 + 4x4 + 11x5
Subject to: 2x1 − 3x2 + 4x3 + x4 + 3x5 ≤ 1

x1 + 7x2 + 3x3 − 2x4 + x5 ≤ 1
5x1 + 4x2 − 6x3 + 2x4 + 3x5 ≤ 22

x1,x2, · · · ,x5 ≥ 0

Here (5.26) translates into:

−3y∗1 + 7y∗2 + 4y∗3 = −9
y∗1 − 2y∗2 + 2y∗3 = 4

y∗2 = 0

As the unique solution of the system (3.4,0,0.3) is not a feasible solution of Problem 5.6, the
proposed solution is not optimal.

5.3.5 Interpretation of dual variables
As said in the introduction of this section, one of the major interests of the dual programme is
that, in some problems, the variables of the dual problem have an interpretation.

A classical example is the economical interpretation of the dual variables of the following
problem. Consider the problem that consits in maximizing the benefit of a company building
some products. Each variable x j of the primal problem measures the amount of product j that is
built, and bi the amount of resource i (needed to build the products) that is available. Note that,
for any i≤ n, j ≤m, ai, j represents the number of units of resource i needed per unit of product
j. Finally, c j denotes the benefit (the price) of a unit of product j.

Hence, by checking the units of measure in the constraints ∑ai jyi ≥ c j, the variable yi must
represent a benefit per unit of resource i. Somehow, the variable yi measures the unitary value
of the resource i. This is illustrated by the following theorem the proof of which is omitted.

Theorem 5.13. If Problem 5.5 admits a non-degenerate optimal solution with value z∗, then
there is ε > 0 such that, for any |ti| ≤ ε (i = 1, . . . ,m), the problem

Maximize ∑
n
j= c jx j

Subject to ∑
n
j=1 ai jx j ≤ bi + ti (i = 1, . . . ,m)

x j ≥ 0 ( j = 1, . . . ,n)

admits an optimal solution with value z∗+ ∑
m
i=1 y∗i ti, where (y∗1, . . . ,y

∗
m) is the optimal solution

of the dual of Problem 5.5.

Theorem 5.13 shows how small variations in the amount of available resources can affect the
benefit of the company. For any unit of extra resource i, the benefit increases by y∗i . Sometimes,
y∗i is called the marginal cost of the resource i.

In many networks design problems, a clever interpretation of dual variables may help to
achieve more efficient linear programme or to understand the problem better.
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5.4 Exercices

5.4.1 General modelling
Exercise 5.1. Which problem(s) among (5.27), (5.28) and (5.29) are under the standard form?

Maximize 3x1 − 5x2
Subject to: 4x1 + 5x2 ≥ 3

6x1 − 6x2 = 7
x1 + 8x2 ≤ 20

x1,x2 ≥ 0

(5.27)

Minimize 3x1 + x2 + 4x3 + x4 + 5x5
Subject to: 9x1 + 2x2 + 6x3 + 5x4 + 3x5 ≤ 5

8x1 + 9x2 + 7x3 + 9x4 + 3x5 ≤ 2
x1,x2,x3,x4 ≥ 0

(5.28)

Maximize 8x1 − 4x2
Subject to: 3x1 + x2 ≤ 7

9x1 + 5x2 ≤ −2
x1,x2 ≥ 0

(5.29)

Exercise 5.2. Put under the standard form:

Minimize −8x1 + 9x2 + 2x3 − 6x4 − 5x5
Subject to: 6x1 + 6x2 − 10x3 + 2x4 − 8x5 ≥ 3

x1,x2,x3,x4,x5 ≥ 0

Exercise 5.3. Shiow that the linear programme (5.2) has no feasible solutions and that the linear
programme (5.3) is unbounded.

Exercise 5.4. Find necessary and sufficient conditions on the numbers s and t for the problem

Maximize x1 + x2
Subject to: sx1 + tx2 ≤ 1

x1,x2 ≥ 0

a) to admit an optimal solution;

b) to be unfeasible;

c) to be unbounded.

Exercise 5.5. Prove or disprove: if the linear programme (5.1) is unbounded, then there exists
an index k such that the problem:

Maximize xk
Subject to: ∑

n
j=1 ai jx j ≤ bi for 1≤ i≤ m

x j ≥ 0 for 1≤ j ≤ n

is unbounded.
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Exercise 5.6. The factory RadioIn builds to types of radios A and B. Every radio is produced
by the work of three specialists Pierre, Paul and Jacques. Pierre works at most 24 hours per
week. Paul works at most 45 hours per week. Jacques works at most 30 hours per week. The
resources necessary to build each type of radio and their selling prices as well are given in the
following table:

Radio A Radio B
Pierre 1h 2h
Paul 2h 1h
Jacques 1h 3h
Selling prices 15 euros 10 euros

We assume that the company has no problem to sell its production, whichever it is.
a) Model the problem of finding a weekly production plan maximizing the revenue of Ra-

dioIn as a linear programme. Write precisely what are the decision variables, the objective
function and the constraints.

b) Solve the linear programme using the geometric method and give the optimal production
plan.

Exercise 5.7. The following table shows the different possible schedule times for the drivers
of a bus company. The company wants that at least one driver is present at every hour of the
working day (from 9 to 17). The problem is to determine the schedule satisfying this condition
with minimum cost.

Time 9 – 11h 9 – 13h 11 – 16h 12 – 15h 13 – 16h 14– 17h 16 – 17h
Cost 18 30 38 14 22 16 9

Formulate an integer linear programme that solves the company decision problem.

Exercise 5.8 (Chebyshev’s approximation). Data : m measures of points (xi,yi) ∈ R2, i =
1, ...,m.
Objective: Determine a linear approximation y = ax+b minimizing the largest error of approx-
imation. The decision variables of this problem are a ∈ R and b ∈ R. The problem may be

formulated as:
minz = max

i=1,...,m
{|yi−axi−b|}.
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It is unfortunately not under the form of a linear programme. Let us try to do some transforma-
tions.

Questions:

1. We call MIN-MAX the problem of minimizing the maximum of a set of numbers:

minz with z = max{c1x, ...,ckx}.

How to write a MIN-MAX as a linear programme?

2. Can we express the following constraints

|x| ≤ b

or
|x| ≥ b

in a linear problem (that is without absolute values)? If yes, how?

3. Rewrite the problem of finding a Chebyshev’s linear approximation as a linear pro-
gramme.

5.4.2 Simplex
Exercise 5.9. Solve with the Simplex Method the following problems:

a.
Maximize 3x1 + 3x2 + 4x3
Subject to:

x1 + x2 + 2x3 ≤ 4
2x1 + 3x3 ≤ 5
2x1 + x2 + 3x3 ≤ 7

x1,x2,x3 ≥ 0

b.
Maximize 5x1 + 6x2 + 9x3 + 8x4
Subject to:

x1 + 2x2 + 3x3 + x4 ≤ 5
x1 + x2 + 2x3 + 3x4 ≤ 3

x1,x2,x3,x4 ≥ 0

c.
Maximize 2x1 + x2
Subject to:

2x1 + 3x2 ≤ 3
x1 + 5x2 ≤ 1

2x1 + x2 ≤ 4
4x1 + x2 ≤ 5

x1,x2 ≥ 0
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Exercise 5.10. Use the Simplex Method to describe all the optimal solutions of the following
linear programme:

Maximize 2x1 + 3x2 + 5x3 + 4x4
Subject to:

x1 + 2x2 + 3x3 + x4 ≤ 5
x1 + x2 + 2x3 + 3x4 ≤ 3

x1,x2,x3,x4 ≥ 0

Exercise 5.11. Solve the following problems using the Simplex Method in two phases.

a.
Maximise 3x1 + x2
Subject to:

x1 − x2 ≤ −1
−x1 − x2 ≤ −3
2x1 + x2 ≤ 4

x1,x2 ≥ 0

b.
Maximise 3x1 + x2
Subject to:

x1 − x2 ≤ −1
−x1 − x2 ≤ −3
2x1 + x2 ≤ 2

x1,x2 ≥ 0

c.
Maximise 3x1 + x2
Subject to:

x1 − x2 ≤ −1
−x1 − x2 ≤ −3
2x1 − x2 ≤ 2

x1,x2 ≥ 0

5.4.3 Duality
Exercise 5.12. Write the dual of the following linear programme.

Maximize 7x1 + x2
Subject to:

4x1 + 3x2 ≤ 3
x1 − 2x2 ≤ 4

−5x1 − 2x2 ≤ 3
x1,x2 ≥ 0
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Exercise 5.13. Consider the following linear programme.

Minimize −2x1 − 3x2 − 2x3 − 3x4
Subject to:

−2x1 − x2 − 3x3 − 2x4 ≥ −8
3x1 + 2x2 + 2x3 + x4 ≤ 7

x1,x2,x3,x4 ≥ 0

(5.30)

a) Write the programme (5.30) under the standard form.

b) Write the dual (D) of programme (5.30).

c) Give a graphical solution of the dual programme (D).

d) Carry on the first iteration of the Simplex Method on the linear programme (5.30).

After three iterations, one find that the optimal solution of this programme is x1 = 0,
x2 = 2, x3 = 0 and x4 = 3.

e) Verify that the solution of (D) obtained at Question c) is optimal.

Exercise 5.14. Prove that the following linear programme is unbounded.

Maximize 3x1 − 4x2 + 3x3
Subject to :

−x1 + x2 + x3 ≤ −3
−2x1 − 3x2 + 4x3 ≤ −5
−3x1 + 2x2 − x3 ≤ −3

x1,x2,x3 ≥ 0

Exercise 5.15. We consider the following linear programme.

Maximize x1 − 3x2 + 3x3
Subject to :

2x1 − x2 + x3 ≤ 4
−4x1 + 3x2 ≤ 2

3x1 − 2x2 − x3 ≤ 5
x1,x2,x3 ≥ 0

Is the solution x∗1 = 0, x∗2 = 0, x∗3 = 4 optimal?

Exercise 5.16. We consider the following linear programme.

Maximize 7x1 + 6x2 + 5x3 − 2x4 + 3x5
Subject to:

x1 + 3x2 + 5x3 − 2x4 + 2x5 ≤ 4
4x1 + 2x2 − 2x3 + x4 + x5 ≤ 3
2x1 + 4x2 + 4x3 − 2x4 + 5x5 ≤ 5
3x1 + x2 + 2x3 − x4 − 2x5 ≤ 1

x1,x2,x3,x4,x5 ≥ 0.
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Is the solution x∗1 = 0,x∗2 = 4
3 ,x∗3 = 2

3 ,x∗4 = 5
3 ,x∗5 = 0, optimal?

Exercise 5.17. 1. Because of the arrival of new models, a salesman wants to sell off quickly
its stock composed of eight phones, four hands-free kits and nineteen prepaid cards. Thanks
to a market study, he knows that he can propose an offer with a phone and two prepaid cards
and that this offer will bring in a profit of seven euros. Similarly, we can prepare a box with a
phone, a hands-free kit and three prepaid cards, yielding a profit of nine euros. He is assured to
be able to sell any quantity of these two offers within the availability of its stock. What quantity
of each offer should the salesman prepare to maximize its net profit?

2. A sales representative of a supermarket chain proposes to buy its stock (the products, not
the offers). What unit prices should he negociate for each product (phone, hands-free kits, and
prepaid cards)?

Exercise 5.18 (FARKAS’ LEMMA). The following two linear programmes are duals of each
other.

Maximize 0Tx subject to Ax = 0 and x≥ b
Minimize −bTz subject to ATy− z = 0 and z≥ 0

Farkas’ Lemma says that exactly one of the two linear systems:

Ax = 0, x≥ b and yA≥ 0, yAb > 0

has a solution. Deduce Farkas’ Lemma from the Duality Theorem (5.10).

Exercise 5.19. The following two linear programmes are duals of each other.

Minimize 0T y subject to AT y≥ c
Maximize cTx subject to Ax = 0 and x≥ 0

A variant of Farkas’ Lemma says that exactly one of the two linear systems:

ATy≥ c and Ax = 0, x≥ 0, cx > 0

has a solution. Deduce this variant of Farkas’ Lemma from the Duality Theorem (5.10).

Exercise 5.20 (Application of duality to game theory- Minimax principle). In this problem,
based on a lecture of Shuchi Chawla, we present an application of linear programming duality
in the theory of games. In particular, we will prove the Minimax Theorem using duality.

Let us first give some definition. A two-players zero-sum game is a protocol defined as
follows: two players choose strategies in turn; given two strategies x and y, we have a valuation
function f (x,y) which tells us what the payoff for Player one is. Since it is a zero sum game, the
payoff for the Player two is exactly − f (x,y). We can view such a game as a matrix of payoffs
for one of the players. As an example take the game of Rock-Paper-Scissors, where the payoff
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is one for the winning party or 0 if there is a tie. The matrix of winnings for player one will
then be the following:

A =

 0 −1 1
1 0 −1
−1 1 0


Where Ai j corresponds to the payoff for player one if player one picks the i-th element and
player two the j-th element of the sequence (Rock, Paper, Scissors). We will henceforth refer
to player number two as the column player and player number one as the row player. If the row
player goes first, he obviously wants to minimize the possible gain of the column player.

What is the payoff of the row player? If the row player plays first, he knows that the column
player will choose the minimum of the line he will choose. So he has to choose the line with
the maximal minimum value. That is its payoff is

max
i

min
j

Ai j.

Similarly, what is the payoff of the column player if he plays first? If the column player plays
first, the column player knows that the row player will choose the maximum of the column that
will be chosen. So the column player has to choose the column with minimal maximum value.
Hence, the payoff of the row player in this case is

min
j

max
i

Ai j.

Compare the payoffs. It is clear that

max
i

min
j

Ai j ≤min
j

max
i

Ai j.

The minimax theorem states that if we allow the players to choose probability distributions
instead of a given column or row, then the payoff is the same no matter which player starts.
More formally:

Theorem 5.14 (Minimax theorem). If x and y are probability vectors, then

max
y

(min
x

yT Ax) = min
x

(max
y

(yT Ax)).

Let us prove the theorem.

1. Formulate the problem of maximizing its payoff as a linear programme.

2. Formulate the second problem of minimizing its loss as a linear programme.

3. Prove that the second problem is a dual of the first problem.

4. Conclude.

Exercise 5.21. Prove the following proposition.
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Proposition 5.15. The dual problem of the problem

Maximize cT x subject to Ax≤ a and Bx = b and x≥ 0

is the problem

Minimize aT y+bT z subject to AT y+BT z≥ c and y≥ 0.

5.4.4 Modelling Combinatorial Problems via (integer) linear program-
ming

Lots of combinatorial problems may be formulated as linear programmes.

Exercise 5.22 (VERTEX COVER). A vertex cover in a graph G = (V,E) is a set K of vertices
such that each edge e of E is incident to at least one vertex of K. The VERTEX COVER problem
is to find a vertex cover of minimum cardinality in a given graph.

1. Express VERTEX COVER for the following graph as an integer linear programme:

F

A

E D

CB

2. Express VERTEX COVER for a general graph as a linear programme.

Exercise 5.23 (EDGE COVER). An edge cover of a graph G = (V,E) is a set of edges F ⊆ E
such that every vertex v ∈V is incident to at least one edge of F . The EDGE COVER problem is
to find an edge cover of minimum cardinality in a given graph.

Adapt the integer linear programme modelling VERTEX COVER to obtain an integer linear
programming formulation of EDGE COVER.

Exercise 5.24. Consider the graph

A
|
B–D
| /
C
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What does the following linear programme do?

Minimize xA + xB + xC + xD
Subject to:

xA + xB ≥ 1
xB + xD ≥ 1
xB + xC ≥ 1
xC + xD ≥ 1

xA ≥ 0,xB ≥ 0,xC ≥ 0,xD ≥ 0

Exercise 5.25 (Maximum cardinality matching problem (Polynomial < flows or augmenting
paths)). Let G = (V,E) be a graph. Recall that a matching M ⊆ E is a set of edges such that
every vertex of V is incident to at most one edge of M. The MAXIMUM MATCHING problem
is to find a matching M of maximum size. Express MAXIMUM MATCHING as a integer linear
programme.

Exercise 5.26 (MAXIMUM CLIQUE). Recall that a clique of a graph G = (V,E) is a subset C
of V , such that every two vertices in V are joined by an edge of E. The MAXIMUM CLIQUE

problem consist of finding the largest cardinality of a clique.
Express MAXIMUM CLIQUE as an integer linear programme.

Exercise 5.27 (Resource assignment). A university class has to go from Marseille to Paris using
buses. There are some strong inimities inside the group and two people that dislike each other
cannot share the same bus. What is the minimum number of buses needed to transport the whole
group? Write a LP that solve the problem. (We suppose that a bus does not have a limitation on
the number of places. )

Exercise 5.28 (French newspaper enigma). What is the maximum size of a set of integers
between 1 and 100 such that for any pair (a,b), the difference a-b is not a square ?

1. Model this problem as a graph problem.

2. Write a linear programme to solve it.

Exercise 5.29 (MAXIMUM STABLE SET). Recall that a stable set of a graph G = (V,E) is a
subset S of paorwise non-adjacent vertices. The MAXIMUM STABLE SET problem consist in
finding the largest cardinality of a stable set. Give a linear programming formulation of this
problem.

Exercise 5.30 (MINIMUM SET COVER). Let U = {1, ...,n} be a set and S = {S1, . . . , Sm}
a set of subsets of U. An S -cover of U is a subset of T of S such that

S
T∈T T = U. The

MINIMUM SET COVER problem consists in, given a set U S , finding an S -cover of U of
minimum cardinality.

Formulate MINIMUM SET COVER as an integer linear programme.
(The associate decision problem k-SET COVER, which consists in deciding wether U has

an S -cover of cardinality at most k is N P -complete.
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Exercise 5.31 (Instance of MAXIMUM SET PACKING). Suppose you are at a convention of
foreign ambassadors, each of which speaks English and other various languages.

- French ambassador: French, Russian

- US ambassador:

- Brazilian ambassador: Portuguese, Spanish

- Chinese ambassador: Chinese, Russian

- Senegalese ambassador: Wolof, French, Spanish

You want to make an announcement to a group of them, but because you do not trust them,
you do not want them to be able to speak among themselves without you being able to under-
stand them (you only speak English). To ensure this, you will choose a group such that no two
ambassadors speak the same language, other than English. On the other hand you also want to
give your announcement to as many ambassadors as possible.

Write a linear programme giving the maximum number of ambassadors at which you will
be able to give the message.

Exercise 5.32 (MAXIMUM SET PACKING). Given a finite set S and a list L of subsets of S.
The MAXIMUM SET PACKING problem consists in finding the maximum number of pairwise
disjoint sets in a given list L . Give a linear programming formulation of this problem.

5.4.5 Modelling flows and shortest paths.
Recall that a flow network is a four-tuple N = (D,s, t,c) where

- D = (V,A).

- c is a capacity function from A to R+∪∞. For an arc a ∈ A, c(a) represents its capacity,
that is the maximum amount of flow it can carry.

- s and t are two distinct vertices: s is the source of the flow and t the sink.

A flow is a function f from A to R+ which respects the flow conservation constraints and
the capacity constraints. See Chapter 4

Exercise 5.33 (MAXIMUM FLOW). Write a linear programming formulation of the MAXIMUM

FLOW problem.

Exercise 5.34 (MULTICOMMODITY FLOW). Consider a flow network N = (D,s, t,c). Con-
sider a set of demands given by the matrix D = (di j ∈R; i, j ∈V, i 6= j), where di j is the amount
of flow that has to be sent from node i to node j. The multicommodity flow problem is to
determine if all demands can be routed simultaneously on the network. This problem models a
telecom network and is one of the fundamental problem of the networking research field.

Write a linear program that solves the multicommodity flow problem.
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Exercise 5.35 (Shortest (s, t)-path). Let D = (V,A, l) be a an arc-weighted digraph with l is a
length function from A to R+. For a∈ A, l(a) is the length of arc a. Let s and t two distinguished
vertices.

Write a linear programme that finds the length of a shortest path between s and t.

Exercise 5.36 (Eccentricy and diameter). The distance between two vertices in a graph is the
number of edges in a shortest path connecting them. The eccentricity ε of a vertex v is the
greatest distance between v and any other vertex. It can be thought of as how far a node is from
the node most distant from it in the graph. The diameter of a graph is the maximum eccentricity
of any vertex in the graph. That is, it is the greatest distance between any pair of vertices.

1. Write a linear programme to compute the eccentricity of a given vertex.

2. Write a linear programme which computes the diameter of a graph.

Exercise 5.37 (MINIMUM (s, t)-CUT). Recall that in a flow network N = (G,s, t,c) an (s, t)-cut
is a bipartition C = (Vs,Vt) of the vertices of G such that s ∈Vs and t ∈Vt . The capacity of the
cut C, denoted by δ(C), is the sum of the capacities of the out-arcs of Vs (i.e., the arcs (u,v) with
u ∈Vs and v ∈Vt).

Write a linear programme that finds the minimum capacity of an (s, t)-cut.
Hint: Use variables to know in which partition is each vertex and additional variables to know
which edges are in the cut.
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