The Simplex Method or Solving Linear Program

Frédéric Giroire

Motivation

- Most popular method to solve linear programs.
- Principle: smartly explore basic solutions (corner point solutions), improving the value of the solution.

Start with a problem written under the standard form.

Maximize $5x_1 + 4x_2 + 3x_3$ Subject to :

First step: introduce new variables, slack variables.

$$2x_1 + 3x_2 + x_3 \leq 5$$

We note x_4 the slack (difference) between the right member and 5, that is

$$x_4 = 5 - 2x_1 - 3x_2 - x_3.$$

The inequation can now be written as

125

$$x_4 \ge 0.$$

MASCOTTE

Similarly, for the 2 others inequalities:

4

$$4x_1 + x_2 - 2x_3 \leq 11$$

 $3x_1 + 4x_2 - 2x_3 \leq 8$

We define x_5 and x_6 :

And the inequalities can be written as

135

$$x_5 \ge 0, x_6 \ge 0.$$

To summarize, we introduce three slack variables x_4 , x_5 , x_6 :

The problem can be written as:

Maximize z subject to $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$.

slack variables x_4 , x_5 , x_6 decision variables x_1 , x_2 , x_3 . The two problems are equivalent.

Second step: Find an initial solution.

In our example, $x_1 = 0, x_2 = 0, x_3 = 0$ is feasible.

We compute the value of x_4, x_5, x_6 .

$$x_4 = 5 - 2x_1 - 3x_2 - x_3 = 5$$

Similarly, $x_5 = 11$ and $x_6 = 8$.

We get an initial solution

$$x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 5, x_5 = 11, x_6 = 8$$

of value z = 0

125

Dictionary:

<i>x</i> ₄	=	5	_	2 <u>x</u> 1	_	3 <mark>x</mark> 2	_	<i>x</i> 3
x 5	=	11	_	4 <u>x</u> 1	_	<i>x</i> ₂	_	2 <u>x</u> 3
<i>x</i> 6	=	8	_	3 <mark>x</mark> 1	—	4 <i>x</i> ₂	_	2 <u>x</u> 3
Ζ	=			5 <mark>x</mark> 1	+	4 <u>x</u> 2	+	3 <u>x</u> 3.

Basic variables: x_4, x_5, x_6 , variables on the left. Non-basic variable: x_1, x_2, x_3 , variables on the right.

A dictionary is **feasible** if a feasible solution is obtained by setting all non-basic variables to 0.

Dictionary:

<i>x</i> ₄	=	5	_	2 <u>x</u> 1	_	3 <mark>x</mark> 2	_	<i>X</i> 3
x 5	=	11	_	4 <u>x</u> 1	_	<i>x</i> ₂	_	2 <u>x</u> 3
<i>x</i> 6	=	8	_	3 <mark>x</mark> 1	—	4 <u>x</u> 2	—	2 <u>x</u> 3
Ζ	=			5 <u>x</u> 1	+	4 <i>x</i> ₂	+	3 <mark>x</mark> 3.

Basic variables: x_4 , x_5 , x_6 , variables on the left. Non-basic variable: x_1 , x_2 , x_3 , variables on the right.

A dictionary is feasible if a feasible solution is obtained by setting all non-basic variables to 0.

Simplex strategy: find an optimal solution by successive improvements.

Rule: we increase the value of the variable of largest positive coefficient in *z*.

<i>x</i> ₄	=	5	_	2 <i>x</i> 1	_	3 <i>x</i> 2	_	<i>x</i> 3
<i>x</i> 5	=	11	—	4 <i>x</i> ₁	—	<i>x</i> ₂	_	2 <i>x</i> ₃
<i>x</i> ₆	=	8		3 <i>x</i> 1				
Ζ	=			5 x ₁	+	4 <i>x</i> ₂	+	3 <i>x</i> ₃ .

MASCOTTE

135

Here, we try to increase x_1 .

How much can we increase x_1 ?

	<i>x</i> ₄	=	5	_	2 <i>x</i> ₁	—	3 <i>x</i> 2	_	<i>X</i> 3
	<i>x</i> 5	=	11	_	4 <i>x</i> ₁	—	<i>x</i> ₂	_	2 <i>x</i> ₃
	<i>x</i> ₆	=	8	_	3 <i>x</i> 1	—	4 <i>x</i> ₂	_	2 <i>x</i> ₃
	Ζ	=			5 <i>x</i> ₁	+	4 <i>x</i> ₂	+	3 <i>x</i> ₃ .
We have x_4	≥0								
It implies 5 –	2 <i>x</i> 1	≥0,		tł	nat is	<i>x</i> ₁ ≤	$\leq \frac{5}{2}$.		

JISS MASCOTTE

How much can we increase x_1 ?

<i>x</i> ₄	=	5	_	2 <i>x</i> ₁	_	3 <i>x</i> ₂	_	<i>x</i> 3
<i>x</i> 5	=	11	_	4 <i>x</i> ₁	_	<i>x</i> ₂	_	2 <i>x</i> ₃
<i>x</i> ₆	=	8	_	3 <i>x</i> 1	_	4 <i>x</i> ₂	_	2 <i>x</i> ₃
Ζ	=			5 <i>x</i> ₁	+	4 <i>x</i> ₂	+	3 <i>x</i> ₃ .

We have $x_4 \ge 0$. It implies $5 - 2x_1 \ge 0$,

135

that is
$$x_1 \leq 5/2$$
.

Similarly,

 $x_5 \ge 0$ gives $x_1 \le 11/4$. $x_6 \ge 0$ gives $x_1 \le 8/3$.

How much can we increase x_1 ?

	<i>x</i> ₄	=	5	_	2 <i>x</i> ₁	—	3 <i>x</i> ₂	_	х з	
	<i>x</i> 5	=	11	_	4 <i>x</i> ₁	_	<i>x</i> ₂	_	2 <i>x</i> ₃	
_	<i>x</i> ₆	=	8	_	3 <i>x</i> 1	_	4 <i>x</i> ₂	-	2 <i>x</i> ₃	
	Ζ	=			5 <i>x</i> 1	+	4 <i>x</i> ₂	+	3 <i>x</i> ₃ .	
We have $x_4 \ge$	<u>≥ 0</u>									
It implies $5-2$	2 <i>x</i> 1	\geq 0,		tł	nat is	<i>x</i> ₁ ≤	≤ 5/2	5	Stronge	est constraint
Similarly, $x_5 \ge 0$ gives $x_6 \ge 0$ give x_6 \ge 0 gives $x_6 \ge 0$ gives $x_6 \ge 0$ give x_6 \ge		,								

135

How much can we increase x_1 ?

	<i>x</i> ₄	=	5	_	2 <i>x</i> ₁	—	3 <i>x</i> ₂	—	<i>X</i> 3			
	<i>x</i> ₅	=	11	_	4 <i>x</i> ₁	—	<i>x</i> ₂	—	2 <i>x</i> ₃			
	<i>x</i> ₆	=	8	_	3 <i>x</i> 1	_	4 <i>x</i> ₂	_	2 <i>x</i> ₃			
	Ζ	=			5 <i>x</i> 1	+	4 <i>x</i> ₂	+	3 <i>x</i> ₃ .			
We have $x_4 \ge 0$.												
It implies 5 -	2 <i>x</i> 1	\geq 0,		tł	nat is	<i>x</i> ₁ ≤	≤ 5/2	5	Stronge	est constraint		
with better va We still have	lue	It implies $5 - 2x_1 \ge 0$, that is $x_1 \le 5/2$ Strongest constraint We get a new solution: $x_1 = 5/2$, $x_4 = 0$ with better value $z = 5 \cdot 5/2 = 25/2$. We still have $x_2 = x_3 = 0$ and now $x_5 = 11 - 4 \cdot 5/2 = 1$, $x_6 = 8 - 3 \cdot 5/2 = 1/2$										

JISS MASCOTTE

FG

We build a new feasible dictionary.

<i>x</i> ₄	=	5	—	2 <i>x</i> ₁	—	3 <i>x</i> ₂	—	<i>x</i> 3
<i>x</i> 5	=	11	_	4 <i>x</i> ₁	_	<i>x</i> ₂	_	2 <i>x</i> ₃
<i>x</i> ₆	=	8	_	3 <i>x</i> 1	_	4 <i>x</i> ₂	_	2 <i>x</i> ₃
Ζ	=			5 <i>x</i> 1	+	$4x_{2}$	+	3 <i>x</i> ₃ .

 x_1 enters the bases and x_4 leaves it:

135

$$x_1 = 5/2 - 3/2x_2 - 1/2x_3 - 1/2x_4$$

We replace x_1 by its expression in function of x_2, x_3, x_4 .

JISS MASCOTTE

Finally, we get the new dictionary:

J35 MASCOTTE

Finally, we get the new dictionary:

We can read the solution directly from the dictionary: Non basic variables: $x_2 = x_3 = x_4 = 0$. Basic variables: $x_1 = 5/2$, $x_5 = 1$, $x_6 = 1/2$. Value of the solution: z = 25/2.

135 MASCOTTE

New step of the simplex:

- x_3 enters the basis (variable with largest positive coefficient).
- 3^d equation is the strictest constaint $x_3 \leq 1$.
- x₆ leaves the basis.

New feasible dictionary:

With new solution:

$$x_1 = 2, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 0$$

of value z = 13.

This solution is optimal.

All coefficients in z are negative and $x_2 \ge 0, x_4 \ge 0, x_6 \ge 0$, so $z \le 13$.

New feasible dictionary:

With new solution:

$$x_1 = 2, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 0$$

of value z = 13.

This solution is optimal.

125

All coefficients in z are negative and $x_2 \ge 0, x_4 \ge 0, x_6 \ge 0$, so $z \le 13$.

Take Aways

- Most popular method to solve linear programs.
- Principle: smartly explore basic solutions (corner point solutions), improving the value of the solution.
- Complexity:
 - In theory, NP-complete (can explore a number of solutions exponentiel in the number of variables and constraints).
 - In practice, almost linear in the number of constraints.
- Polynomial methods exists: the ellipsoid method.

