The Simplex Method or Solving Linear Program

Frédéric Giroire

Motivation

- Most popular method to solve linear programs.
- Principle: smartly explore basic solutions (corner point solutions), improving the value of the solution.

The simplex

Start with a problem written under the standard form.
Maximize $5 x_{1}+4 x_{2}+3 x_{3}$ Subject to :

$$
\begin{array}{r}
2 x_{1}+3 x_{2}-x_{3} \leq 5 \\
4 x_{1}+x_{2}-2 x_{3} \leq 11 \\
3 x_{1}+4 x_{2}-2 x_{3} \leq 8 \\
\\
x_{1}, x_{2}, x_{3} \geq 0 .
\end{array}
$$

The simplex

First step: introduce new variables, slack variables.

$$
2 x_{1}+3 x_{2}+x_{3} \leq 5
$$

We note x_{4} the slack (difference) between the right member and 5 , that is

$$
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} .
$$

The inequation can now be written as

$$
x_{4} \geq 0
$$

The simplex

Similarly, for the 2 others inequalities:

$$
\begin{array}{r}
4 x_{1}+x_{2}-2 x_{3} \leq 11 \\
3 x_{1}+4 x_{2}-2 x_{3} \leq 8
\end{array}
$$

We define x_{5} and x_{6} :

$$
\begin{array}{r}
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3}
\end{array}
$$

And the inequalities can be written as

$$
x_{5} \geq 0, x_{6} \geq 0
$$

The simplex

To summarize, we introduce three slack variables x_{4}, x_{5}, x_{6} :

$$
\left.\begin{array}{rl}
x_{4} & =5-2 x_{1}-3 x_{2} \\
x_{5} & =11-4 x_{1}
\end{array}\right) x_{3} .
$$

The problem can be written as:
Maximize z subject to $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0$.
slack variables x_{4}, x_{5}, x_{6} decision variables x_{1}, x_{2}, x_{3}. The two problems are equivalent.

The simplex

Second step: Find an initial solution.
In our example, $x_{1}=0, x_{2}=0, x_{3}=0$ is feasible.
We compute the value of x_{4}, x_{5}, x_{6}.

$$
x_{4}=5-2 x_{1}-3 x_{2}-x_{3}=5
$$

Similarly, $x_{5}=11$ and $x_{6}=8$.
We get an initial solution

$$
x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=5, x_{5}=11, x_{6}=8
$$

of value $z=0$

The simplex

Dictionary:

$$
\begin{aligned}
& x_{4}=5-2 x_{1}-3 x_{2}- \\
& x_{5}=11-4 x_{3} \\
& x_{6}=8-x_{2}-2 x_{3} \\
& \hline z=5 x_{1}-4 x_{2}-2 x_{3} \\
& \hline
\end{aligned}
$$

Basic variables: x_{4}, x_{5}, x_{6}, variables on the left. Non-basic variable: x_{1}, x_{2}, x_{3}, variables on the right.

A dictionary is feasible if a feasible solution is obtained by setting all
non-basic variables to 0 .

The simplex

Dictionary:

$$
\begin{aligned}
& x_{4}=5-2 x_{1}-3 x_{2}- \\
& x_{5}=11-4 x_{3} \\
& x_{6}=8-x_{2}-2 x_{3} \\
& \hline z=5 x_{1}-4 x_{2}-2 x_{3} \\
& \hline
\end{aligned}
$$

Basic variables: x_{4}, x_{5}, x_{6}, variables on the left.
Non-basic variable: x_{1}, x_{2}, x_{3}, variables on the right.
A dictionary is feasible if a feasible solution is obtained by setting all non-basic variables to 0 .

The simplex

Simplex strategy: find an optimal solution by successive improvements.
Rule: we increase the value of the variable of largest positive coefficient in z.

$$
\begin{aligned}
& x_{4}=5-2 x_{1}-3 x_{2}-r \\
& x_{5}=11-4 x_{3} \\
& x_{6}=8-x_{2}-2 x_{3} \\
& x_{6}-3 x_{1}-4 x_{2}-2 x_{3} \\
& \hline z=5 x_{1}+4 x_{2}+3 x_{3} .
\end{aligned}
$$

Here, we try to increase x_{1}.

The simplex

How much can we increase x_{1} ?

$$
\begin{array}{rl}
x_{4} & =5-2 x_{1}-3 x_{2}-r \\
x_{5} & =11-4 x_{3} \\
x_{6} & =8-x_{2}-2 x_{3} \\
\hline z & =5 x_{1}-4 x_{2}-2 x_{3} \\
\hline z & 5 x_{1}+3 x_{3} .
\end{array}
$$

We have $x_{4} \geq 0$.
It implies $5-2 x_{1} \geq 0, \quad$ that is $x_{1} \leq \frac{5}{2}$.

The simplex

How much can we increase x_{1} ?

$$
\begin{aligned}
x_{4} & =5-2 x_{1}-3 x_{2} \\
x_{5} & =11-4 x_{1}-2 x_{2} \\
x_{6} & =8-3 x_{1}-4 x_{2} \\
\hline z & =5 x_{1}+4 x_{2}+3 x_{3}
\end{aligned}
$$

We have $x_{4} \geq 0$.
It implies $5-2 x_{1} \geq 0$,
that is $x_{1} \leq 5 / 2$.
Similarly,
$x_{5} \geq 0$ gives $x_{1} \leq 11 / 4$.
$x_{6} \geq 0$ gives $x_{1} \leq 8 / 3$.

The simplex

How much can we increase x_{1} ?

$$
\begin{aligned}
& x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
& x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
& \begin{aligned}
x_{6} & =8-3 x_{1}-4 x_{2}-2 x_{3} \\
\hline z & =5 x_{1}+4 x_{2}+3 x_{3} .
\end{aligned}
\end{aligned}
$$

We have $x_{4} \geq 0$.
It implies $5-2 x_{1} \geq 0$,
that is $x_{1} \leq 5 / 2$ Strongest constraint
Similarly,
$x_{5} \geq 0$ gives $x_{1} \leq 11 / 4$.
$x_{6} \geq 0$ gives $x_{1} \leq 8 / 3$.

The simplex

How much can we increase x_{1} ?

$$
\begin{aligned}
x_{4} & =5-2 x_{1}-3 x_{2}- \\
x_{5} & =11-4 x_{3} \\
x_{6} & =8-x_{2}-2 x_{3} \\
\hline z & =
\end{aligned}
$$

We have $x_{4} \geq 0$.
It implies $5-2 x_{1} \geq 0$, that is $x_{1} \leq 5 / 2$

Strongest constraint
We get a new solution: $x_{1}=5 / 2, x_{4}=0$
with better value $z=5 \cdot 5 / 2=25 / 2$.
We still have $x_{2}=x_{3}=0$ and now $x_{5}=11-4 \cdot 5 / 2=1$, $x_{6}=8-3 \cdot 5 / 2=1 / 2$

The simplex

We build a new feasible dictionary.

$$
\begin{aligned}
& x_{4}=5-2 x_{1}-3 x_{2}- \\
& x_{5}= x_{3} \\
& x_{6}=8-4 x_{1}-x_{2}-2 x_{3} \\
& \hline z=3 x_{1}-4 x_{2}-2 x_{3} \\
& 5 x_{1}+4 x_{2}+3 x_{3} .
\end{aligned}
$$

x_{1} enters the bases and x_{4} leaves it:

$$
x_{1}=5 / 2-3 / 2 x_{2}-1 / 2 x_{3}-1 / 2 x_{4}
$$

The simplex

We replace x_{1} by its expression in function of x_{2}, x_{3}, x_{4}.

$$
\begin{array}{rrrrrr}
x_{1} & = & 5 / 2-1 / 2 x_{4} & - & 3 / 2 x_{2} & - \\
x_{5} & = & 11 / 2 x_{3} \\
x_{6} & = & 8-3\left(5 / 2-3 / 2 x_{2}-1 / 2 x_{3}-1 / 2 x_{4}\right) & - & x_{2} & - \\
\hline z & = & & 5\left(5 / 2-3 / 2 x_{3}\right. \\
\left.\hline z-1 / 2 x_{3}-1 / 2 x_{4}\right) & - & 4 x_{2} & - & 2 x_{3} \\
\hline
\end{array}
$$

The simplex

Finally, we get the new dictionary:

The simplex

Finally, we get the new dictionary:

We can read the solution directly from the dictionary:
Non basic variables: $x_{2}=x_{3}=x_{4}=0$.
Basic variables: $x_{1}=5 / 2, x_{5}=1, x_{6}=1 / 2$.
Value of the solution: $z=25 / 2$.

The simplex

New step of the simplex:

- x_{3} enters the basis (variable with largest positive coefficient).
- 3^{d} equation is the strictest constaint $x_{3} \leq 1$.
- x_{6} leaves the basis.

The simplex

New feasible dictionary:

$$
\begin{aligned}
x_{3} & =1+x_{2}+3 x_{4}-2 x_{6} \\
x_{1} & =2-2 x_{2}-2 x_{4}+x_{6} \\
x_{5} & =1+5 x_{2}+2 x_{4} \\
\hline z & =13-3 x_{2}-1 x_{4}-x_{6}
\end{aligned}
$$

With new solution:

$$
x_{1}=2, x_{2}=0, x_{3}=1, x_{4}=0, x_{5}=1, x_{6}=0
$$

of value $z=13$.

The simplex

New feasible dictionary:

$$
\begin{aligned}
x_{3} & =1+x_{2}+3 x_{4}-2 x_{6} \\
x_{1} & =2-2 x_{2}-2 x_{4}+x_{6} \\
x_{5} & =1+5 x_{2}+2 x_{4} \\
\hline z & =13-3 x_{2}-x_{4}-x_{6} .
\end{aligned}
$$

With new solution:

$$
x_{1}=2, x_{2}=0, x_{3}=1, x_{4}=0, x_{5}=1, x_{6}=0
$$

of value $z=13$.
This solution is optimal.
All coefficients in z are negative and $x_{2} \geq 0, x_{4} \geq 0, x_{6} \geq 0$, so $z \leq 13$.

Take Aways

- Most popular method to solve linear programs.
- Principle: smartly explore basic solutions (corner point solutions), improving the value of the solution.
- Complexity:
- In theory, NP-complete (can explore a number of solutions exponentiel in the number of variables and constraints).
- In practice, almost linear in the number of constraints.
- Polynomial methods exists: the ellipsoid method.

