Simplex Method and Reduced Costs, **Duality and Marginal Costs**

Frédéric Giroire

** Simplex Method and Reduced Costs, Strong Duality Theorem **

Simplex - Reminder

Start with a problem written under the standard form.

Maximize $5x_1 + 4x_2 + 3x_3$ Subject to :

Simplex - Reminder

Write the Dictionary:

<i>x</i> ₄	=	5	_	2 <u>x</u> 1	_	3 <mark>x</mark> 2	_	<i>x</i> 3
<i>x</i> 5	=	11	_	4 <u>x</u> 1	_	<i>x</i> ₂	_	2 <u>x</u> 3
<i>x</i> 6	=	8	_	3 <mark>x</mark> 1	_	4 <u>x</u> 2	_	2 <u>x</u> 3
Ζ	=			5 <mark>x</mark> 1	+	4 <u>x</u> 2	+	3 <mark>x</mark> 3.

Basic variables: x_4 , x_5 , x_6 , variables on the left. Non-basic variable: x_1 , x_2 , x_3 , variables on the right.

A dictionary is feasible if a feasible solution is obtained by setting all non-basic variables to 0.

Write the **Dictionary**:

<i>x</i> 4	=	5	_	2 <mark>x</mark> 1	_	3 <mark>x</mark> 2	_	<i>x</i> 3
<i>x</i> 5	=	11	_	4 <mark>x</mark> 1	—	<i>x</i> ₂	_	2 <u>x</u> 3
<i>x</i> 6	=	8	_	3 <mark>x</mark> 1	_	4 <u>x</u> 2	_	2 <mark>x</mark> 3
Ζ	=			5 x ₁	+	4 <i>x</i> ₂	+	3 <i>x</i> ₃ .

We call Reduced Costs the coefficients of *z*. The reduced cost of x_1 is 5, of x_2 is 4 and of x_3 is 3.

Reminder: If all reduced cost are non-positive, the solution is optimal and the simplex algorithm stops.

Relationship between reduced costs, $\overline{c} = (\overline{c}_1, ..., \overline{c}_n)$ and optimal solution of the dual problem $\pi = (\pi_1, ..., \pi_m)$.

If we consider a general LP:

Lemma: When the simplex algorithm finishes, we have:

$$\overline{c}_j = c_j - \sum_{i=1}^m \pi_i A_{ij}$$

We consider a general LP:

$$\begin{array}{rll} \text{Maximize} & \sum_{j=1}^{n} c_j x_j \\ \text{Subject to:} & \sum_{j=1}^{n} a_{ij} x_j &\leq b_i \quad (i=1,2,\cdots,m) \\ & x_j &\geq 0 \quad (j=1,2,\cdots,n) \end{array} \tag{1}$$

We introduce the following notations, A and B.

Maximize
$$c^T x$$

Subject to: $Ax = b$
 $x \ge 0$

The method of the simplex finishes with an optimal solution x and an associated basis. Let $B(1), \ldots, B(m)$ be the indices of basic variables.

We define $B = [A_{B(1)}...A_{B(m)}]$ the matrix associated to the basis. We have $x_B = B^{-1}b$

Maximize
$$c^T x$$

Subject to: $Ax = b$
 $x \ge 0$

By studying what happens during a step of the simplex method, we can get the following expression for the reduced cost of variable x_i

MASCOTTE

125

$$\overline{c}_j = c_j - c_B^T B^{-1} A_j.$$

When the method of the simplex finishes, the reduced costs are non-positive.

$$c^T - c_B^T B^{-1} A \leq 0^T.$$

Let π be such that

$$\pi^T = c_B^T B^{-1}$$

We get

$$egin{aligned} & c^T - c_B^T B^{-1} A \leq 0^T. \ & c^T - \pi^T A \leq 0^T. \ & \pi^T A \geq c^T. \ & A^T \pi \geq c. \end{aligned}$$

MASCOTTE

 $\Rightarrow \pi$ is a feasible solution of the dual problem:

_i25

$$\begin{array}{ll} \text{Minimize} & \pi^T b\\ \text{Subject to:} & A^T \pi \geq c\\ & \pi \geq 0 \end{array} \tag{2}$$

Moreover, the value of *p* equals the value of the optimal value of the primal:

$$\pi^T b = c_B^T B^{-1} b = c_B^T x_B = c^T x$$

 $\Rightarrow \pi$ is an optimal solution of the dual problem (by the weak duality theorem).

Theorem [Strong Duality]: If the primal problem has an optimal solution,

$$x^* = (x_1^*, ..., X_n^*),$$

then the dual also has an optimal solution,

$$y^* = (y_1^*, ..., y_n^*),$$

and

Moreover, the value of *p* equals the value of the optimal value of the primal:

$$\pi^T b = c_B^T B^{-1} b = c_B^T x_B = c^T x$$

 $\Rightarrow \pi$ is an optimal solution of the dual problem (by the weak duality theorem).

Theorem [Strong Duality]: If the primal problem has an optimal solution,

$$x^* = (x_1^*, ..., X_n^*),$$

then the dual also has an optimal solution,

$$y^* = (y_1^*, ..., y_n^*),$$

and

Moreover, the value of *p* equals the value of the optimal value of the primal:

$$\pi^T b = c_B^T B^{-1} b = c_B^T x_B = c^T x$$

 $\Rightarrow \pi$ is an optimal solution of the dual problem (by the weak duality theorem).

Theorem [Strong Duality]: If the primal problem has an optimal solution,

$$x^* = (x_1^*, ..., X_n^*),$$

then the dual also has an optimal solution,

$$y^* = (y_1^*, ..., y_n^*),$$

and

$$\sum_j c_j x_j^* = \sum_i b_i y_i^*.$$

The Reduced Cost is

- the amount by which an objective function coefficient would have to improve before it would be possible for a corresponding variable to assume a positive value in the optimal solution.

** Dual Variables and Marginal Costs **

Max	$\sum_{j=1}^{n} c_j x_j$			$(i=1,\cdots,m)$	Min	$\sum_{i=1}^{m} b_i y_i$			
S. t.:	$\sum_{i=1}^{n} a_{ij} x_j$	\leq	bi	$(i = 1, \cdots, m)$	S. t.:	$\sum_{i=1}^{m} a_{ij} y_i$	\geq	cj	$(j=1,\cdots,n)$ $(i=1,\cdots,m)$
	, xj	\geq	0	$(j = 1, \cdots, n)$		Уi	\geq	0	$(i=1,\cdots,m)$

Signification can be given to variables of the dual problem:

"The optimal values of the dual variables can be interpreted as the marginal costs of a small perturbation of the right member b."

Maximize

Dimension analysis for a factory problem:

- x_i: production of a product *i* (chair, ...)
- b_i: available guantity of resource i (wood, metal, ...)
- a_{ii}: unit of resource i per unit of product j
- c_i: net benefit of the production of a unit of product j

Dimension analysis for a factory problem:

- x_j: production of a product j (chair, ...)
- b_i: available quantity of resource i (wood, metal, ...)
- a_{ij}: unit of resource i per unit of product j
- c_i: net benefit of the production of a unit of product j

JISS MASCOTTE P INRIA

Theorem: If the LP admits at least one optimal solution, then there exists $\varepsilon > 0$, with the property: If $|t_i| \le \varepsilon \quad \forall i = 1, 2, \dots, m$, then the LP

$$\begin{array}{rcl} & \text{Max} & \sum_{j=1}^{n} c_{j} x_{j} \\ \text{Subject to:} & \sum_{j=1}^{n} a_{ij} x_{j} & \leq & b_{i} + t_{i} & (i = 1, 2, \cdots, m) \\ & x_{j} & \geq & 0 & (j = 1, 2, \cdots, n). \end{array}$$
(3)

has an optimal solution and the optimal value of the objective is

$$z^* + \sum_{i=1}^m y_i^* t_i$$

with z^* the optimal solution of the initial LP and $(y_1^*, y_2^*, \dots, y_m^*)$ the optimal solution of its dual.

To be remembered

Definition of the Reduced Costs

<i>x</i> ₄	=	5	—	2 <mark>x</mark> 1	_	3 <mark>x</mark> 2	—	<i>x</i> 3
<i>x</i> 5	=	11	—	4 x ₁	—	<i>x</i> ₂	_	2 <i>x</i> ₃
<i>x</i> 6	=	8	—	3 <u>x</u> 1	—	4 <u>x</u> 2	_	2 <u>x</u> 3
Ζ	=			5 x ₁	+	4 <i>x</i> ₂	+	3 <i>x</i> ₃ .

- If all reduced cost are non-positive, the solution is optimal and the simplex algorithm stops.
- Relationship between reduced costs, c

 (c
 (π
 (π
 (π
 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

 (π

$$\overline{c} = c^T - \pi^T A$$