Simplex Method and Reduced Costs, Duality and Marginal Costs

Frédéric Giroire
** Simplex Method and Reduced Costs, Strong Duality Theorem **

Simplex - Reminder

Start with a problem written under the standard form.
Maximize $5 x_{1}+4 x_{2}+3 x_{3}$ Subject to :

$$
\begin{array}{r}
2 x_{1}+3 x_{2}+x_{3} \leq 5 \\
4 x_{1}+x_{2}+2 x_{3} \leq 11 \\
3 x_{1}+4 x_{2}+2 x_{3} \leq 8 \\
x_{1}, x_{2}, x_{3} \geq 0 .
\end{array}
$$

Simplex-Reminder

Write the Dictionary:

$$
\begin{aligned}
& x_{4}=5-2 x_{1}-3 x_{2}- \\
& x_{5}=11-4 x_{3} \\
& x_{6}=8-x_{2}-2 x_{3} \\
& \hline z= \\
& 5 x_{1}+4 x_{2}-2 \\
& \hline
\end{aligned}
$$

Basic variables: x_{4}, x_{5}, x_{6}, variables on the left.
Non-basic variable: x_{1}, x_{2}, x_{3}, variables on the right.
A dictionary is feasible if a feasible solution is obtained by setting all non-basic variables to 0 .

Simplex - Reduced Costs

Write the Dictionary:

We call Reduced Costs the coefficients of z. The reduced cost of x_{1} is 5 , of x_{2} is 4 and of x_{3} is 3 .

Reminder: If all reduced cost are non-positive, the solution is optimal and the simplex algorithm stops.

Simplex - Reduced Costs

Relationship between reduced costs, $\bar{c}=\left(\bar{c}_{1}, \ldots, \bar{c}_{n}\right)$ and optimal solution of the dual problem $\pi=\left(\pi_{1}, \ldots, \pi_{m}\right)$.

If we consider a general LP:

$$
\begin{array}{lll}
\text { Maximize } & \sum_{j=1}^{n} c_{j} x_{j} & \\
\text { Subject to: } & \sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \quad(i=1,2, \cdots, m) \\
& x_{j} & \geq 0 \quad(j=1,2, \cdots, n)
\end{array}
$$

Lemma: When the simplex algorithm finishes, we have:

$$
\bar{c}_{j}=c_{j}-\sum_{i=1}^{m} \pi_{i} A_{i j}
$$

Simplex - Reduced Costs

We consider a general LP:

$$
\begin{array}{lll}
\text { Maximize } & \sum_{j=1}^{n} c_{j} x_{j} & \\
\text { Subject to: } & \sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \quad(i=1,2, \cdots, m) \tag{1}\\
& x_{j} & \geq 0 \quad(j=1,2, \cdots, n)
\end{array}
$$

We introduce the following notations, A and B .

$$
\begin{array}{lc}
\text { Maximize } & c^{\top} x \\
\text { Subject to: } & A x=b \\
& x \geq 0
\end{array}
$$

The method of the simplex finishes with an optimal solution x and an associated basis. Let $B(1), \ldots, B(m)$ be the indices of basic variables.

We define $B=\left[A_{B(1)} \ldots A_{B(m)}\right]$ the matrix associated to the basis.
We have $x_{B}=B^{-1} b$

Simplex - Reduced Costs

$$
\begin{array}{cc}
\text { Maximize } & c^{\top} x \\
\text { Subject to: } & A x=b \\
& x \geq 0
\end{array}
$$

By studying what happens during a step of the simplex method, we can get the following expression for the reduced cost of variable x_{j}

$$
\bar{c}_{j}=c_{j}-c_{B}^{T} B^{-1} A_{j} .
$$

Simplex - Reduced Costs

When the method of the simplex finishes, the reduced costs are non-positive.

$$
c^{T}-c_{B}^{T} B^{-1} A \leq 0^{T}
$$

Let π be such that

$$
\pi^{T}=c_{B}^{T} B^{-1}
$$

Simplex - Reduced Costs

We get

$$
\begin{gathered}
c^{T}-c_{B}^{T} B^{-1} A \leq 0^{T} . \\
c^{T}-\pi^{T} A \leq 0^{T} \\
\pi^{T} A \geq c^{T} \\
A^{T} \pi \geq c .
\end{gathered}
$$

$\Rightarrow \pi$ is a feasible solution of the dual problem:

$$
\begin{array}{cc}
\text { Minimize } & \pi^{T} b \\
\text { Subject to: } & A^{T} \pi \geq c \tag{2}\\
& \pi \geq 0
\end{array}
$$

Simplex - Reduced Costs

Moreover, the value of p equals the value of the optimal value of the primal:

$$
\pi^{\top} b=c_{B}^{T} B^{-1} b=c_{B}^{T} x_{B}=c^{T} x
$$

Theorem [Strong Duality]: If the primal problem has an optimal
then the dual also has an optimal solution,

Simplex - Reduced Costs

Moreover, the value of p equals the value of the optimal value of the primal:

$$
\pi^{\top} b=c_{B}^{\top} B^{-1} b=c_{B}^{\top} x_{B}=c^{\top} x
$$

$\Rightarrow \pi$ is an optimal solution of the dual problem (by the weak duality theorem).

Theorem [Strong Duality]: If the primal problem has an optimal solution,
then the dual also has an optimal solution,

Simplex - Reduced Costs

Moreover, the value of p equals the value of the optimal value of the primal:

$$
\pi^{T} b=c_{B}^{\top} B^{-1} b=c_{B}^{\top} x_{B}=c^{T} x
$$

$\Rightarrow \pi$ is an optimal solution of the dual problem (by the weak duality theorem).

Theorem [Strong Duality]: If the primal problem has an optimal solution,

$$
x^{*}=\left(x_{1}^{*}, \ldots, X_{n}^{*}\right),
$$

then the dual also has an optimal solution,

$$
y^{*}=\left(y_{1}^{*}, \ldots, y_{n}^{*}\right),
$$

and

$$
\sum_{j} c_{j} x_{j}^{*}=\sum_{i} b_{i} y_{i}^{*}
$$

Simplex - Reduced Costs

The Reduced Cost is

- the amount by which an objective function coefficient would have to improve before it would be possible for a corresponding variable to assume a positive value in the optimal solution.
** Dual Variables and Marginal Costs **

Signification of Dual Variables

Signification can be given to variables of the dual problem:
"The optimal values of the dual variables can be interpreted as the marginal costs of a small perturbation of the right member b."

Signification of Dual Variables

Dimension analysis for a factory problem:

- x_{j} : production of a product j (chair, ...)
- b_{i} : available quantity of resource i (wood, metal, ...)
- $a_{i j}$: unit of resource i per unit of product j
- c_{j} : net benefit of the production of a unit of product j

Signification of Dual Variables

$\begin{array}{ccccccccc}\text { Maximize } & \sum_{j=1}^{n} c_{j} x_{j} & & & \text { Minimize } & \sum_{i=1}^{m} b_{i} y_{i} \\ \text { Subject to: } & \sum_{j=1}^{n} a_{i j} x_{j} & \leq & b_{i} & (i=1,2, \cdots, m) & \text { Mubject to: } & \sum_{i=1}^{m} a_{i j} y_{i} & \geq & c_{j} \\ & x_{j} & \geq & y_{i} & (j=1,2, \cdots, n) \\ & & & (j=1,2, \cdots, n) & & 0 & (i=1,2, \cdots, m)\end{array}$
Dimension analysis for a factory problem:

- x_{j} : production of a product j (chair, ...)
- b_{i} : available quantity of resource i (wood, metal, ...)
- $a_{i j}$: unit of resource i per unit of product j
- c_{j} : net benefit of the production of a unit of product j

$\rightarrow y_{i}$ euro by unit of resource i.Unit value of resource i.

Signification of Dual Variables

Theorem: If the LP admits at least one optimal solution, then there exists $\varepsilon>0$, with the property: If $\left|t_{i}\right| \leq \varepsilon \forall i=1,2, \cdots, m$, then the LP

$$
\begin{array}{rrrr}
\text { Max } & \sum_{j=1}^{n} c_{j} x_{j} & \\
\text { Subject to: } & \sum_{j=1}^{n} a_{i j} x_{j} \leq & b_{i}+t_{i} \quad(i=1,2, \cdots, m) \tag{3}\\
& x_{j} \geq & 0 \quad(j=1,2, \cdots, n) .
\end{array}
$$

has an optimal solution and the optimal value of the objective is

$$
z^{*}+\sum_{i=1}^{m} y_{i}^{*} t_{i}
$$

with z^{*} the optimal solution of the initial LP and $\left(y_{1}^{*}, y_{2}^{*}, \cdots, y_{m}^{*}\right)$ the optimal solution of its dual.

To be remembered

- Definition of the Reduced Costs

$$
\left.\begin{array}{rl}
x_{4} & =5 \\
x_{5} & =11-2 x_{1} \\
- & 3 x_{1} \\
- & x_{2}
\end{array}\right)
$$

- If all reduced cost are non-positive, the solution is optimal and the simplex algorithm stops.
- Relationship between reduced costs, $\bar{c}=\left(\bar{c}_{1}, \ldots, \bar{c}_{n}\right)$ and optimal solution of the dual problem $\pi=\left(\pi_{1}, \ldots, \pi_{m}\right)$. When the simplex algorithm finishes, we have:

$$
\bar{c}=c^{T}-\pi^{T} A
$$

