Modelling Graph Problems using Linear Programmes: An Example

Frédéric Giroire
Definition. Let $G = (V, E)$ be a graph.

- A matching $M \subseteq E$ is a collection of edges such that every vertex of V is incident to at most one edge of M.
- The maximum cardinality matching problem is to find a matching M of maximum size.

Reminder: The problem is polynomial
- for a bipartite graph (augmenting paths or applications of flows)
- for a general graph (Edmund’s algorithm)
Maximum Cardinality Matching Problem

An example:

Figure: A graph with 6 vertices
Maximum Cardinality Matching Problem

An example:

Figure: A matching with 2 edges
Maximum Cardinality Matching Problem

An example:

Figure: The maximum matching with 3 edges
Maximum Cardinality Matching Problem

Question: How to write the Maximum Cardinality Matching Problem as a linear programme?
Maximum Cardinality Matching Problem

First step: define the variables. Not always easy, most of the time good idea to think of the objective function.

Goal here: find a maximum subset of edges → variables on the edges seem useful.
Maximum Cardinality Matching Problem

First step: define the variables. Not always easy, most of the time good idea to think of the objective function.

Goal here: find a maximum subset of edges \rightarrow variables on the edges seem useful.

Variables: one variable per edge, x_{AB} for edge AB.

x_{AB} binary variable $x_{AB} = 1$ if AB in the matching $x_{AB} = 0$ otherwise
Maximum Cardinality Matching Problem

Second step: write the objective function.

\[
\text{max} \quad x_{AB} + x_{BC} + \ldots + x_{AF}
\]
Maximum Cardinality Matching Problem

Third step: write the constraints.

- A matching $M \subseteq E$ is a collection of edges such that every vertex of V is incident to at most one edge of M.

Constraint on vertex A: $x_{AB} + x_{AF} \leq 1$.
Constraint on vertex B: $x_{AB} + x_{BC} + x_{BF} \leq 1$.
One constraint per vertex.
Maximum Cardinality Matching Problem

Third step: write the contraints.

- A matching $M \subseteq E$ is a collection of edges such that every vertex of V is incident to at most one edge of M.

Constraint on vertex A: $x_{AB} + x_{AF} \leq 1$.
Constraint on vertex B: $x_{AB} + x_{BC} + x_{BF} \leq 1$.
One constraint per vertex.
Maximum Cardinality Matching Problem

Third step: write the contraints.

- A matching $M \subseteq E$ is a collection of edges such that every vertex of V is incident to at most one edge of M.

Constraint on vertex A: $x_{AB} + x_{AF} \leq 1$.

Constraint on vertex B: $x_{AB} + x_{BC} + x_{BF} \leq 1$.

One constraint per vertex.
Maximum Cardinality Matching Problem

Third step: write the constraints.

- A matching $M \subseteq E$ is a collection of edges such that every vertex of V is incident to at most one edge of M.

Constraint on vertex A: $x_{AB} + x_{AF} \leq 1$.
Constraint on vertex B: $x_{AB} + x_{BC} + x_{BF} \leq 1$.
One constraint per vertex.
Maximum Cardinality Matching Problem

Variables: \(x_{AB} = 1 \) if edge \(AB \) is in the matching and \(x_{AB} = 0 \) otherwise.

\[
\text{maximize} \quad x_{AB} + x_{BC} + x_{CE} + x_{DE} + x_{EF} + x_{AF} + x_{BF}
\]

subject to

\[
\begin{align*}
 x_{AB} + x_{AF} & \leq 1 \\
 x_{AB} + x_{BC} + x_{BF} & \leq 1 \\
 x_{BC} + x_{CE} & \leq 1 \\
 x_{DE} & \leq 1 \\
 x_{CE} + x_{EF} + x_{DE} & \leq 1 \\
 x_{BF} + x_{EF} + x_{AF} & \leq 1 \\
 x_{AB}, x_{BC}, x_{CE}, x_{DE}, x_{EF}, x_{AF}, x_{BF} & \geq 0 \\
 x_{AB}, x_{BC}, x_{CE}, x_{DE}, x_{EF}, x_{AF}, x_{BF} & \in \mathbb{N}
\end{align*}
\]
Maximum Cardinality Matching Problem

Can be written in a more concise form and more generally for any graph.

| Var.: | \(x_{AB} = 1 \) if \(AB \in M \),
 | \(x_{AB} = 0 \) otherwise |
|---------------------------|--|
| max | \(x_{AB} + x_{BC} + x_{CE} \)
 | + \(x_{DE} + x_{EF} + x_{AF} + x_{BF} \) |
| s.t. | \(x_{AB} + x_{AF} \leq 1 \)
 | \(x_{AB} + x_{BC} + x_{BF} \leq 1 \)
 | \(x_{BC} + x_{CE} \leq 1 \)
 | \(x_{DE} \leq 1 \)
 | \(x_{CE} + x_{EF} + x_{DE} \leq 1 \)
 | \(x_{BF} + x_{EF} + x_{AF} \leq 1 \)
 | \(x_{AB}, x_{BC}, x_{CE}, x_{DE}, x_{EF}, x_{AF}, x_{BF} \geq 0 \) |
 | \(x_{AB}, x_{BC}, x_{CE}, x_{DE}, x_{EF}, x_{AF}, x_{BF} \in \mathbb{N} \) |

| Var.: | \(x_{ij} = 1 \) if \(ij \in M \),
 | \(x_{ij} = 0 \) otherwise |
|---------------------------|--|
| max | \(\sum_{(i,j) \in E} x_{ij} \) |
| s. t. | \(\sum_{ij \in E} x_{ij} \leq 1 \)
 | \(\forall i \in V \) |
 | \(x_{ij} \geq 0 \)
 | \(\forall (i,j) \in E \) |
 | \(x_{ij} \in \mathbb{N} \)
 | \(\forall (i,j) \in E \) |