1 Algorithmics on graphs

Exercise 1 (Flow: 4 points, 15 minutes) Consider the elementary network flow depicted in Figure 1 (left) and the initial flow f from s to t in Figure 1 (right).

![Network with capacities and Initial flow f from s to t]

- What is the value of the initial flow?
- Apply the Ford-Fulkerson Algorithm to N starting from the flow f. The auxiliary digraphs built during the execution of the algorithm must be given.
- Give the flow and the cut obtained. Conclusion (recall the min cut-max flow theorem)?

Exercise 2 (Traveling Salesman Problem (TSP): 6 points, 45 minutes)

In this part, we are given a connected graph $G = (V, E)$ with a non-negative weight function $w : E \to \mathbb{R}^+$ on its edges. You may see it as a map where vertices are cities, edges are roads and weights are the lengths of the roads. The weight of a subgraph H of G is the sum of the weights of its edges, i.e., $w(H) = \sum_{e \in E(H)} w(e)$.

With no repetition of vertices. In the TSP, a Salesman starts from his home-town $v_0 \in V$, aims at traveling through each city exactly once, coming back to its home-town and minimizing the total length of his journey. More formally, the goal of the TSP is to find an Hamiltonian cycle in G with minimum weight, that is, a sequence (v_0, \ldots, v_n) of the vertices such that:

- for any $0 \leq i < j \leq n$, $v_i \neq v_j$ (no vertex is repeated)
- every vertex belongs to the sequence
- for every $0 \leq i < n$, $e_i = \{v_i, v_{i+1}\} \in E$ (two consecutive vertices are adjacent)
- $e_n = \{v_n, v_0\} \in E$ (we come back to the starting vertex)
- $\sum_{0 \leq i \leq n} w(e_i)$ is minimum
Question 1. Give an example of a connected graph where no solution exists. That is, a graph with no Hamiltonian cycle.

Question 2. Give an (exponential) algorithm that, given a graph, finds a minimum Hamiltonian cycle if it exists.

The problem of deciding if such cycle exists and to find a minimum one is NP-complete. Moreover, it cannot be well approximated (unless \(P = NP \)). Therefore, in what follows, we remove the constraint that every vertex (and edge) must be visited exactly once.

Repetitions of vertices and edges are allowed. Given a connected weighted graph \(G = (V, E) \), \(w : E \to \mathbb{R}^+ \), we aim at computing a sequence \((v_0, \ldots, v_r) \) of vertices such that, every vertex is met at least once, for every \(0 \leq i < r \), \(e_i = \{v_i, v_{i+1}\} \in E \) (two consecutive vertices are adjacent), \(e_r = \{v_r, v_0\} \in E \) (we come back to the starting vertex), and \(\sum_{0 \leq i \leq r} w(e_i) \) is minimum. Such a sequence is called a tour with minimum weight in \(G \).

Question 3. Give a tour (starting from \(v_0 \)) with minimum weight on the example depicted in Figure 2. What is the weight of your solution?

![Figure 2: Example.](image)

More generally, when the input graph is a tree (connected graph without cycles) \(T = (V, E) \), give the weight of an optimal solution in function of the sum of the weights of all edges: \(\sum_{e \in E} w(e) \).

Recall that, given a connected graph \(G = (V, E) \), a spanning tree \(T = (V', E') \) of \(G \) is a subgraph of \(G \) such that: \(T \) is a tree and \(T \) spans all vertices of \(G \) (i.e., \(V' = V \)). We also recall that, computing a spanning tree with minimum weight can be done in polynomial-time (e.g., using Kruskal algorithm).

Question 4. Let \(G \) be a connected weighted graph. Show that the minimum weight of a spanning tree in \(G \) is at most the minimum weight of a tour in \(G \).

Hint: start from a tour \(C \) in \(G \) and show that there exists a spanning tree \(T \) with \(w(T) \leq w(C) \).

Question 5. Give a 2-approximation algorithm for the problem of computing a tour with minimum weight in graphs. Prove that all properties of an approximation algorithm are well satisfied by your solution.