
UBINET, Master 2 IFI Algorithms for telecommunications
Final Exam, November 2017

3 hours
Only 4 pages of manuscript notes are allowed. No computers, cellphones, books.

Instruction and comments: the points awarded for your answer will be based on the correctness of your
answer as well as the clarity of the main steps in your reasoning. All proposed solutions must be proved.
All the exercises are independent.

1 Graph Algorithms (15 points, 90 minutes)
Most of the questions below are independent. More difficult questions are indicated by a (∗).

The problem is dedicated to the design of a Fixed Parameter Tractable (FPT) algorithm to solve the
k-Vertex Cover problem that asks if an input graph G admits a Vertex Cover of size at most k. For this
purpose, we will use a powerful technique called Iterative Compression.

We recall that a Vertex Cover of a graph G = (V,E) is a set K ⊆ V of vertices such that, for every
edge xy ∈ E, K ∩ {x, y} 6= ∅ (K “touches" every edge).

Question 1 Give a minimum Vertex Cover of the graph depicted in Figure 1.

a

c

g

b

f

d

h

e i

Figure 1: A graph.

Question 2 Let k be a fixed parameter. Consider different algorithms that take an input of size n and
with the following time-complexity. Which of these algorithms are FPT? Explain why.

(a) O(2n);

(b) 22k

n100;

(c) O(nk);

(d) O(n/k).

The main idea of the Iterative Compression method is to employ a so-called compression Routine. A
Compression Routine is an algorithm that, given a problem instance and an initial feasible solution
(not necessarily optimal), either calculates a smaller solution or proves that the given solution is of
minimum size.

Using a Compression Routine, one finds an optimal solution to the problem by iteratively building
up the structure of the instance and compressing intermediate solutions. (This last sentence may be a
bit obscur now, it should become clearer later).

1

Algorithm 1 A 2-approximation algorithm for Minimum Vertex Cover
Require: A graph G = (V,E).
1: H ← G // initially, H is set to G
2: K ← ∅ // initially, K is the empty set
3: While E(H) 6= ∅ // while H has at least one edge
4: Let {u, v} ∈ E(H) // take any edge {u, v} in H
5: K ← K ∪ {u, v} // add u and v to K
6: H ← H \ {u, v} // remove u and v (and their incident edges) from H
7: Return K

1.1 Compression Routine for Vertex Cover
Initial feasible solution. As said above, a Compression Routine needs an initial feasible solution.
More precisely, we will need a “not too bad" initial feasible solution. To find such an initial solution, we
will use an approximation algorithm.

Question 3 Apply Algorithm 1 on the graph depicted in Figure 1.

Question 4 Let G be any graph. Prove that the set K returned by Algorithm 1 is a Vertex Cover of the
input graph G.

Question 5 Prove that Algorithm 1 is a 2-approximation algorithm for the Minimum Vertex Cover
problem.

Question 6 Let G be a graph and k ∈ N. Assume that Algorithm 1 applied to G returns a set K such
that |K| > 2k. What is the answer to the k-Vertex Cover Problem with G as input?

Compression Routine. Let K ⊆ V be any Vertex Cover of the graph G = (V,E). The Compression
Routine will use K to find an optimal solution. For this purpose, it will “check" all possible ways an
optimal solution X can intersect K. More precisely, let Y ⊆ K be any subset of K. We want to decide
if there is a Vertex Cover X such that X ∩K = Y .

Let N(K \ Y) be the set of vertices that have a neighbor in K \ Y .

Question 7 Show that, if there is an edge between two vertices in K \ Y , then there is no Vertex Cover
X such that X ∩K = Y .

Question 8 Let X be any Vertex Cover of G such that X ∩K = Y . Show that N(K \ Y) ⊆ X.

Question 9 (*) Assume there are no edges between vertices in K \ Y . Show that X = Y ∪N(K \ Y) is
a minimum Vertex Cover of G such that X ∩K = Y .

Algorithm 2 First FPT algorithm for k-Vertex Cover
Require: A graph G = (V,E).
1: K ← Algorithm1(G) // K approx. Vertex Cover of G
2: If |K| > 2k then Return NO.
3: Else // Next two lines correspond to the Compression Routine
4: For every Y ⊆ K do
5: If there are no edges in G[K \ Y] and |Y ∪N(K \ Y)| ≤ k Return Y ES
6: Return NO

Question 10 (*) Prove that Algorithm 2 solves the k-Vertex Cover Problem.

Question 11 What is the time-complexity of Algorithm 2 (as a function of n = |V | and k)?

2

1.2 Iterative Compression for Vertex Cover
Let G = (V,E) be a graph and V = {v1, v2, · · · , vn} be any arbitrary ordering of the vertices of G. For
every 1 ≤ i ≤ n, let Gi = G[{v1, · · · , vi}] be the subgraph induced by the vertices v1, · · · , vi (so the
graph obtained from G by removing the vertices vi+1, · · · , vn and their incident edges).

Question 12 For every i ≤ k, give a Vertex Cover Ki with size ≤ k of Gi.

Question 13 Let i < n and let Ki be a Vertex Cover of Gi. Show that K ∪ {vi+1} is a Vertex Cover of
Gi+1.

Algorithm 3 Compression algorithm for k-Vertex Cover
Require: A graph G = (V,E) and a Vertex Cover K of G such that |K| = k + 1.
1: For every Y ⊆ K do
2: If there are no edges in G[K \ Y] and |Y ∪N(K \ Y)| ≤ k, Return Y ∪N(K \ Y)
3: Return NO

Question 14 Apply Algorithm 3 on the graph depicted in Figure 2 with the initial Vertex Cover depicted
in red.

cba d e

Figure 2: A graph G and an initial Vertex Cover K = {a, c, d} depicted in red.

Question 15 (*) Let G be any graph. Prove that Algorithm 3 returns a Vertex Cover of size ≤ k of G
if it exists and returns NO otherwise.

Question 16 What is the time-complexity of Algorithm 3 (as a function of n = |V | and k)?

Algorithm 4 A better FPT algorithm for k-Vertex Cover
Require: A graph G = (V,E) with V = {v1, · · · , vn}.
1: Kk ← {v1, · · · , vk} // Kk is a Vertex Cover of Gk with size k
2: For i = k + 1 to n do
3: Let K = Ki−1 ∪ {vi} // K is a Vertex Cover of Gi with size ≤ k + 1
4: If Algorithm3(Gi,K) = NO then Return NO
5: Else let Ki = Algorithm3(Gi,K) // Ki is a Vertex Cover of Gi with size ≤ k
6: Return Y ES

Question 17 (*) Prove that Algorithm 4 solves the k-Vertex Cover Problem.

Question 18 What is the time-complexity of Algorithm 4 (as a function of n = |V | and k)? Conclusion?

3

2 Linear Programming
Most of the questions below are independent. More difficult questions are indicated by a (∗).

Exercise 1 (Vehicule Routing Problem (15 points, 90 minutes)) We consider the following prob-
lem. A company has some goods to serve to a set of n customers N . The goods to be served to customer
i has weight Qi. To this end, the company possesses a fleet of K vehicles. A vehicle can transport a
maximum weight of goods P . The company wants to minimize the cost to serve all its customers. This
cost is given by the distance traveled by the vehicles. A vehicle is doing a single route which has to start
from and return to the company depot denoted by D. Because of gas constraints, a route cannot be longer
than T . A digraph G = (V = N ∪ {D}, A, c) is given in input, where A is the set of roads, cij ∈ R is the
length of the road between client i ∈ N and client j ∈ N (or the depot).

An example is given in Figure 3.

.

Figure 3: The customers are served by 3 vehicles. Vehicule 1 carries a weight of 17+15+9 = 41 when it
leaves the depot. Its route is of length 40. The total cost for the company is 40 + 60 + 45 = 145.

The problem can be formulated as the integer linear program below. The main variables are the binary
variables xijk, for i, j ∈ V and 1 ≤ k ≤ K, defined as follows: xijk = 1, if the route of vehicle k uses the
arc ij and 0 otherwise. Do not pay attention to the variables yi i ∈ V which are used in Constraint (9).

Min
∑

ij∈A
∑

k cijxijk (0)

Subject to: ∑
i

∑
k xijk = 1 ∀j ∈ N (1)∑

j

∑
k xijk = 1 ∀i ∈ N (2)∑

i

∑
k xijk −

∑
j

∑
k xijk = 0 ∀i ∈ N (3)

Missing constraint on the maximum weight of a vehicle (4)∑
ij∈A cijxijk ≤ T ∀1 ≤ k ≤ K (5)∑

j xDjk = 1 ∀1 ≤ k ≤ K (6)∑
i xiDk = 1 ∀1 ≤ k ≤ K (7)

yi − yj + nxiDk ≤ n− 1 ∀1 ≤ i 6= j ≤ n, 1 ≤ k ≤ V (9)
xijk ∈ {0, 1}, yi ∈ R (10)

1. Explain well all constraints, except Constraint (9).

For your information, Constraint (9) eliminates subtours, that are routes which are not starting
and finishing in the depot. The formulation of this last constraint is a smart way to avoid an
exponential number of constraints to prevent an exponential number of subtours.

2. (*) Write the missing Constraint (4) corresponding to the maximum weight of a vehicle.

4

3. (*) Discuss the efficiency of the fractional relaxation of this program focusing on the maximum
weight constraint.

Another formulation of the problem is provided below. The set Ω of all possible routes is given as input,
as well as the constants vip,∀i ∈ N, p ∈ Ω. vip = 1 if route p visits customer i and 0 otherwise. (Note
that the vip are not variables of the following linear program, there are constants.)
The variables of the linear program are: θp,∀p ∈ Ω, θp = 1 if route p is used, 0 otherwise.

Min
∑

p∈Ω cpθp
Subject to:∑

p∈Ω vipθp = 1 ∀i ∈ N (11)

θp ∈ {0, 1}

4. Explain the linear program, in particular how to define and compute cp, the objective function, and
Constraint (11).

We consider the input given in Figure 4. We suppose than P = 20 (maximum weight of a vehicle) and
T = 32 (maximum length of a route).

Figure 4: Example. An undirected edge of length l represents two directional arcs of length l.

5. Provide the list of possible routes. (Two routes serving the same clients are considered equivalent
and are counted only once).

The linear program solving the example of Figure 4 can be written as follows. For a technical reason, we
write the constraints of the program as inequalities, instead of equality.

Min 20θ1 +20θ2 +20θ3 +20θ4 +30θ5 +30θ6 +25θ7

Subject to:
θ1 +θ5 ≥ 1

θ2 +θ5 +θ7 ≥ 1
θ3 +θ6 +θ7 ≥ 1

θ4 +θ6 ≥ 1

6. Provide a possible matching between the routes and the variables of the ILP.

7. We go back to the general problem (not the specific example). What is the maximum possible number
of routes of a digraph with n customers? Provide a digraph for which the bound is reached and
explain. Note that we consider that a route passing through a customer serves the customer.

8. Because of this large number of potential routes, we will solve the problem using column generation.
We go back to the example given in Figure 4. We start with a trivial initial solution, which is to
use the 4 direct routes to serve each client A, B, C, D. (e.g. To serve client A, we use the routes
Depot->A->Depot which serves only A). What is the cost of the solution?

5

When running the simplex (with θA, θB, θC and θD as slack variables), we obtain the following final
table:

θ1 = 1 −θA
θ2 = 1 −θA −θB
θ3 = 1 −θA −θC
θ4 = 1 −θA −θD
z = 80 −20θA −20θB −20θC −20θD

and the values of the optimal solution for the dual problem are πA = πB = πC = πD = 20.

10. What is the solution corresponding to the table? What is its value? What are the variables in the
basis? What are the reduced costs of the variables not in the basis?

To find a new route improving the initial solution, we have to solve the pricing problem. The objective
function is to find the column with the minimum reduced cost, c = c−

∑
i aiπi, where ai = 1 if customer

i is visited and 0 otherwise. The variables are xij, ∀ij ∈ A, which is equal to 1 if the route uses arc ij
and 0 otherwise.

Min
∑
cijxij −

∑
i aiπi

Subject to:∑
j xij −

∑
j xji = 0 ∀i ∈ N∑
j xdj = 1∑
i xid = 1

ai ≤
∑

j xij ∀i
Maximum weight of a vehicle∑

ij∈A xijk ≤ T ∀1 ≤ k ≤ K
θp ∈ {0, 1}

11. Provide the reduced cost of the column corresponding to the route Deport -> A - > B -> Depot.

12. Without formally solving the pricing LP, exhibit an optimal route (column) for the example.

θ1 = 1 −θA
θ2 = 1 −θA −θB
θ3 = 1 −θA −θC
θ4 = 1 −θA −θD
z = 80 −20θA −20θB −20θC −20θD

13. If you did Question 13, skip this question and go to Question 15. If you are blocked by Question
13, go to Exercise 2.

14. Write the corresponding dual program. Using complementary slackness, determine the values of an
optimal solution of the dual.

15. Again, without formally solving the pricing LP, exhibit a new column/route with minimum reduced
cost.

16. Without writing too many details, continue the resolution till you cannot add an improving column.

17. Did you obtained an optimal solution of the problem? Discuss.

6

Exercise 2 (Simplex and Duality (5 points, 30 minutes)) This exercise should be only done if
you are blocked in Exercise 1 of the Linear Programming section.
We consider the following linear program.

Min 20θ1 +20θ2 +20θ3 +20θ4 +30θ5 +30θ6 +25θ7

Subject to:
θ1 +θ5 ≥ 1

θ2 +θ5 +θ7 ≥ 1
θ3 +θ6 +θ7 ≥ 1

θ4 +θ6 ≥ 1

1. Solve the linear program using the simplex method.

2. Provide the optimal solution of the dual using complementary slackness.

7

