
UBINET, Master 2 IFI Algorithms for telecommunications
Final Exam, November 2014

3 hours
Course and manuscript notes NOT allowed. No computers, cellphones, books.

Instruction and comments: the points awarded for your answer will be based on the correctness of your
answer as well as the clarity of the main steps in your reasoning. All proposed solutions must be proved.
All the exercises are independent. The points are indicated so you may adapt your effort.

1 Algorithmics on graphs
Definition 1 Given a connected graph G = (V,E), recall that a spanning tree of G is any subgraph of
G that is a tree and that spans (i.e., touches) all vertices of G. Note that a graph G admits a spanning
tree if and only if G is connected.

Exercise 1 (4 points) Explain in few sentences (at most five lines) how the Kruskal’s algorithm
proceeds to compute a minimum spanning tree in a graph.

Apply the Kruskal’s algorithm on the following graph.
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Exercise 2 (8 points) In this exercise, let G = (V,E) be a connected graph and w : E → R be a
weight function on the edges. Let n be the number of vertices of G.

1. Let T be a spanning tree of G. Give the number of edges of T .

2. Assume that all edges have the same weight. That is, there is c ∈ R such that, for any edge e ∈ E,
w(e) = c. Let T be a minimum spanning tree of G. Give the weight of T .

An articulation point in G is any vertex v ∈ V such that removing v from G disconnects the graph.
A connected graph is said 2-connected if has no articulation point.

From now on, we assume that G is 2-connected.

3. Let v ∈ V and let G′ = G− v be the graph obtained from G by removing v. Show that G′ admits
a spanning tree.

4. Let T ′ be a spanning tree of G′. Let {u, v} ∈ E be an edge of G incident to v. Show that the
graph obtained from T ′ and adding the vertex v and the edge {u, v} is a spanning tree of G.

5. Show that, if all spanning trees of G have same weight, then all edges incident to v have the same
weight.

6. Deduce that, if all the spanning trees of G have same weight, then all edges of G have the same
weight.

7. Show that, in a 2-connected graph, all the spanning trees have minimum weight if and only if all
the edges have the same weight.

8. Give an example of a connected edge-weighted graph for which all the spanning tree have the same
weight but whose edges do not all have the same weight.
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Definition 2 Two edges in a graph are independent if they don’t share a vertex. Recall that a matching
in a graph G is a subset of edges of G that are pairwise independent. A matching is perfect if it spans
(touches) all vertices of the graph.

Exercise 3 (8 points) The goal of this exercise is to characterize the trees (acyclic connected graphs)
that have a perfect matching.

1. Show that, if a graph admits a perfect matching, then it has an even number of vertices.

2. Let T be a tree that admits a perfect matching M . Let x ∈ V (T ) be a leaf of T (i.e., x has degree
1) and e = {u, v} ∈ E(T ) be the edge of T incident to T . Show that e ∈M .

3. Give an example of a tree with an even number of vertices and that does not admit a perfect
matching.

Let T be a tree and v ∈ V (T ) be a vertex of T . Let T − v denote the subgraph obtained from T
by removing v. Let imp(T − v) denote the number of connected components of T − v that have an odd
number of vertices. For instance, in Figure below, imp(T −E) = 2 since the graph T −E has 2 connected
components with an odd number of vertices.
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3. Let T be a tree and v ∈ V (T ). Show that T admits a perfect matching only if imp(T − v) > 0.

Hint: assume that imp(T − v) = 0 and use Question 1.

4. Let T be a tree and v ∈ V (T ) and let C be a connected component of T − v with an odd number
of vertices.

• Show that v has a unique neighbor in C. Let w be this neighbor.

• (*) Show that any perfect matching of T must contain the edge {v, w}.

5. Deduce that, if a tree T has a perfect matching, then for any v ∈ V (T ), imp(T − v) = 1.

Let T be a tree such that, for any v ∈ V (T ), imp(T − v) = 1.

6. Let x ∈ V (T ) be a vertex of T . Let y be a leaf of T that maximizes the distance to x. Let z be
the neighbor of y. Show that either w has degree 2, or T has a unique edge.

7. From Questions 1, 2 and 6, prove that, if imp(T −v) = 1 for any v ∈ V (T ), then T admits a perfect
matching.

Hint: by induction on the number of vertices of T .

8. Conclusion?

2



2 Linear Programming
Exercise 4 (Modeling as a linear program (4 points)) A factory produces two models of machines,
Model A and Model B. A machine of Model A requires 2 KG of wood and 30 hours of work and gives a
profit of 7 euros. A machine of Model B requires 4 KG of wood, 15 hours of work and gives a profit of
6 euros. The factory has at its disposal 200 Kg of wood and 1200 hours of work. Additionally, a market
study tells it is impossible to sell more than 30 machines of Model A and 60 machines of Model B. What
should the factory produce to obtain a maximum profit?

1. Express the problem as a linear program.

2. Solve the linear program using the graphical method. Give the optimum production and the maxi-
mum profit.

Exercise 5 (Duality and Optimality certificates. (4 points)) Consider the following linear pro-
gram.

Maximize 6x1 + 6x2 + 8x3
Subject to:

2x1 + 2x2 + 4x3 ≤ 8
4x1 + 6x3 ≤ 10
4x1 + 2x2 + 6x3 ≤ 14

x1, x2, x3 ≥ 0

1. Write the dual program of this linear program.

2. Is x1 = 5, x2 = 3, x3 = 0 an optimal solution of the linear programme below? To answer, use the
method to provide optimality certificates seen during the class. Detail all steps.

Exercise 6 (5 points) Let D(V,A) be a digraph. We distinguish four vertices s1, s2, t1, t2 ∈ V . Write
a linear program finding two node-disjoint paths, the first one between s1 and t1 and the second one
between s2 and t2, if such paths exist (two node-disjoint paths do not share any node). Explain all the
lines of your linear program.

3 Design of Satellite Networks
Exercise 7 (10 points) We consider a generalization of the problem of design of on-board satellite
that we studied during the class (with switches of degree 4).

Because of the satellite rotation, all the ports (inputs) and amplifiers (outputs) are not always well
oriented to receive and send signals. Thus, we define a (p, λ, k)-network as a network with p+ λ inputs
and p+ k outputs. A (p, λ, k)-network is valid, if, for any choice of p inputs and p outputs, there exist p
edge-disjoint paths linking all the chosen inputs to the chosen outputs.

By symmetry, we will suppose that λ ≤ k.

Proposition (Cut Criterion) Consider a (p, λ, k)-network andW ⊆ V a subset of vertices. The excess
in inputs of W is defined as

εi(W ) := δ(W ) + o(W )−min(k, o(W ))−min(i(W ), p).

A (p, λ, k)-network is valid if and only if, for any subset of vertices W ⊆ V , the excess of W satisfies

εi(W ) ≥ 0.

1. Explain the intuition of this cut criterium with 2 or 3 sentences.

2. Consider the (3, 1, 1)-network below 4 inputs, 4 outputs (amplifiers). Is it a valid (3, 1, 1)-network?
Prove your answer.
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3. Consider the (2, 1, 1)-network below with 3 inputs, 3 outputs (amplifiers). Is it a valid (2, 1, 1)-
network? Prove your answer.

4. Prove that in a valid (p, λ, k)-network, with λ ≥ 1 and with k ≥ 1, there is no switch connected to
1 input and 2 outputs. inputs.

5. Propose a valid (4, 2, 2)-network with 6 switches. Show it is minimum.

6. For any p ≥ 1, propose a valid (p, 2, 2)-network with minimum number of switches. Show it is
minimum.

7. Propose a valid (12, 4, 4)-network.

8. (Hard question) Propose a valid (12, 4, 4)-network with 15 switches.

9. The excess in outputs of W can defined as

εo(W ) := δ(W ) + i(W )−min(λ, i(W ))−min(o(W ), p).

Let (V,E), i, o be a (p, λ, k)-network. Consider a subset W ⊆ V . We note W̄ the complementary
set of W , W̄ = V \W .

(a) Show that we have
εo(W̄ ) = εi(W ).

(b) (Hard question) Comment (2-3 sentences).

10. (Hard question) Propose a valid (24, 6, 6)-network with 42 switches.
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