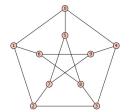
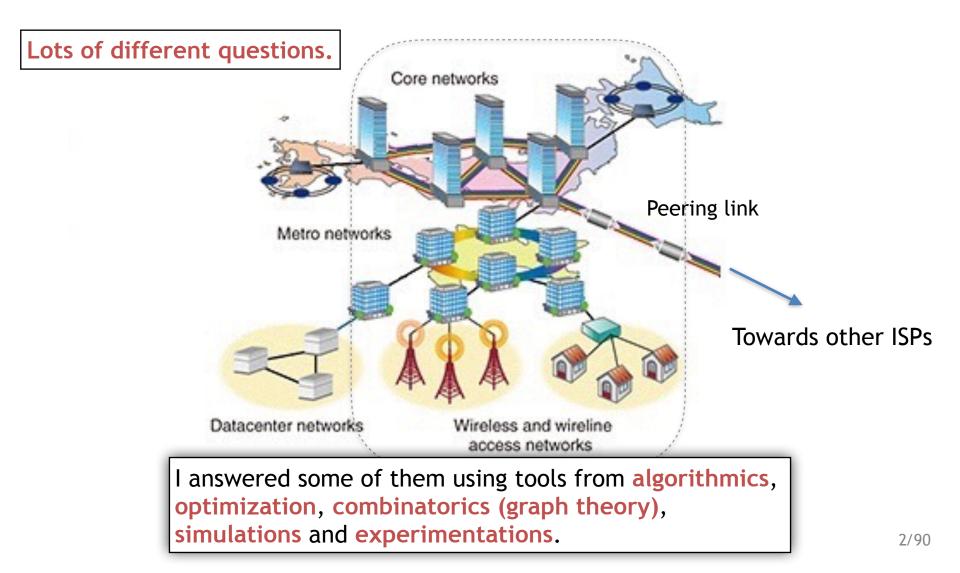
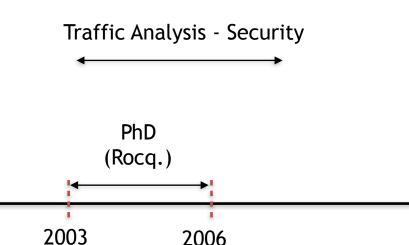
A little bit of green in networks and other problems of placement and management of resources.


Frédéric Giroire Université Côte d'Azur/CNRS/Inria COATI*

HdR – October 23, 2018



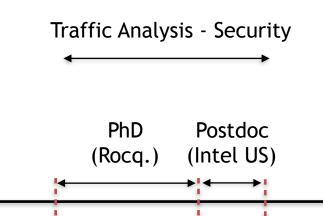
*Combinatorics, Optimisation et Algorithms For Telecommunications


min	$\sum_{e \in \mathcal{E}} y_e$	
s.t. $\sum_{a \in A_i^+(u)}$	$f_a^i - \sum_{a \in A_i^-(u)} f_a^i = \begin{cases} V_i - 1 \text{ if } u = s_i \\ -1 \text{ if } u \neq s_i \end{cases}$	$\forall u \in V_i, \ V_i \in C$
	$f_a^i \le V_i \cdot x_a,$	$\forall V_i \in C, a \in A$
	$x_{(u,v)} \leq y_{uv},$	$\forall uv \in \mathcal{E}$
	$x_{(v,u)} \leq y_{uv},$	$\forall uv \in \mathcal{E}$

Manuscript Content

How to know the traffic? Probabilistic algorithms for cardinality PhD Inria Rocquencourt + Paris 6 P. Flajolet and M. Soria

Tool: Analysis of algorithms



Manuscript Content

- Appendix Section 1.2
 - Traffic analysis and security
- Part I
- Part 2

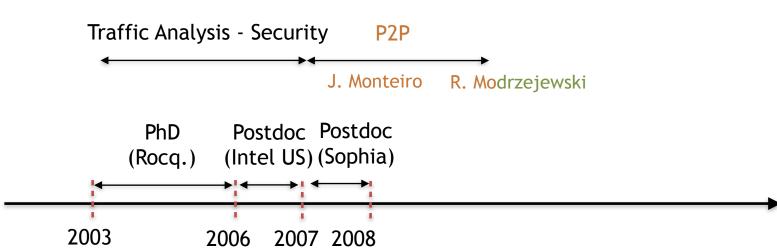
How to secure the traffic? Anomaly detection. DDoS and botnets PhD Postdoc Intel Research Berkeley N. Taft and J. Chandrashekar

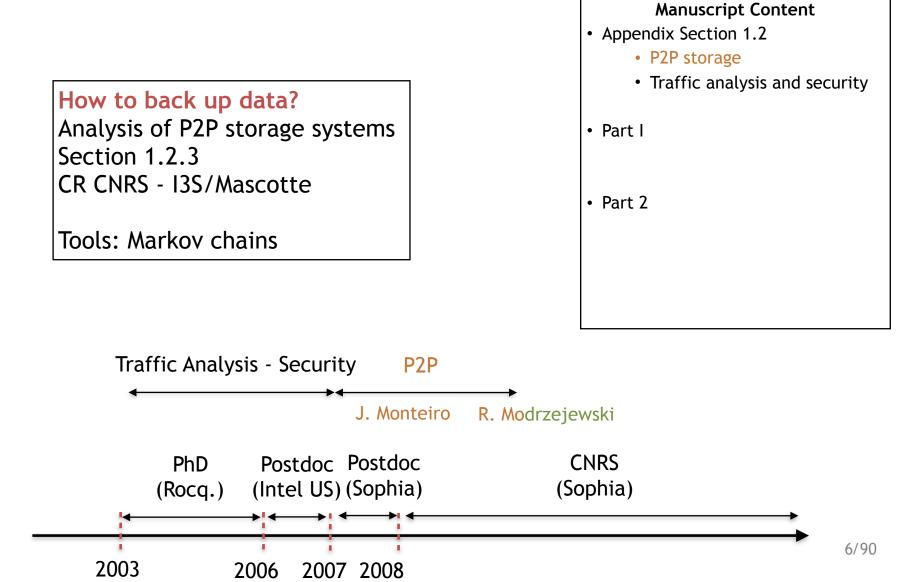
Tools: Analysis of Traffic - Algorithms

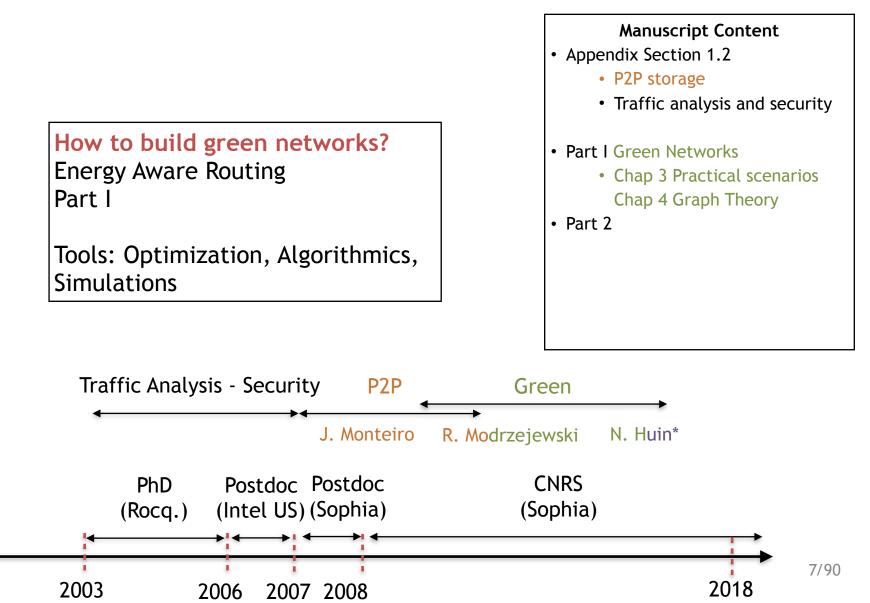
2006

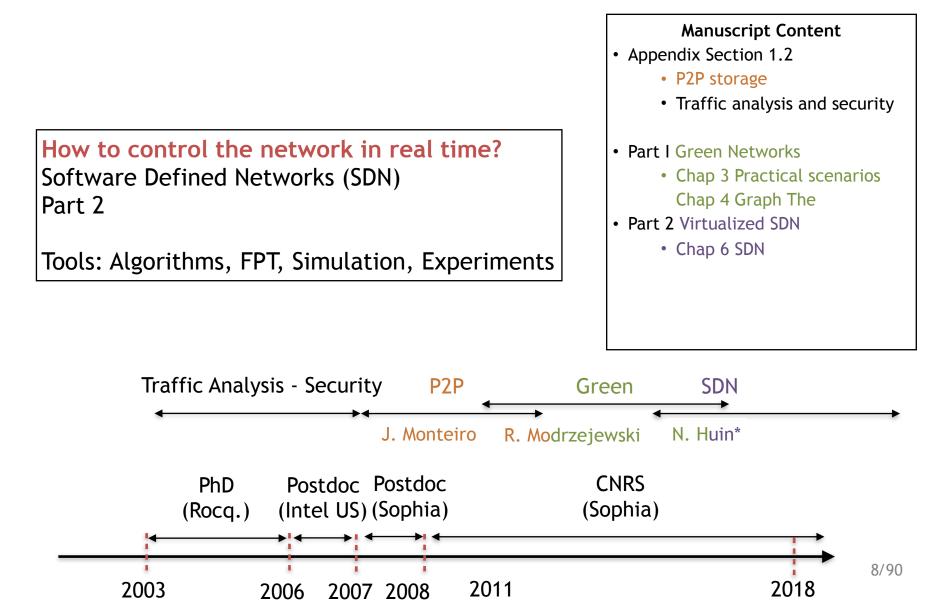
2007

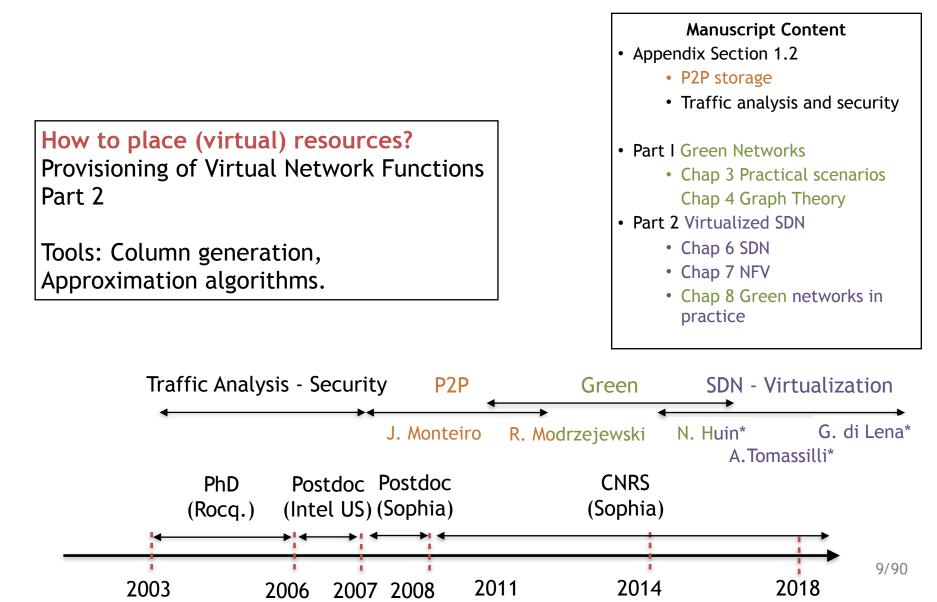
2003

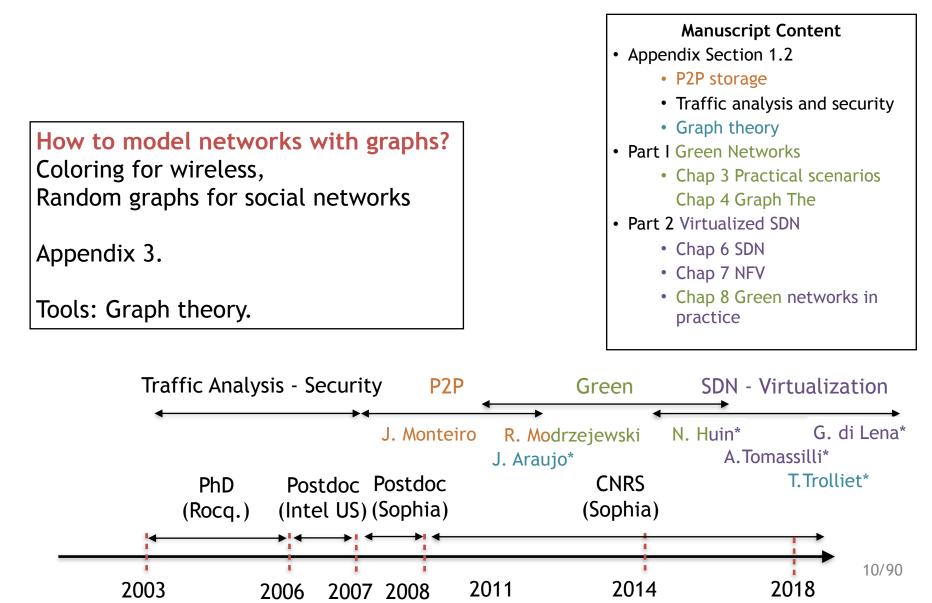

How to back up data? Analysis of P2P storage systems


Postdoc Sophia J.-C. Bermond and S. Pérennes


Tools : Markov chains


Manuscript Content

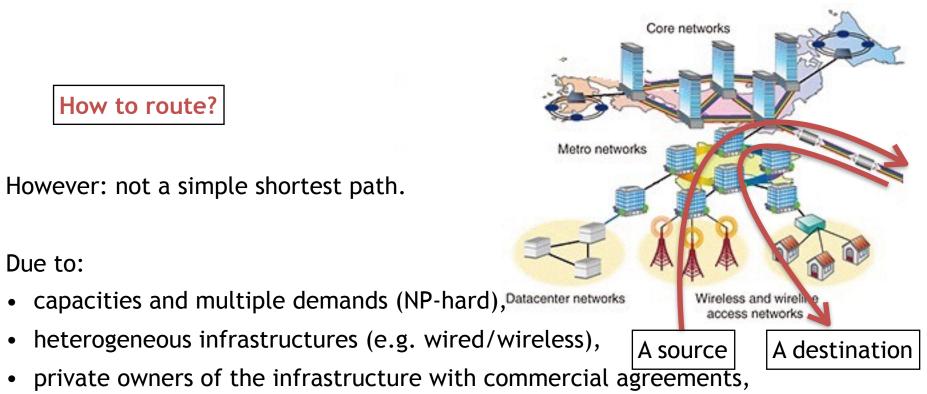

- Appendix Section 1.2
 - P2P storage
 - Traffic analysis and security
- Part I
- Part 2



Supervised students

- Phd Supervisions (3 in progress)
 - 2018-2021. Giuseppe di Lena with Thierry Turletti, (EPI DIANA), and Chidung Lac (Orange Labs). Resilience of virtualized networks.
 - 2017-2020. Thibaud Trolliet with Arnaud Legout (EPI DIANA). Analysis of large social networks.
 - 2016-2019. Andrea Tomassilli with Stéphane Pérennes.

Next generation virtualized networks.

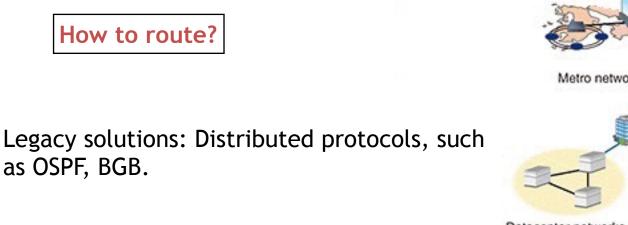

- Phd Supervisions (4 defended) :
 - 2014-2017. Nicolas Huin with Dino Lopez (SIGNET). Energy-efficient Software Defined Networks.

Now : Huawei Research Lab, Paris.

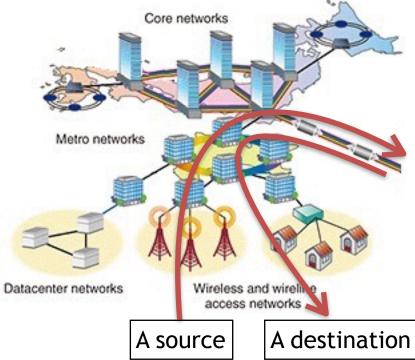
2010-2013. Remigiusz Modrzejewski with J.-C.
 Bermond. Content Distribution and Storage.
 Now : Google, Dublin, Irlande.

- Phd Supervisions (defended) :
 - 2009-2012. Julio Araujo with Jean-Claude Bermond et Claudia Linhares (Ceara, Brazil). Graph Coloring and Graph Convexity. Now : Assistant Professor Fortaleza, Brésil.
 - 2007-2010. Julian Monteiro with Olivier Dalle and S. Pérennes. Modeling and Analysis of P2P Data Storage Systems.
 Now : Team leader in Cittati Tecnologia. Co-Founder and CTO of Lejour startup.
- Postdocs: 2
 - 2012-2013. Luca Chiaraviglio with Joanna Moulierac. Energy-efficient Networks. Now : Assistant professor (Tenure-Track) University Roma Tor Vergata.
 - 2011-2012. Yaning Liu with Joanna Moulierac. Energy-efficient Networks. Now : JCP-Consult R&D research and management of european projects.
- Masters: 10 students.

Routing



• frequent failures.


What's needed from a routing solution?

• Efficient in terms of delay/bandwidth/cost/failure protection.

Routing

as OSPF, BGB.

Routing: A new Context

- Career Routing. Introduction
- 1. Routing in an energy aware world. (Part I)
- Routing in an SDN world without (a lot of) rules. (Part 2. Chapter 6)
- 3. Routing in a virtualized world. (Part 2. Chapter 7)
- End of the route ? Conclusions and Perspectives

Routing: A new Context

- Career Routing. Introduction
- 1. Routing in an energy aware world. (Part I)
- 2. Routing in an SDN world without (a lot of) rules. (Part 2. Chapter 6)
- 3. Routing in a virtualized world. (Part 2. Chapter 7)
- End of the route ? Conclusions and Perspectives

Energy Consumption of Networks

- ICT electricity consumption represents 2-10% of global consumption.
 - Telecom infrastructure and devices account for 25% of ICT's energy consumption.

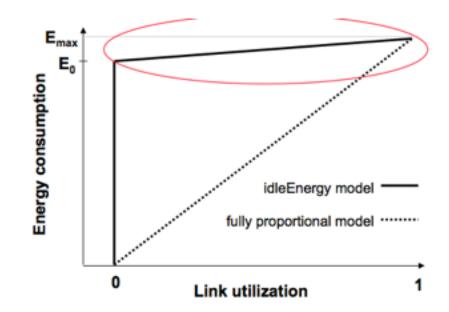
- Politics. Challenge of the European Commission: a 20% improvement in energy efficiency by 2020.
- Networking research community.
 - Pioneering work [Gupta et al. SIGCOMM 2003]
 - Strong interest from 2008
 - ANR-JCJC DIMAGREEN 2009-2012 (leader)

What can we do? Basic Principles of Power Management

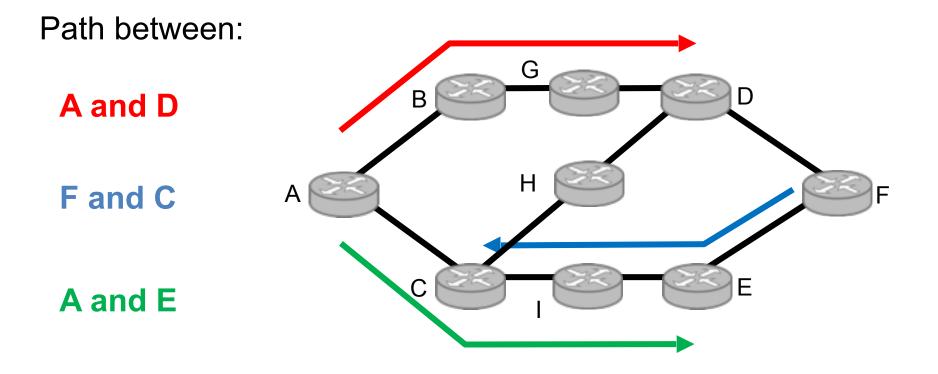
To save Energy we can:

- use more efficient chips and components
- power manage components and systems

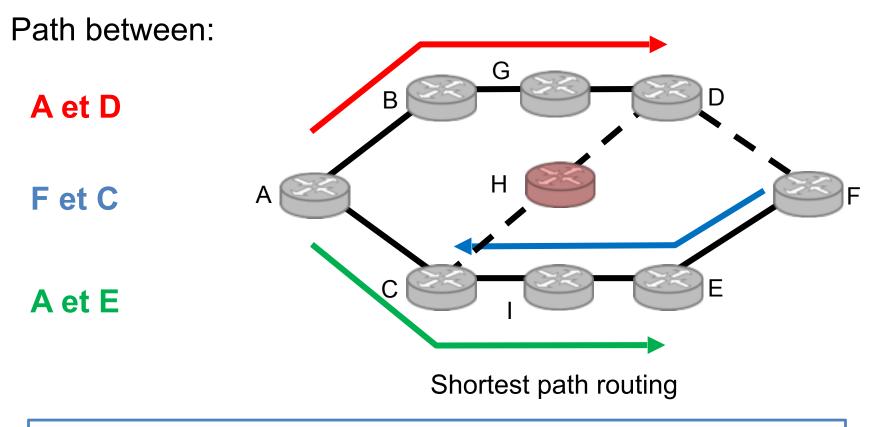
To power manage: two main methods

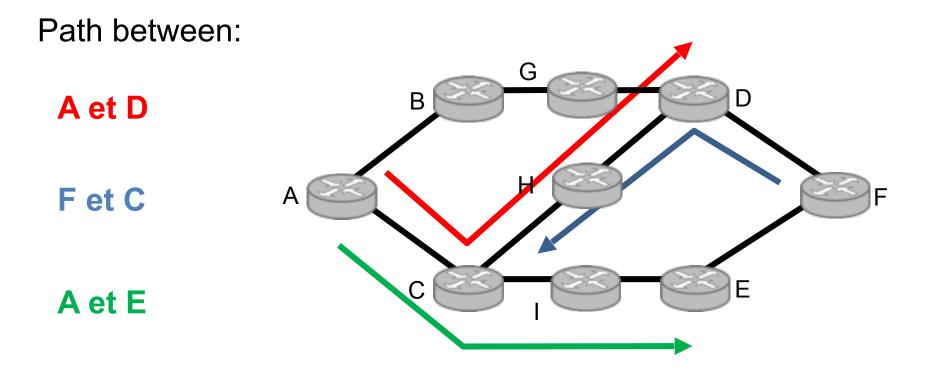

- Do less work: e.g. transmit less in networks. [Nedevschi et al. NSDI 2008.]
- Turn-off devices: not being used [Beloglazov, CCGrid 2010]
 - e.g., floating point unit, disk drive, server in a cluster.

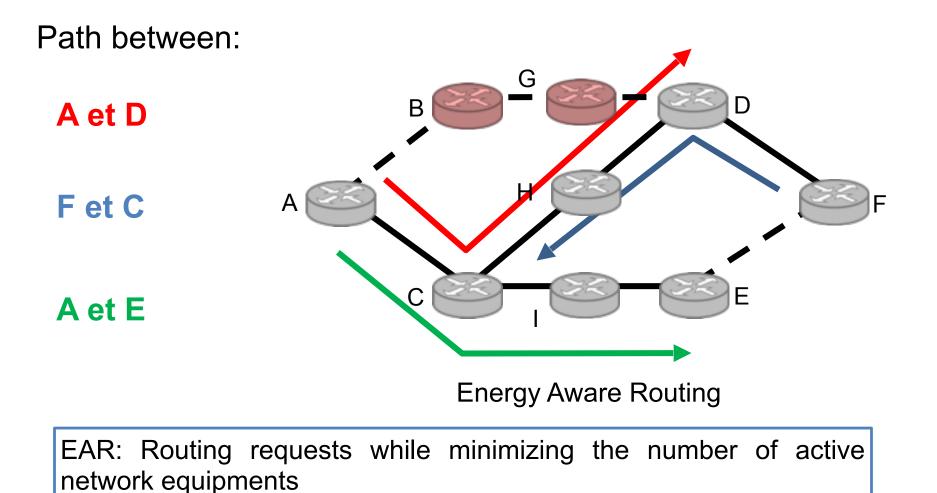
"Most electronics are lightly utilized"


- 2/3 of PC energy used when no one present
- Typical commercial server utilization: ~15 to 20%
- Typical (edge) network link usage: few percents.

Energy Consumption of Networks


Measurements campaigns on routers: small influence of the traffic load on energy consumption on [Chabarek et al. Infocom08]:


—> To save energy: **switch-off** interfaces, chassis.


Legacy routing: using shortest paths.

Putting unused network equipments (routers and/or links) into sleep mode

EAR: Routing requests while minimizing the number of active network equipments

- Closely related to classic problems.
 - Routing: Maximum multicommodity flow with a specific cost function [Even. SIAM Journal of Computing 1976]
 - Design: Finding the minimum cost to build a network [Johnson et al. Networks 1978].
 - OR: instance of the Fixed charge Transportation Problem [Gray. Operations Research 1971]
- But with new angle (e.g. dynamics), new applications (energy cost and specifics) and a lot of open problems.

- Practical Scenarios [Chap. 3]
 - Study of ISP networks [Chap. 3.1]
 - Using redundancy elimination [Chap. 3.2]
 - For content delivery [Chap. 3.3]
- Using Algorithm Complexity and Graph Theory
 - Hardness results (No-APX) [Chap. 3.1]
 - Theoretical bounds for specific topologies (grids, rings, trees, etc...) and all-to-all [Chap. 4]

- Practical Scenarios [Chap. 3]
 - Study of ISP networks [Chap. 3.1]
 - Using redundancy elimination [Chap. 3.2]
 - For content delivery [Chap. 3.3]
- Using Algorithm Complexity and Graph Theory
 - Hardness results (No-APX) [Chap. 3.1]
 - Theoretical bounds for specific topologies (grids, rings, trees, etc...) and all-to-all [Chap. 4]

Results on ISP Topologies

- Topologies extracted from SNDLib
- Tested how many interfaces can be spared for different ranges of operation on 10 topologies
- Also looked at the impact on route length and on fault protection

[Greencom 2010] [Chapter 2012]

EAR Modelling

Linear program

Heuristic algorithm

The Objective function is then

subject to:

Flow constraints: $\forall (s, t) \in V \times V, \forall u \in V$,

$$\sum_{v \in N(u)} f_{vu}^{st} - \sum_{v \in N(u)} f_{uv}^{st} = \begin{cases} -\mathcal{D}_{st} & \text{if } u = s, \\ \mathcal{D}_{st} & \text{if } u = t, \\ 0 & \text{otherwise.} \end{cases}$$

 $\min \sum_{e \in E} x_e$

Capacity constraints: $\forall e = (u, v) \in E$,

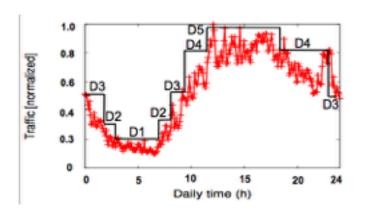
$$\sum_{d \in \mathcal{D}} \left(f_{uv}^d + f_{vu}^d \right) \le x_e c_e.$$

Algorithm 1 LESS LOADED EDGE HEURISTIC

Require: An undirected weighted graph G = (V, E) where each edge $e \in E$ has an initial capacity c_e and a residual capacity r_e (depending on the demands supported on e). A set of demands D, each demand has a volume of traffic D_{st} .

 $\forall e \in E, r_e = c_e$

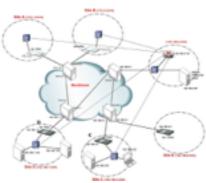
Compute a feasible routing of the demands with Algorithm 2 while Edges can be removed do Remove the edge e' that has not been chosen once, with the smallest value $\frac{c(e')}{r(e')}$. Compute a feasible routing with Algorithm 2 If no feasible routing exists, then put back e' in Gend while return the subgraph G.


Principle: remove the least loaded edge.

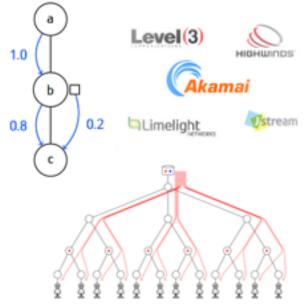

Results on ISP Topologies

- Between 30-60% of spared network equipements for usual range of operations
- But with impact on
 - route length (however limited average impact)
 - failure protection (usually single existing path)

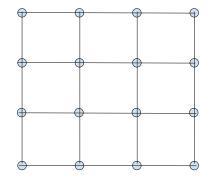

Results on ISP Topologies



- Failure protection:
 - Add fault protection constraints
 - Impact depends on the technology: How long to switch back on vs rerouting time? [experiments of Chap 8]


- Practical Scenarios [Chap. 3]
 - Study of ISP networks [Chap. 3.1]
 - Using redundancy elimination [Chap. 3.2]
 - For content delivery [Chap. 3.3]
- Using Algorithm Complexity and Graph Theory
 - Hardness results (No-APX) [Chap. 3.1]
 - Theoretical bounds for specific topologies (grids, rings, trees, etc...) and all-to-all [Chap. 4]

[ComCom 2015] [Networking 2012] 30/90


- Practical Scenarios [Chap. 3]
 - Study of ISP networks [Chap. 3.1]
 - Using redundancy elimination [Chap. 3.2]
 - For content delivery [Chap. 3.3]
- Using Algorithm Complexity and Graph Theory
 - Hardness results (No-APX) [Chap. 3.1]
 - Theoretical bounds for specific topologies (grids, rings, trees, etc...) and all-to-all [Chap. 4]

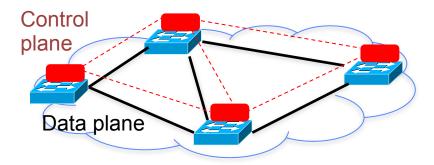
Metric		FT (2020)	Meroccan (2012)
Energy savings		8.7%	11.0%
Yearly monetary s	avings [k€]	769	122
Bandwidth saving	s	18.2%	30.2%
Collection Size [F	B	1800	72
Cache Size [GB]	core	0	0
	metro	32546	23510
	access	35878	5581
	DSLAM	2041	46

[CompJ 2016] [Globecom ICC 2013] ^{31/90}

- Practical Scenarios [Chap. 3]
 - Study of ISP networks [Chap. 3.1]
 - Using redundancy elimination [Chap. 3.2]
 - For content delivery [Chap. 3.3]
- Using Algorithm Complexity and Graph Theory
 - Hardness results (No-APX) [Chap. 3.1]
 - Theoretical bounds for specific topologies (grids, rings, trees, etc...) and all-to-all [Chap. 4]
 - Grid [Chap 4.2]
 - Given a number of edges and nodes, what are the graphs with the lowest forwarding indices? [Chap. 4.3]

[DAM 2018] [Inoc Iwoca 2015] 32790

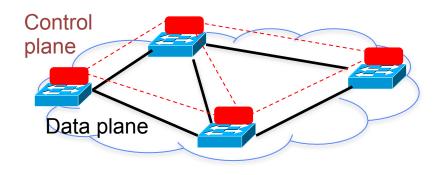
Energy Efficiency


• Core of solutions for energy efficiency: dynamic adaptation of resource usage to traffic changes.

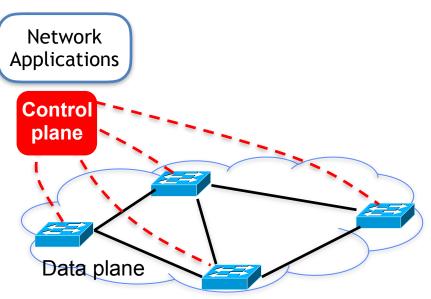
Other applications: energy efficient data centers (virtual machine assignment), wireless networks (base-station assignment)...

Legacy networks

However, network operators reluctant to change the routing.

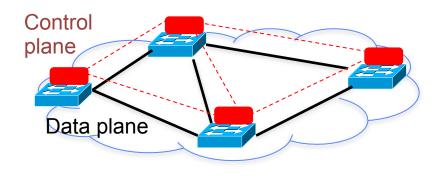

- Router=closed systems. Any change has to be done manually.
- Networks are managed by complex configurations.
- -> Important difficulties to deploy new protocols

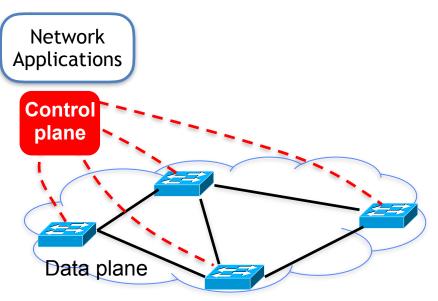
 Energy efficient solutions not yet successfully implemented in networks.


Routing: A new Context

- Career Routing. Introduction
- Routing in an energy aware world. (Part I)
- Routing in an SDN world without (a lot of) rules. (Part 2. Chapter 6)
- 3. Routing in a virtualized world. (Part 2. Chapter 7)
- End of the route ? Conclusions and Perspectives

Software Defined Networks


- Router=closed systems. Any change has to be done manually.
- Networks are managed by complex configurations.
- -> Important difficulties to deploy new protocols


- Intelligence implemented by a centralized controller managing elementary switches
- SDN conceives the network as a program.

->Allows the deployment of advanced (dynamic) protocols

Software Defined Networks

—> SDN has the potential to put into practice energy efficient solutions

- Intelligence implemented by a centralized controller managing elementary switches
- SDN conceives the network as a program.

->Allows the deployment of advanced (dynamic) protocols ^{37/90}

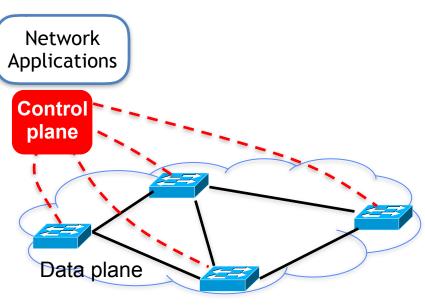
SDN and Energy efficiency

• Topic of a project between COATI and SIGNET

- Inside the axis Energy of labex UCN@Sophia
- Two Ph.D. students:
 - Nicolas Huin, 2014-2017
 - Myriana Rifai, 2014-2017

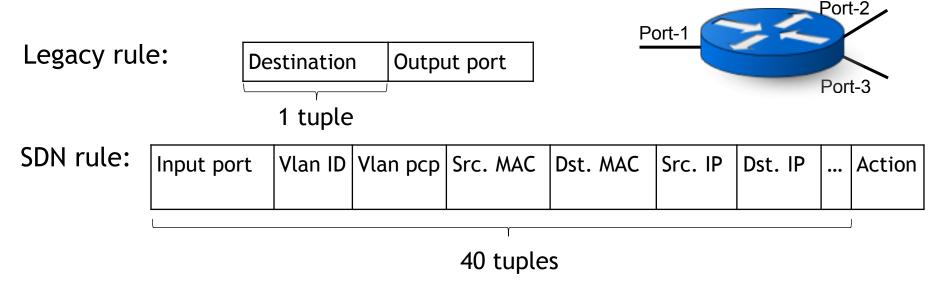
Software Defined Networks

- Pushed by open source communities + large software and telecommunication companies.
 - Large eco-system: Open Flow / Open Day Light / Open Stack / Open vSwitch
 - Software companies: Google B4 large scale experiment on its inter-data center networks [Jain 2013].



B4 worldwide deployment (2011)

• **Telcos:** e.g. AT&T targets 75% of network functions as a software by 2020.


SDN Challenges

- Defining the architecture.
 - e.g. northbound **APIs** to enable real network programmability
- Security
 - e.g. single point of failure
- Scalability of the SDN environment
 - e.g. avoiding Control Data
 Plane communications overhead
 - avoiding excessive flow table entries

Problem

• SDN enables dynamic routing but at the cost of limited forwarding table size.

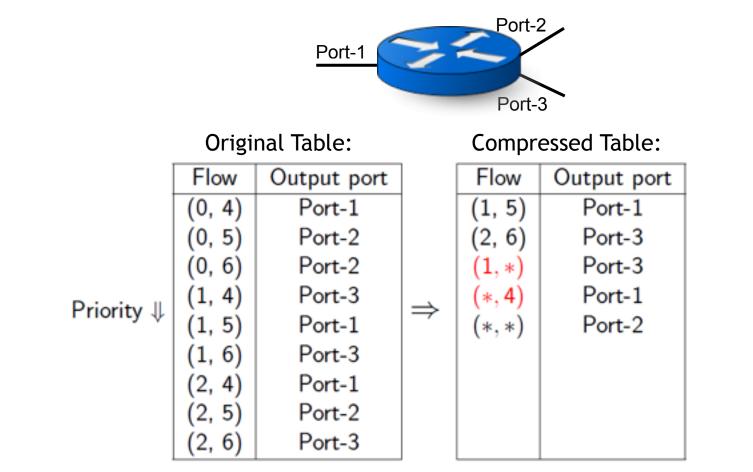
- SDN rules are flow-oriented -> more complex
- SDN forwarding tables stored with TCAM memory which is expensive, power-hungry and with a limited size.

 \rightarrow Constraint on number of forwarding rules (around 1000)

How do we deal with small rule tables?

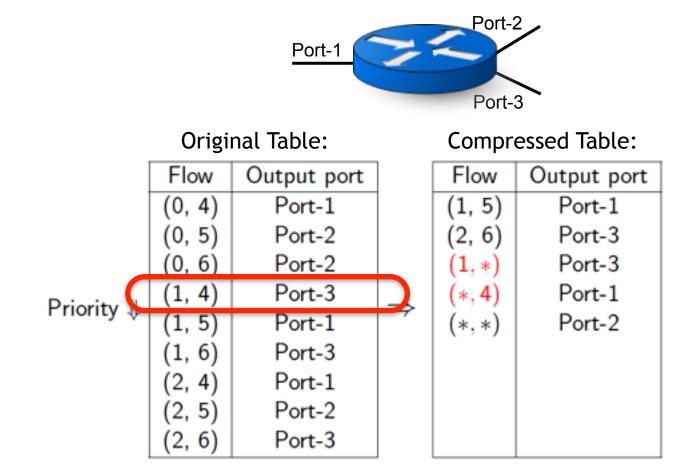
- Eviction (e.g., LRU) or remove the least interesting rule when a new rule must be added.
 - -> Frequent contact with controller
- Split and distribute the rules in network [cohen et al. 14]
- Use a minimum number of paths. Xpath: Relabeling and aggregation of paths [Hu et al, '15].
 - -> Increased path length and thus delay
- Decrease rule size by matching only on small tag in packet header [Kannan et al, '13][Banerjee et al, '14].
 - -> Need to modify end hosts.
- Our solution: **Compressing using wildcard rules.**

Compression problem



Original Table:

-	_
Flow	Output port
(0, 4)	Port-1
(0, 5)	Port-2
(0, 6)	Port-2
(1, 4)	Port-3
(1, 5)	Port-1
(1, 6)	Port-3
(2, 4)	Port-1
(2, 5)	Port-2
(2, 6)	Port-3


Reduce the size of the table using wildcard rules and default rule.

Compression problem

Reduce the size of the table using wildcard rules and default rule.

Compression problem

Beware the order. The first matching rule is applied.

Example: If $(*, 4) \rightarrow 1$ is before $(1, *) \rightarrow 3$, then (1, 4) will be routed through 1, and not 3.

Problem: how to routing using compression while minimizing energy consumption.

- Algorithmic complexity
- Efficient solutions
 - with proved warranties
 - Optimization methods
 - Heuristic solutions
 - Decompose the problem
- Test in practice
 - Simulations
 - Experimentations

Problem: how to routing using compression while minimizing energy consumption.

 Study of the algorithmic problem of compressing a two dimensional routing table using wildcard rules with an order on the rules. [Algorithmica 2018. Short version INOC 2015]

- Algorithmic complexity
- Efficient solutions
 - with proved warranties
 - Optimization methods
 - Heuristic solutions
 - Decompose the problem
- Test in practice
 - Simulations
 - Experimentations

Problem: how to routing using compression while minimizing energy consumption.

- Study of the algorithmic problem of compressing a two dimensional routing table using wildcard rules with an order on the rules. [Algorithmica 2018. Short version INOC 2015]
- 2. Modeling and Simulations on ISP networks. [Computer Communications 2018 . Short version Globecom 2014]

- Algorithmic complexity
- Efficient solutions
 - with proved warranties
 - Optimization methods
 - Heuristic solutions
 - Decompose the problem
- Test in practice
 - Simulations
 - Experimentations

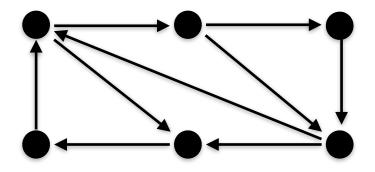
Problem: how to routing using compression while minimizing energy consumption.

- Study of the algorithmic problem of compressing a two dimensional routing table using wildcard rules with an order on the rules. [Algorithmica 2018. Short version INOC 2015]
- 2. Modeling and Simulations on ISP networks. [Computer Communications 2018 . Short version Globecom 2014]
- 3. Experiments for an SDN data center network. [Computer Networks 2018. Short version Globecom 2015]

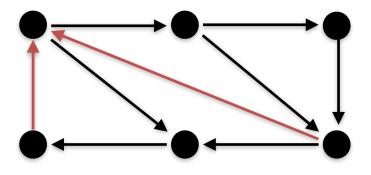
- Algorithmic complexity
- Efficient solutions
 - with proved warranties
 - Optimization methods
 - Heuristic solutions
 - Decompose the problem
- Test in practice
 - Simulations
 - Experimentations

- Algorithmic complexity
 - Link with a classic graph problem, Feedback Arc Set.
 - Hardness results:
 - Polynomial pour 1 port
 - NP-complete 2 ports or more

Solved on open problem stated in [Suri et al. Algorithmica 2003]

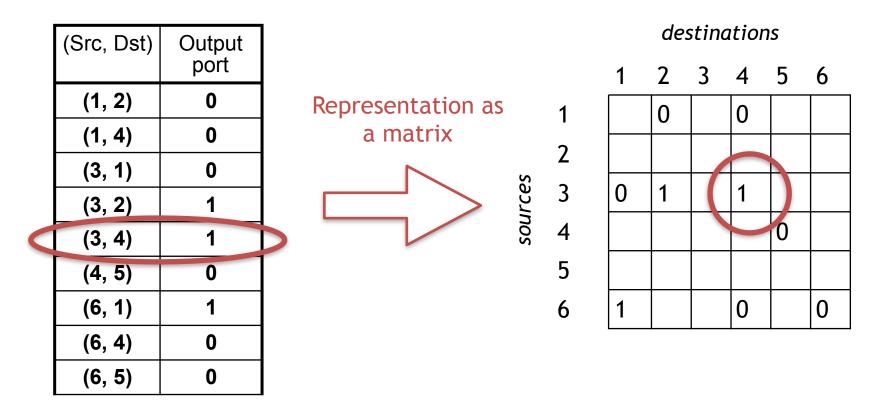

- Efficient solutions with proved warranties
 - Approximation algorithms
 - a simple 3-approximation for List Reduction: Direction-Based Heuristic.
 - a 4-approximation for Routing List.
 - Study of the Fixed Parameter Tractability (FPT). Polynomial kernels for most of the problems considered.

- Algorithmic complexity
 - Link with a classic graph problem, Feedback Arc Set.
 - Hardness results:
 - Polynomial pour 1 port
 - NP-complete 2 ports or more

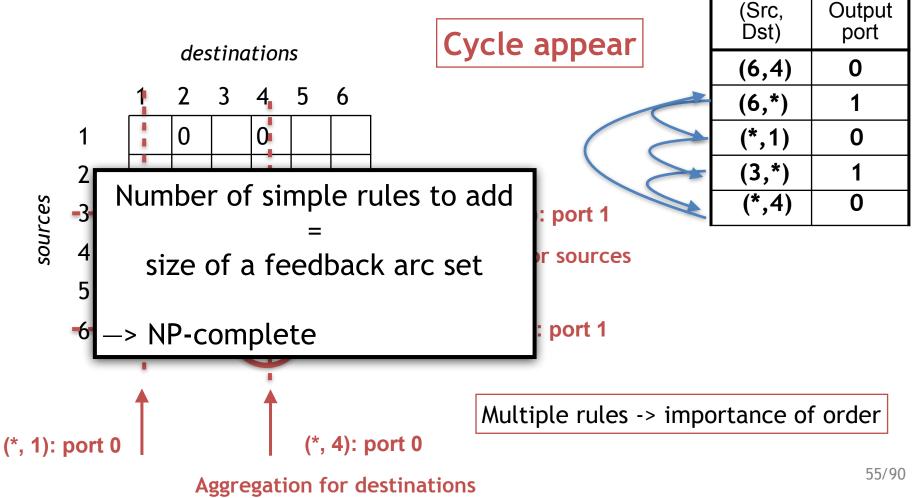

Solved on open problem stated in [Suri et al. Algorithmica 2003]

- Efficient solutions with proved warranties
 - Approximation algorithms
 - a simple 3-approximation for List Reduction: Direction-Based Heuristic.
 - a 4-approximation for Routing List.
 - Study of the Fixed Parameter Tractability (FPT). **Polynomial kernels** for most of the problems considered.

Feedback Arc Set: set of edges removing all cycles in a digraph



Feedback Arc Set: set of edges removing all cycles in a digraph



Decision problem: "can all cycles be broken by removing k edges?" is one of Karp's NP-complete problem.

Link with Feedback Arc Set: A simple example with 2 ports

A simple example with 2 ports

- Algorithmic complexity
 - Link with a classic graph problem, Feedback Arc Set.
 - Hardness results:
 - Polynomial pour 1 port
 - NP-complete 2 ports or more

Used for practical applications presented later

Solved on open problem stated in

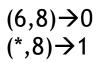
[Suri et al. Algorithmica 2003]

- Efficient solutions with proved warranties
 - Approximation algorithms
 - a simple 3-approximation for List Reduction: Direction-Based Heuristic.
 - a 4-approximation for Routing List.
 - Study of the Fixed Parameter Tractability (FPT). Polynomial kernels for most of the problems considered.

Compress using source aggregation, destination aggregation or default rule \Rightarrow Take the best table

 For each source s, Find the most occurring port k. Add the aggregation rule (s, *): Keep the non matching rules (s, *) -> Table T_s 	
• Do the same for each destination t -> Table T _t	# destination aggregation
 Find the most occurring port Add the aggregation rule (s, *):k Keep the non matching rules (s, t):k' -> Table T_d 	# default port with higher priority
• Choose $min(T_s, T_t, T_d)$	

	8	9	10	11	12	13	14
1	1	1	1	2	1	0	1
2	1	1	1	1	1	1	1
3	1	0	1	0	1	0	1
4	1	1	2	1	0	1	0
5	1	0	3	0	2	1	1
6	0	1	2	1	0	1	0
7	1	1	1	0	1	1	1


	8	9	10	11	12	13	14	(1,11)→2	(Src, Dst)	Output
1	1	1	1	2	1	0	1	(1,13)→0	(1, 11)	2
2	1	1	1	1	1	1	1	(1,*)→1	(1, 13)	0
3	1	0	1	0	1	0	1		(1, *)	1
4	1	1	2	1	0	1	0			
5	1	0	3	0	2	1	1			
6	0	1	2	1	0	1	0			
7	1	1	1	0	1	1	1			

	8	9	10	11	12	13	14		(Src, Dst)	Output
1	1	1	1	2	1	0	1		(1, 11)	2
2	1	1	1	1	1	1	1	(2,*)→1	(1, 13)	0
3	1	0	1	0	1	0	1		(1, *)	1
4	1	1	2	1	0	1	0		(2, *)	1
5	1	0	3	0	2	1	1		(2,)	I
6	0	1	2	1	0	1	0			
7	1	1	1	0	1	1	1			

	8	9	10	11	12	13	14		(Src, Dst)	Output
1	1	1	1	2	1	0	1		(1, 11)	2
2	1	1	1	1	1	1	1	(3,9)→0 (3,11)→0	(1, 13)	0
3	1	0	1	0	1	0	1	(3→13)→0	(1, *)	1
4	1	1	2	1	0	1	0	(3,*)→1	(2, *)	1
5	1	0	3	0	2	1	1			
6	0	1	2	1	0	1	0		(3,9)	0
7	1	1	1	0	1	1	1		(3,11)	0
									(3,13)	0
									(3,*)	1

	\bigcap						
	8	9	10	11	12	13	14
1	1	1	1	2	1	0	1
2	1	1	1	1	1	1	1
3	1	0	1	0	1	0	1
4	1	1	2	1	0	1	0
5	1	0	3	0	2	1	1
6	0	1	2	1	0	1	0
7	1	1	1	0	1	1	1
				-			

The heuristic does the same for the destinations.

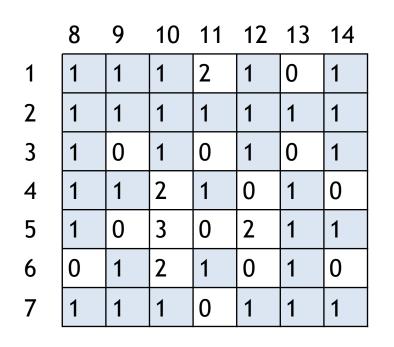


Table : Non matching rules Default rule $(*,*) \rightarrow 1$

Theorem: This gives a 3-approximation of the List-reduction problem: Input: A set C of communication triples and integer z Output: sav(C) is the maximum number of saved rules.

- Algorithmic complexity
 - Link with a classic graph problem, Feedback Arc Set.
 - Hardness results:
 - Polynomial pour 1 port
 - NP-complete 2 ports or more
- Efficient solutions with proved warranties
 - Approximation algorithms
 - a simple 3-approximation for List Reduction: Direction-Based Heuristic.
 - a 4-approximation for Routing List.
 - Study of the Fixed Parameter Tractability (FPT). Polynomial kernels for most of the problems considered.

Solved on open problem stated in [Suri et al. Algorithmica 2003]

Used for practical applications presented later

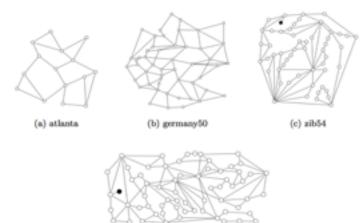
FPT Algorithms

FPT Algorithms: computation time in $f(z) \cdot x ^{O(1)}$	Theorem: For every $l \ge 1$, List- Reduction-with-k-ports admits a linear kernel and so is FPT.
with •z (well chosen) parameter, •f any function.	A rule is isolated if its shares neither source nor destination.
	Kernelization algorithm:
\Rightarrow if z is small, inputs can be solved by	1- Remove isolated rules \Rightarrow table S ₁ .
brute force.	2- Apply the Destination-Based Heuristic \Rightarrow table T .
	3- If $ S_1 - T = sav_{DBH}(S_1) \ge z$, return 'Yes'.
	Else return T.
	Proof of validity: If T is returned

Proof of validity: If T is returned, we show that $|T| \le (4z - 4)k$. $^{65/90}$

Problem: how to routing using compression while minimizing energy consumption.

- Study of the algorithmic problem of compressing a two dimensional routing table using wildcard rules with an order on the rules. [Algorithmica 2018. Short version INOC 2015]
- 2. Modeling and Simulations on ISP networks. [Computer Communications 2018 . Short version Globecom 2014]
- 3. Experiments for an SDN data center network. [Computer Networks 2018. Short version Globecom 2015]


- Algorithmic complexity
- Efficient solutions
 - with proved warranties
 - Optimization methods
 - Heuristic solutions
 - Decompose the problem
- Test in practice
 - Simulations
 - Experimentations

Contribution 2: Energy efficient routing in an SDN ISP network.

Problem can be modeled by an ILP.

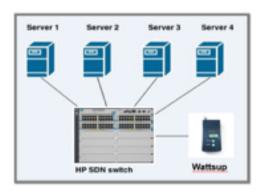

The ILP runs for a small network: Atlanta.

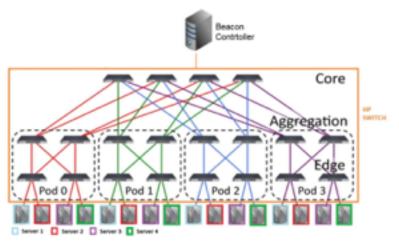
Propose several **efficient heuristic solutions** (using different compression methods) for larger networks.

Contribution 2: Energy efficient routing in an SDN ISP network.

Energy savings of different solutions for two networks

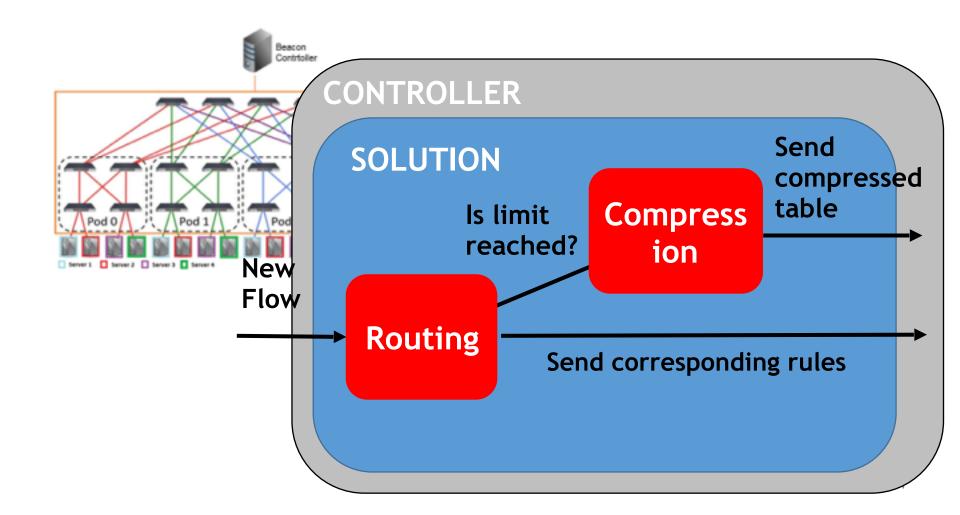
- Take aways:
 - No feasible solutions without compression for some networks (or with only the default port)
 - With compression, results almost as good than without the limit due to TCAM memory for SDN: between 52% and 65% of savings.

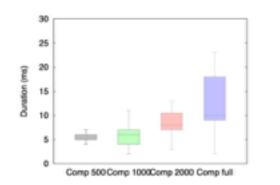

Problem: how to routing using compression while minimizing energy consumption.

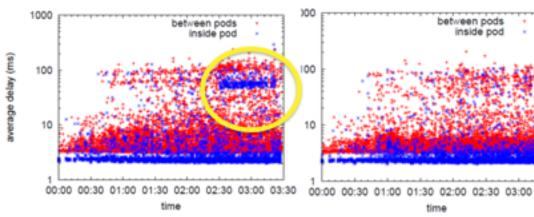

- Study of the algorithmic problem of compressing a two dimensional routing table using wildcard rules with an order on the rules. [Algorithmica 2018. Short version INOC 2015]
- 2. Modeling and Simulations on ISP networks. [Computer Communications 2018 . Short version Globecom 2014]
- 3. Experiments for an SDN data center network. [Computer Networks 2018. Short version Globecom 2015]

- Algorithmic complexity
- Efficient solutions
 - with proved warranties
 - Optimization methods
 - Heuristic solutions
 - Decompose the problem
- Test in practice
 - Simulations
 - Experimentations

Contribution 2: Experiments for a data center network


• Small experimental platform.



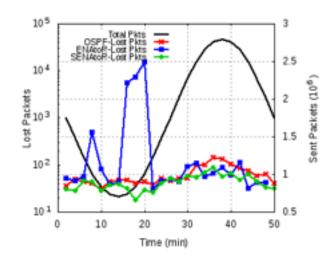

- -> allowed to test impact of contacts to controller and controller optimizations
 - on packet delay
 - on packet losses

Contribution 2: Experiments for a data center network

Contribution 2: Experiments for a data center network

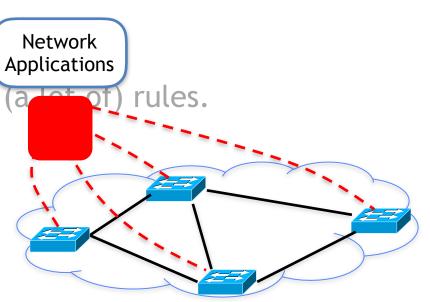
Time compression+ table modification = few ms

Without Compression


When the switch reaches its limit, no more rules installed -> need to contact the controller for every packet received -> high delay With Compression No problem. Delay is not increased.

Threshold	No Comp	Comp 500	Comp 1000	Comp 2000	Comp full
# of compressions	NA	16 594	95	28	20
% pkt loss	6.25×10^{-6}	0.003	5.65×10^{-4}	2.83×10^{-5}	3.7×10^{-4}

Loss rate ≈0%


Part 2 - Conclusions

- We provided efficient algorithms for doing multifield compression of routing tables: compression rates from 66 to 90%.
- Solutions for routing in an SDN world in datacenter or ISP networks
 - using compression
 - with smooth dynamic equipment extinction [Chap8] [Trans. Green Networking 18. Globecom 17.]
 - while preserving network stability.
 - no increased delay
 - no impact on failure rate
 - failure tolerant

Routing: A new Context

- Career Routing. Introduction
- 1. Routing in an energy aware world. (Part I)
- 2. Routing in an SDN world without (a (Part 2. Chapter 6)
- 3. Routing in a virtualized world. (Part 2. Chapter 7)

• End of the route ? Conclusions and Perspectives

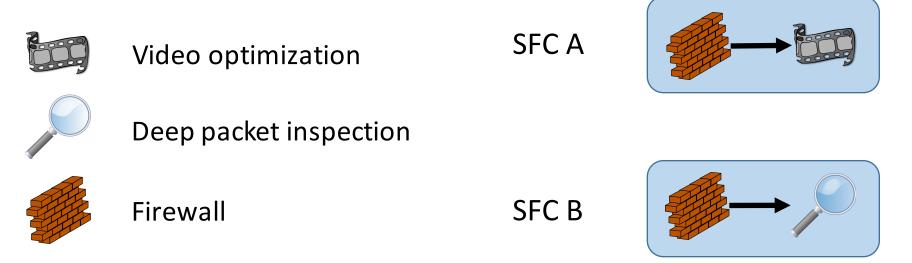
Network Function Virtualization

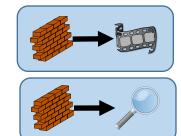
 Legacy networks implements network functions using expensive specific hardware called middleboxes.

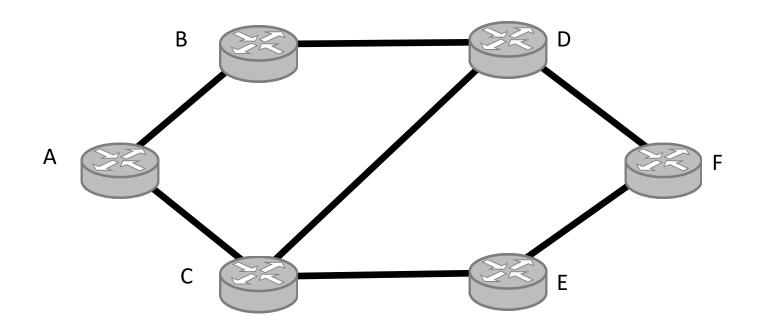
• The NFV initiative allows functions to be run on general hardware using Virtual Machines.

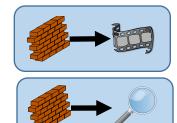
Network Function Virtualization

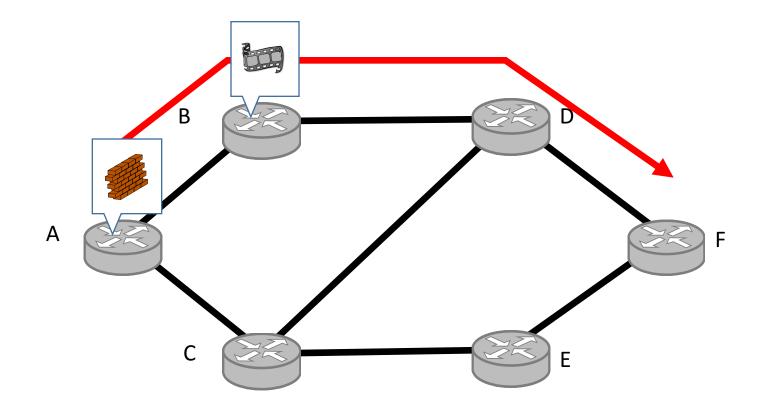
 Legacy networks implements network functions using expensive specific hardware called middleboxes.

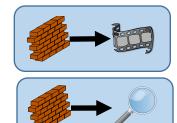

• The NFV initiative allows functions to be run on general hardware using Virtual Machines.

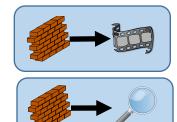

 Solve problems of cost, capacity rigidity, management complexity, and failures

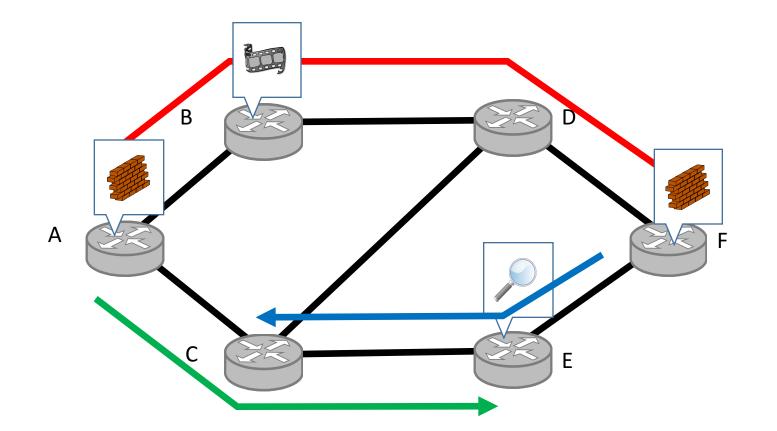

Service Function Chaining


Service Function Chain: ordered chain of network functions to apply to flows on the network




Problem: place VNFs to satisfy the **ordering constraints** of the flows with the goal of **minimizing the total setup cost** (e.g. license fees, network efficiency, or energy consumption)





Related Work

- Heuristics
 - [Kuo et al. Infocom 2016] Maximizing the total number of admitted demands -> no warranties
- ILP based
 - [Mehraghdam et al. Cloudnet 2014] Minimizing the number of used nodes or the latency of the paths.
 - -> problem of scalability
- Approximation Algorithms
 - [Cohen et al. Infocom 2015] Minimizing setup cost near-optimal approximation algorithms with theoretically proven performance.
 - [Sang et al. Infocom 2017] Minimizing the total number of network functions. But one single network function.

-> leave the placement of virtual functions with chaining constraint as an open problem.

Contributions

- Service Function Chain provisionning
 - 1. using Column Generation [Several papers including ICC 2017-2018, ToN 2018]
 - -> improved the scalability of ILP models
 - 2. with Approximation Algorithms [INFOCOM 2018]

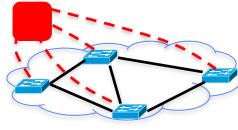
-> "First approximation algorithms taking into account ordering constraints."

+ optimal on trees + validation

Routing: A new Context

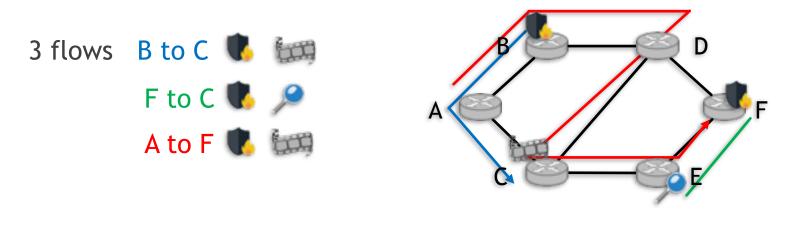
- Career Routing. Introduction
- 1. Routing in an energy aware world. (Part I)
- 2. Routing in an SDN world without (a lot of) rules. (Part 2. Chapter 6)
- 3. Routing in a virtualized world. (Part 2. Chapter 7)
- End of the route ? Conclusions and Perspectives

Conclusion

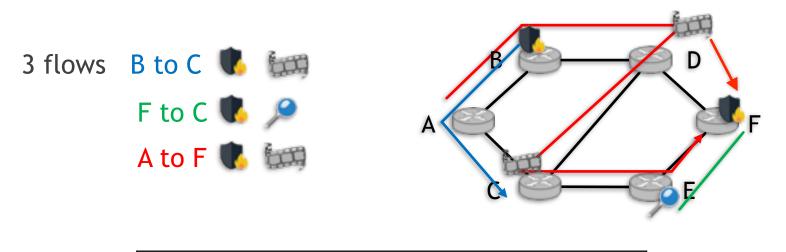

- I solved several problems of routing and placement of (virtual) resources.
- Lots remains to be done.

Current work and Perspectives

- Several major revolutions:
 - Diffusion in the industry of software defined networks
 - of network virtualization
 - Convergence network and data center architectures
 - 5G/IoT/M2M


-> New algorithmic problems.

• Routing and placement of dynamic resources.


-> study of the reconfiguration of virtual ressources.

PhD. Adrien Gausseran 2018-2021 (J. Moulierac and N. Nisse)

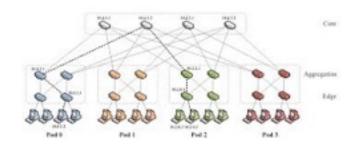
• Routing and placement of dynamic resources.

-> study of the reconfiguration of virtual ressources.

PhD. Adrien Gausseran 2018-2021 (J. Moulierac and N. Nisse)

• Mapping of virtual networks on physical networks. e.g slicing.


PhDs of A. Gausseran and G. di Lena 2018-2021 (Orange, C. Lac and T. Turletti)


• Joint optimization of applications and network traffic.

-> introduction of a new scheduling framework scheduling data center workflows + network routes.

PhD. A. Tomassilli 2016-2019 with S. Pérennes Cluster computing applications like MapReduce and Dryad transfer massive amounts of data between their computation stages. These transfers can have a significant impact on job performance, accounting for more than 50% of job completion times. Despite this

[SIGCOMM Orchestra 2011]

THANKS FOR YOUR ATTENTION!