
Exploiting Temporal Persistence to Detect
Covert Botnet Channels

Frederic Giroire1, Jaideep Chandrashekar2, Nina Taft2, Eve Schooler2, and
Dina Papagiannaki2

Intel Research2 and CNRS, France1

Abstract. We describe a method to detect botnet command and con-
trol traffic and individual end-hosts. We introduce the notion of ”desti-
nation traffic atoms” which aggregate the destinations and services that
are communicated with. We then compute the ”persistence”, which is a
measure of temporal regularity and that we propose in this paper, for in-
dividual destination atoms. Very persistent destination atoms are added
to a host’s whitelist during a training period. Subsequently, we track the
persistence of new destination atoms not already whitelisted, to identify
suspicious C&C destinations. A particularly novel aspect is that we track
persistence at multiple timescales concurrently. Importantly, our method
does not require any a-priori information about destinations, ports, or
protocols used in the C&C, nor do we require payload inspection. We
evaluate our system using extensive user traffic traces collected from an
enterprise network, along with collected botnet traces.
We demonstrate that our method correctly identifies a botnet’s C&C
traffic, even when it is very stealthy. We also show that filtering out-
going traffic with the constructed whitelists dramatically improves the
performance of traditional anomaly detectors. Finally, we show that the
C&C detection can be achieved with a very low false positive rate.

1 Introduction

A botnet is a collection of compromised end-hosts all under the control of a par-
ticular bot-master (or bot-herder). The recruited end-hosts (also called drones
or zombies) are marshalled and controlled by the bot-herders via a command
and control (in short, C&C) traffic channel to carry out a number of malevo-
lent activities. For example, they are used to launch DDoS attacks, send SPAM,
harvest personal information from the zombie hosts, stage social engineering
attacks, and so on. Botnets are so effective at delivering these ”services” that
there is an thriving (underground) economy based around buying or renting bot-
nets [1]. Today’s commercial malware prevention methods, typically host based
HIPS and AV engines, are well suited to identifying and countering previously
identified and analyzed threats. However, contemporary botnets are extremely
adaptable and able to churn our variants at a very high volume, using polymor-
phic engines and packing engines, which can easily get around existing defenses
(a particular AV vendor reports collecting 3000 distinct malware samples daily
on average [2]).

In contrast to signature scanning based methods, which target known threats,
statistical anomaly detection methods are often employed to detect new threats;
these operate by looking for deviations in traffic feature distributions caused
by the malware. These methods could possibly detect and flag zombie hosts
that have been activated and generating a significant (noticeable) volume of
traffic (DDoS attacks, SPAM, click-fraud, etc). However, it may be a considerable
period of time between a host joining a botnet to the time that is instructed to
carry out a malicious task; often, by then it is too late, as the zombie has served
its purpose. A particularly compelling example is the Conficker botnet [3], which
has taken over a very large user base since late 2008 but is yet, at the time of
this writing, to be used to carry out any particular task. Thus, even as detecting
a botnet in the act of performing some detrimental activity should be a goal,
it is far more critical to block the initial recruitment vector, or failing that to
detect the C&C traffic between the drone and bot-herder, so as to deactivate
the channel and render the drone useless. More critically, information gathered
about the C&C infrastructure may be used to take down the botnet as a whole.

In this paper, we present and validate a method to detect the C&C commu-
nications on an endhost. We were motivated by the observation that a recruited
host needs to be in touch with its C&C server to be ready to carry any particular
activity botnet. It will reconnect, for each new activity, each time it is repur-
posed, or resold, and so on. Intuition suggests that such visits will happen with
some regularity; indeed without frequent communication to a C&C server, the
bot becomes invisible to the bot herder. However, this communication is likely
to be very lightweight and spaced out over irregular large time periods. This
helps the botnet be stealthy and hence harder to expose. We thus seek to design
a detector that monitors a user’s outgoing traffic in order to expose malicious
destinations that he visits with some temporal regularity, even if infrequently.
In order to discern these from normal destinations a user frequents, we build
whitelists based on a new kind of IP destination aggregation we call destination
atoms. A destination atom is an aggregation of destinations that is intended to
capture the ”service” the user seeks. For example, we view google.com as a desti-
nation service, because a user’s requests will be treated by many different servers
with different IP addresses. We build these destination atoms using a series of
heuristics. Then, to capture the nebulous idea of ”lightweight repetition”, we
introduce a measure called persistence. Our whitelists contain destination atoms
that exhibit a given level of persistence. With this whitelist in place, detection
proceeds by tracking persistence to contacted (non whitelisted) destinations.
When the computed persistence becomes high enough, the destination is flagged
as a potential C&C endpoint.

The regularity with which a zombie contacts its bot-herder will differ from
bot to bot; moreover, we cannot predict the communication frequency that will
be used in tomorrow’s botnet. We therefore propose to track persistence over
multiple timescales simultaneously so as to expose a wide variety of communica-
tion patterns. We develop a simple and practical mechanism to track persistence
over many observation windows at the same time.

There are various styles by which botnets can communicate to command con-
trol centers, including IRC channels, P2P overlays, centralized and decentralized
C&C channels. Our goal here is to try to uncover the C&C activity for the class
of bots that employ a high degree of centralization in their infrastructure and
where the communication channel lasts for an extended period. We do not target
botnets where the communication between zombie and bot-herder is limited to
a few connections, or those where the zombie is programmed to use a completely
new C&C server at each new attempt.

We validate and assess our scheme using two datasets; one consists of traces
collected directly on endhosts, and the second consists of traces of live bot mal-
ware. It is important that the whitelist created be stable in that it requires few
updates thus avoiding to annoy the user by asking them too often if a given desti-
nation/service belongs in their whitelist. Moreover, it is essential that whitelists
be small so that they require little storage and can be searched quickly. Using our
data traces from a large corpus of enterprise users, we will show that whitelists
based on destination atoms, and persistence, exhibit both of these properties.
We then overlay the malware traces on top of the user traces, and run our de-
tectors on a replay of the combined traffic. We manually extracted the C&C
traffic from the bot malware traces in order to compute false positives and false
negatives. We show that our method identifies the C&C traffic in all the bots we
tested. We also demonstrate that there is a nice ramification, or additional use,
of persistent destination atoms. We can increase the sensitivity of HIDS traffic
anomaly detectors, by first filtering the traffic according to the whitelists. This
allows a larger fraction of our endhosts to catch the attack traffic, while also
speeding up the overall detection time.

2 Related Work

There are three potential avenues with which we could mitigate the botnet prob-
lem as described in [4]: preventing the recruitment, detecting the covert C&C
channel, and detecting attacks being carried out by the (activated) drones. A
number of previous works has addressed the first avenue ([5, 6] among others),
and in this paper we chiefly address the second avenue (and the third, albeit
indirectly). Our method detects the covert channel end-points by tracking per-
sistence, and we are able to detect attacks by filtering out whitelisted (normally
persistent) traffic and subsequently applying well established thresholding meth-
ods, borrowing from the domain of statistical anomaly detection.

In [7] the authors devise a method to detect covert channel communica-
tions carried over IRC with a scoring metric aimed at differentiating normal
IRC channels from those used by botnets based on counts of protocol flags and
common IRC commands. Our own work differs in that we do not require proto-
col payloads, nor are we restricted to IRC activity. Another detection approach,
BotHunter [8], chains together various alarms that correspond to different phases
of a host being part of a botnet Our own method does not attempt to identify
such causality and is also able to detect botnet instances for which other iden-

tifying alarms do not exist. Other approaches to detecting botnet traffic involve
correlating traffic patterns to a given destination, across a group of users, as is
described in [9]. Our own work is complementary, focusing on the individual end-
host (and can thus detect single instances of zombies); we can envision combining
the approaches together. Botminer [10] attacks the detection problem by first
independently clustering presumed malicious traffic and normal traffic and then
performing a cross-correlation across these to identify hosts that undertake both
kinds of communication. These hosts are likely to be part of an organized bot-
net. Our own work differs in that it is primarily an end-host based solution, and
we do not attempt to correlate activities across hosts. Also, we do not attempt
to identify attack traffic in the traffic stream. We focus purely on the nature of
communication between the end-hosts and purported C&C destinations, looking
for regularity in this communication.

Orthogonal to the problem of detecting the botnets and their activities, and
following the increasing sophistication being applied in the design of the more
common botnets in operation today, there has been a great deal of interest in
characterizing their structure, organization and operation. A description of the
inner workings, specifically, the mechanisms used to run SPAM campaigns is
described in [11]. The work in [12] examines the workings of fast-flux service
networks, which are becoming more common today as a way improving the
robustness of botnet C&C infrastructure.

The area of traffic anomaly detection is fairly well established, and many
detectors have been proposed in the past [13, 14]. Some methods build models
of normal behavior for particular protocols and correlate with observed traffic.
An indicator of abnormal traffic behavior, often found in scanning behaviors, is
a unusual number of connection attempts that fail, as detailed in [13]. A recent
interesting work is that of [14] in which the authors try to identify the particular
flow that caused the infection by analyzing patterns of communications traffic
from a set of hosts simultaneously. All of these approaches are complementary
to our work and we allow for any type of traffic feature based anomaly detector
to be integrated into the system we describe. Finally, [15] describes a method to
build host profiles based on communication patterns of outgoing traffic where
the profiles are used to detect the spread of worms. This is different from our own
goals in this paper, which is to detect botnet C&C activity, which is a stealthier
phenomenon. A more fundamental difference between our approaches is that we
employ a notion of persistence, to incorporate temporal information.

To end this section, we strongly believe, given the severity of the problem,
that there is no silver bullet solution to tackling the botnet menace; a com-
bination of mechanisms will be needed to effectively mitigate the threat. We
view our own work as complementary to existing approaches that are focused on
preventing the botnet recruitment or else protecting against the infection vector.

3 Methodology

A common behavior across different bots is that each zombie needs to commu-
nicate regularly with a C&C server. In order to keep the C&C traffic under the
radar, most bots keep this communication very lightweight, or stealthy. However
because the bot will visit its C&C server repeatedly over time, failing which the
bot-herder might simply assume the zombie to be inactive, we are motivated to
try to expose this low frequency event. To do this, we introduce a notion called
destination atoms (an aggregation of destinations), and a metric called persis-
tence to capture this ”lightweight” yet ”regular” communication. We design a
C&C detection method that is based upon tracking the persistence of destina-
tion atoms. In order to differentiate whether a new destination atom exhibiting
persistence is malicious or benign, we need to develop whitelists of persistent
destinations that the user or his legitimate applications normally visit.

The intuition for our method is as follows: an end-host, on any particular day,
may communicate with a large set of destination end-points. However, most of
these destinations are transient; they are communicated with a few times and
never again. Yet when traffic from the host is tracked over longer periods, the
set of destinations visited regularly is a (much) smaller and stable set. Probably,
this set consists of sites that the user visits often (such as work related, news
and entertainment websites), as well as sites contacted by end-host applications
(such as mail servers, update servers, patch servers, RSS feeds, and so on). If the
set of destinations with high regularity is not very dynamic, then such a set leads
to a whitelist that requires infrequent updating (once learned). We will see in our
user study, that indeed such a whitelist is quite stable. This means that should
a new destination appear, one that is persistent and malicious, the event stands
out (enabling detection). This is precisely what we expect to happen when an
end-host is subverted, recruited into a botnet and begins to communicate with
its C&C servers.

In order to keep the whitelists compact and more meaningful, we use a set of
heuristics to aggregate individual destination endpoints into destination atoms,
which are logical destinations or services. For example, the particular addresses
that respond to google.com vary by location and time, but this is irrelevant
to the end user who really only cares about the google ”service”. The same
is often true for mail servers, print services, and so on. For our purpose, we
primarily care about the network service being connected to, not so much the
actual destination IP address.

Given a destination end-point (dstIP, dstPort, proto), we obtain the atom
(dstService, dstPort, proto), by extracting the service from the IP address using
the following heuristics (Table 1 shows a few mappings from endpoints to desti-
nation atoms): (i) If the source and destination belong to different domains, the
service name is simply the second level domain name of the destination (e.g.,
cisco.com, yahoo.com). (ii) If the source and destination belong to the same
domain, then the service is the third level domain name (e.g., mail.intel.com,
print.intel.com). We differentiate these situations because we expect a host to
communicate with a larger set of destinations in its own domain, as would be the

case in an enterprise network. (iii) When higher level application semantics are
available (such as in enterprise IT departments), we can use the following type
of heuristic. Consider the FTP service (in PASV mode). The ”service” requires
two ports on the destination host, one being port 21, and the other an ephemeral
port (say k). Thus, both (ftp.service.com,21,tcp) and (ftp.service.com,k,tcp) re-
flect the same service and for the case of FTP. We thus generalize the destination
atom as (ftp.service,com, 21:>1024,tcp). Being able to do this for a larger set
of protocols requires a detailed understanding of the particular application’s se-
mantics, which is beyond our scope here. In this paper, we use a simple heuristic
that approximates this behavior: if we observe more than 50 ephemeral ports
being connected to at the same service, we expand the destination atom to in-
clude all ephemeral ports. The rationale here is that if the service is associated
with ephemeral ports, it is likely that we will observe a port number not seen
previously at some time and should allow this as part of the same pattern. (iv)
Sometimes a single destination host can provide a number of distinct services,
and in this case, the destination port is sufficient to disambiguate the services
from each other, even though they may have similar “service names”, obtained
by a (reverse) DNS lookup. (v) Finally, when the addresses cannot be mapped
to names, no summarization is possible, and we use the destination IP address
as the service name.

Note that aggregating the destination addresses into atoms can help counter
the use of fast flux service networks [16] to serve name requests. Since we are
constructing the aggregates based on domain names that are looked up, we will
be able to group all the fast fluxed destinations into a single atom since they are
logically tied together by the common domain name.

Dest. Dest. Name Dest. Atom
(143.183.10.12, 80, tcp) www.inet.intel.com (inet.intel.com, 80, tcp)
(134.231.12.19, 25, tcp) smtp-gw.intel.com (smtp-gw.intel.com, 25, tcp)
(216.239.57.97, 80, tcp) cw-in-f97.google.com (google.com, 80,tcp)
(209.85.137.104, 80, tcp) mg-in-f104.google.com (google.com, 80,tcp)

Table 1. Example destination atoms contacted by somehost.intel.com. Notice that the intel hosts,
being in the same domain, are mapped onto the third level domain, and the google destinations to
the second level domain.

We now define our persistence metric, to quantify the ”lightweight” yet ”reg-
ular” communications to destination atoms. We monitor the outgoing traffic
from an end-host using a large sliding time window of size W , which is divided
into n time-slots, each of length s. W is an observation window, and each time-
slot s is a measurement window (simply, bin). Letting si denote the i-th slot of
size s in W , we have W ≡ [s1, s2, . . . , sn]. The persistence of a destination atom,
denoted as d, in the observation window W is defined as:

p(d,W) =
1
n

n∑
i=1

1d,si

where 1d,si has a value 1 if the host makes at least one connection to d in the
time-slot si, and 0 otherwise. Thus, an atoms persistence is simply the fraction
of time slots where at least one connection was observed. Given a threshold p∗,
we say that d is persistent if p(d,W) > p∗ (otherwise, it is termed transient).

Because botnets differ from one to another to a great extent, we cannot
know a priori the frequency (the term is used loosely here) with which a zombie
will contact its C&C server(s). Thus, it is of paramount importance to design a
method that can track persistence over several observation windows simultane-
ously. Note that the persistence of an atom depends upon the sizes of the two
windows (W, s) over which it is observed and measured; we use the term timescale
to denote a particular instance of (W, s). In order to capture persistence over
many timescales, we select k overlapping timescales (W 1, s1) ⊂ (W 2, s2) ⊂ . . . ⊂
(W k, sk), where (W 1, s1) is the smallest timescale, and (W k, sk) is the largest.
Here sj denotes the slot size at time scale j. (We could define sj

i as the ith slot in
an observation window W j , however we drop the subscript for simplicity when
discussing timescales). For each timescale (W j , sj) : 1 ≤ j ≤ k, we compute the
persistence p(j)(d) as previously defined. Then, a destination atom d is persistent
if the threshold p∗ is exceeded in any one of the timescales, i.e., d is a persistent
destination atom iff

max
j

p(j)(d) > p∗

We have explicitly chosen not to use direct frequency type measurements
(e.g., a low pass filter) because our definition is very flexible and does not require
one to track specific multiples of one frequency or another. More importantly,
we don’t expect these low frequency connection events to precisely align at any
particular frequency; our definition allows some slack in where exactly the events
occur.

When deciding upon the appropriate timescales, particularly the smallest
measurement window s1, we want it capture ”sessions” level behavior (multiple
requests to a web server in a short interval are likely to be for a single ses-
sion). Based on a preliminary analysis of user data, we select s1 = 1 hr (87%
of connections to the same destination atom are separated by at least an hour).
We also set sk = 24 hours because our training dataset is 2 weeks (in real-
ity, one could use larger windows). With these two boundary slot-lengths, we
select four additional intermediate values. Thus, the slot lengths correspond-
ing to the timescales we use in this paper are: 1,4,8,12,16,20 and 24 (hours).
The observation window length controls how long we should wait before we
conclude as to whether something is persistent (or transient). For convenience,
we select n = 10. Noting that W = n × s, the 7 timescales used in this pa-
per lie between (Wmin = 10, smin = 1), which is the smallest timescale, and
(Wmax = 240, smax = 24), the largest (all values described in hours). It should
be pointed out that additional timescales can be added dynamically based on
evidence of some anomaly at a particular timescale.

In the following, we describe the specifics of how our C&C detection pro-
ceeds. First, there is a training stage in which the end-host bootstraps itself by
learning a whitelist of destination atoms. The training stage should last long

enough for the stable behavior of the end-host to be exposed (perhaps a week
or two). After the training stage, the detection stage proceeds. In a sense, the
training and detection stages proceed identically. In both, persistence of desti-
nations is tracked and alarms raised when this crosses a specified threshold. The
fundamental difference is that in the detection stage, an alarm simply results in
the atom being incorporated into the whitelist; in the detection stage, the alarm
is exposed to the end-user (or communicated to the central IT console in an
enterprise) and asked to take punitive action. In case the alarm is benign, and
the user (or administrator) can attest to the destination atom, it is added into
the whitelist.

C&C Detection Implementation: To simplify the description, we first de-
scribe how we do detection with a single timescale. We track the persistence
values of destination atoms that are not in the whitelist. Connections to a desti-
nation atom, from the end-host, in a window W , is tracked using a bitmap of n
bits (one bit for each timeslot in s ∈ W). If a new outgoing connection is observed
in slot si, then the entry in the bitmap, for the corresponding slot, is set to 1. We
create a separate bitmap, all values initialized to 0, per destination atom when
it is first encountered observed. This bitmap updating occurs asynchronously as
the outgoing connections are observed. A timer fires every smin minutes (this is
the time interval corresponding to the smallest timescale), and all the bitmaps
are processed. Here, for each bitmap, the persistence is computed taking into
account the last n bits and one of three events occurs: (i) it cannot be deter-
mined if the persistence is high enough (not enough samples), and the bitmap is
maintained; (ii) the newly updated persistence crosses the critical threshold, p∗

(raise an alarm, free up bitmap), or (iii) after enough samples, the persistence
is below the threshold (the bitmap is freed up).

Fig. 1. Bitmaps to track connections at each timescale. Here, we have n = 3 and k = 3

In order to track persistence at multiple timescales simultaneously, we could
use k separate bitmaps per atom. It turns out this is not necessary because we
can exploit the structure in our definition of timescales to reduce the overhead.
Notice that s1 · n = W 1 < W 2 < . . . < W k = n · sk, that is, sj is ”covered” by a
slot in the next higher timescale, as is depicted in Fig. 1. Thus, setting a bit in one
of these timescales implies setting a bit in the higher timescale. Thus, rather that
maintain separate bitmaps, we can simply construct a single, long bitmap that

covers all the timescales appropriately. The length of this bitmap is W k

s1 = W max

smin .
In our implementation we have s1 = 1 hr, n = 10, and Wmax = 240 hrs, so the
bitmap length is exactly 240 bits.

Algorithm 1 computePersistence():
1: for all d ∈ DCT do
2: p(d)← 0
3: for i = 1 to k do
4: p(i)(d)← getBits(d, i). |W

i|
|si|

5: p(d) = max(p(d), p(i)(d))
6: if p(d) ≥ p∗ then
7: RAISEALARM(... suspicious destination d)
8: end if
9: end for

10: idx← (idx + 1)modWmax

smin

11: if p(d) = 0 then
12: discard DCT[d]
13: end if
14: end for

High level pseudocode for this entire process is shown in Proc. 1. Here, the
set of bitmaps is stored in DCT, indexed by individual atoms (line 1 retrieves all
the active bitmaps). The loop (lines 2-7) iterates over each timescale, computing
persistence in each. There is a separate process that processes each outgoing
connection; this checks if the destination is whitelisted, and if not, updates the
bit at index idx in the bitmap (this index is updated in line 10, each time the
procedure is called, i.e., every smin). Finally, if there is no observed activity for
the atom in Wmax, the bitmap is discarded (lines 11-13).

When a C&C alarm is raised, we flag the outgoing connection as suspicious
and alert the user who can choose between either adding the destination atom to
their whitelist, or blocking the outgoing traffic. We will see in our evaluation that
the users are bothered with such decisions infrequently. For enterprise users, such
alarms could also be passed to an IT department where they can be correlated
with other data.

4 Dataset Description

End Host Traffic Traces: The endhost dataset used in this paper consists of
traffic traces collected at over 350 enterprise users’ hosts (mostly laptops), over
a 5 week period. Users were recruited via intranet mailing lists and newsletters,
and prizes were offered as a way to incentivize participation. The results pre-
sented in this paper use the traces from 157 of the hosts; these were selected
because they provide trace data for a common 4 week period between January

and February 2007. Our monitoring tool collected all packets headers, both in-
going and outgoing, from all machine interfaces (wired and wireless). We divide
the 4 weeks traffic trace into two halves, a training set and a testing set. The
training data is used to build the per-user whitelists and to determine the pa-
rameters of our methold (i.e. p∗). The testing data is used to assess the detection
performance, i.e., false positives and false negatives.

Botnet Traffic Traces: We collected 55 (known) botnet binaries randomly
selected from a larger corpus of malware. Each binary was executed inside a
Windows XP SP2 virtual machine and run for as long as a week, together with
our trace collection tool. When constructing the clean VM image, we took great
pains to turn off all the services that are known to generate traffic (windows
auto-update, etc.); we also monitored the VM for a few days on an isolated
network to ensure that no IP traffic was being sent out of the system. This
gives us a certain level of confidence that all (or nearly all) the traffic collected
corresponds to botnet activity. During the collection, the server hosting the VMs
was placed behind a NAT device and connected to an active DSL link.

While we expected the trace collection to be a straight-forward exercise, this
turned out not to be the case. To begin with, a lot of the binaries simply crashed
the VM or else did nothing (no traffic was observed). In other cases, the C&C
seemed to have been deactivated, and we only saw failed connections or connec-
tions to illegal addresses (indicating that the DNS entries for the C&C servers
had been rewired). Only 27 binaries yielded any traffic at all (the collection
was aborted if there was no traffic seen even after 48 hours). Of this set, only
12 binaries yielded traffic that lasted more than a day and these usable traces
are enumerated in Table 2. Here, the first column is the identifier assigned by
ClamAV [17] for the particular botnet binary. Given our limited infrastructure,
we were unable to scale to a large number of binaries; however, we endeavored
to collect botnet samples with widely different behaviors and temporal charac-
teristics to assure us that our evaluation results hold for a larger population of
botnets.

In order to evaluate the effectiveness of our algorithm, we overlay these bot-
net traces on top of the traffic traces from each user, and then replay this traffic
with our detector monitoring for new persistent destination atoms. To assess the
true detections, missed detections and false positives, we need to label our traces
(thereby establishing ground truth). We thus manually inspected all of our 12
bot traces in order to isolate the C&C traffic from the remainder of the attack
traffic. We used BRO [18] to generate connection summaries. Isolating the C&C
traffic turned out to be a very tedious process which involved manually breaking
down the traffic across ports and destinations of each botnet trace. Due to a
lack of space, we cannot enumerate how we did this for the entire set. In sum-
mary, we employed a variety of methods including, extracting IRC commands
embedded in the streams, looking at the payloads directly of non-IRC commu-
nications, and in some cases examining histograms of payload size to extract
unusual patterns (i.e. very high chance of small packet sizes consistent across
a subset of connections). As an interesting example, consider Trojan.AimBot-5.

First we constructed histograms of traffic to various destinations and on various
ports. In this particular case, the communication involved a few destinations.
By zooming in on these individual connections and reconstructing the associ-
ated TCP streams we obtained a “conversation” between the zombie and the
significant destination. We were able to identify IRC protocol commands being
tunneled over HTTP to particular destinations. Further analysis revealed that
the destination being contacted was hosting a squid proxy, and the IRC com-
mands were being tunneled through. With STORM, we were able to pick out the
p2p traffic because of a regularity in UDP packets, very different from the other
(attack) traffic.

The second column in Table 2 describes the ports and protocols associated
with the C&C channel. The third column is a count of the distinct destination
atoms seen in the (isolated) C&C traffic. Column 4 shows the range (min to
max) of C&C traffic in connections/minute. This confirms the intuition that the
covert communications is light in volume and thus volume based detectors would
not be suitable to expose this traffic.

ClamAV Signature C&C type # of C&C atoms C&C Volume, min - max

Trojan.Aimbot-25 port 22 1 0-5.7
Trojan.Wootbot-247 IRC port 12347 4 0-6.8
Trojan.Gobot.T IRC port 66659 1 0.2-2.1
Trojan.Codbot-14 IRC port 6667 2 0-9.2
kTrojan.Aimbot-5 IRC via http proxy 3 0-10
Trojan.IRCBot-776* HTTP 16 0-1.
Trojan.VB-666* IRC port 6667 1 0-1.3
Trojan.IRC-Script-50 IRC ports 6662-6669,9999,7000 8 0-2.1 8
Trojan.Spybot-248 port 9305 4 3.8-4.6
Trojan.MyBot-8926 IRC port 7007 1 0-0.1
Trojan.IRC.Zapchast-11 IRC ports 6666, 6667 9 0-1
Trojan.Peed-69 [Storm] P2P/Overnet 19672 0-30

Table 2. List of sampled Botnet binaries with clear identifiable C&C traffic

5 Evaluation

In this section we results from overlaying the botnet malware traces on top of
each user trace, and then emulating our detection algorithm to evaluate the
performance of our detector. The two notable results which we discuss further
in this section are: (i) our persistence metric based method can indeed pick out
the C&C destination atoms in the botnet traces with a very low false positive
rate, (ii) the whitelists we construct can significantly boost the detection rates,
and improve detection times, of general anomaly detectors.

5.1 System Properties

As mentioned earlier, for our system to work well, the whitelists should have 2
properties. First, they should be stable, that is, require changes very infrequently

(so that bot C&C will stand out, and so that user annoyance is kept small).
Second, it is nice when they are small as this speeds up the searching activity
(filtering outgoing traffic to whitelist contents). Our whitelists will be stable if
the rate at which new persistent destination atoms are added to the whitelist
is low; and this will be true when much of the user communication is transient.
To examine this for our set of users, we compute all the destination atoms for
a given user and the persistence value for each atom. The cdf of these across
all users is plotted in Figure 2. We see that less than 20% of the destination
atoms have a persistence value greater than 0.2; this validates our intuition that
transient destinations form the bulk of endpoints a host communicates with.
Very few destination atoms exhibit a persistence greater than 60 or 70%. The
observation that a user typically has few persistence destination atoms, confirms
that building a whitelist for this traffic aggregation is appealing because it is
unlikely to be updated often. Recall that our method uses a parameter p∗, that
is used both to construct the whitelists in the training stage, and as an alert
threshold when monitoring for new C&C destination during detection (testing
phase). This plot of user data suggests that selecting a value of p∗ anywhere in
the range of 50 to 80% will result in a small whitelist, that is likely to require
few updates. We select the value of p∗ = 0.6 because it is in the flat portion of
the curve. Note that the number of destination atoms in the whitelist is not very
sensitive to the value of p∗ (as long as it is above roughly 0.5) suggesting that
this parameter is fairly robust in the sense that it need not necessarily be fine
tuned. In figure 3, we plot the histogram of whitelist sizes across all the 157 users.
The whitelists for almost all the hosts contain 60-140 destination atoms, which
is a very manageable size and thus limits any overhead involved in searching
whitelists when filtering. So our user data confirms that whitelists constructed
of persistent destination atoms will have these 2 attractive properties.

Fig. 2. CDF of p(d) across all the atoms
seen in training data

Fig. 3. Distribution of per host whitelist
sizes computed using p∗ = 0.6

5.2 C&C Detection

To assess the ability of our algorithm to identify C&C traffic when it is mixed
in with regular user traffic, we overlaid our bot trace data on top each of our

157 user traces. For each user, we replayed the superposed trace and emulated
our detector. For each user, we repeated this procedure for each of our 12 bot
examples, yielding 1884 tests (157 users times 12 bots). We ran our detector with
simultaneous checking for 5 timescales (as indicated in Section 3). The timescales
used were with measurement window s taking values s = (1, 4, 8, 16, 20, 24), and
the observation window W was always W = 10s, i.e. we used (1,10), (4,40),
etc. In each of these 1884 instances, our detector was able to correctly identify
the C&C traffic. This was validated against our labels (from having isolated
the portion of the bot traffic corresponding to the C&C channel). This success
illustrates the effectiveness of our persistence metric.

In Table 3 we list various properties of the detected botnets. Column 2 in-
dicates the persistence of a destination atom from a particular bot. Column 3
indicates the timescale that triggered the alert, and the 4th column gives the
number of destination atoms that had the properties (persistence and timescale)
listed within a row of this table. For example, we see IRCBot-776 listed twice
(first two rows of this table) because it used one destination atom that had a
persistence of 1 and was detected at a timescale of (10,1), and it had 2 other
destination atoms with a persistence of 0.8 that were detected at a timescale
of (200,20). This example illustrates that a single bot might used multiple time
scales (in terms of how regularly they contact their zombies) for different C&C
servers. Looking down column 3, we see that the smallest timescale (10,1) was
sufficient to detect at least one of the atoms in all instances except in the case of
IRC.Zapchast-11 and Mybot-8926. However, we cannot know ahead of time as
to what timescale is appropriate for a particular botnet; thus it is critical to have
enough timescales in play to cover a wide range of behaviors. For the STORM
bot, we have marked ”> 1” in the last column because there a great many of
them. The success of our method in uncovering the STORM bot C&C traffic
brings up an interesting point: even though our method works best to uncover
botnets that tend to have a high degree of centralization, we are able to detect
the p2p based infrastructure used by STORM. Thus, our method is likely to be
effective at also uncovering non-centralized infrastructures as long as there is a
certain repetitiveness in contacting some of the destination atoms involved (out
of the thousands, in the case of STORM).

The bot IRC.Zapchast-11 presents a compelling illustration on how tracking
for persistence can be effective even when the connection volume is extremely
stealthy. Recall from Table 2 that IRC.Zapchast-11 generates very little traffic
overall - about 1.4 connections per binning interval on average. By all accounts,
this is a minuscule amount of additional traffic, that has no chance to stand
out in traffic volume against the normal traffic of an end-host, and thus will
go undetected by a volume based anomaly detector. However by tracking the
persistence of its associated destination atom, we were able to make the anomaly
visible. This illustrates the utility of persistence, even in the face of extremely
stealthy bots.

Using our two data sets, we can also compute the false positive and detection
rate (1 minus false negatives) tradeoff. We computed a traditional ROC curve,

Botnet Persistence Timescale # dest. atoms

IRCBot-776 1.0 (10,1) 1
IRCBot-776 0.8 (200,20) 2
Aimbot-5 1.0 (10,1) 1
Aimbot-5 1.0 (40,4) 1
Aimbot-5 1.0 (160,16) 1
MyBot-8926 0.6 (160,16) 1
IRC.Zapchast-11 1.0 (40,4) 3
Spybot-248 1.0 (10,1) 2
IRC-Script-50 1.0 (10,1) 7
VB-666 0.7 (10,1) 1
Codbot-14 1.0 (10,1) 1
Gobot.T 1.0 (10,1) 1
Wootbot-247 1.0 (10,1) 3
IRC.Zapchast-11 1.0 (10,1) 6
Aimbot-25 1.0 (10,1) 1
Peed-69 [Storm] 1.0 (10,1) > 1

Table 3. C&C Detection Performance

by sweeping through the full range of values for the cutoff threshold of p∗. The
detection rate is computed as the fraction of the tested botnets, across users, for
which an alarm is raised. It should be clear that the detection rate is indepen-
dent of user traffic (the persistence value of an atom does not depend on other
atoms). The y-axis denotes an average number of false positives that would be
encountered every day. Here, a false positive is simply a destination in the user
traffic (assumed clean) which raised an alarm. The values are averaged across all
users and over the last two weeks of user traffic data. This RoC curve is shown
in figure 4. Earlier we had selected a value for p∗ based upon properties of the
user generated whitelists. This curve indicates that when the bot traffic is added
into the user traffic, then a value of p∗ = 0.6 is indeed the best choice because
it occurs at the knee in this curve. Hence it minimizes the false positives while
maximizing the detection rate.

Figure 5 plots the histogram of false positives encountered by all the users,
over the entire two week period, as determined by p∗ = 0.6. A significant fraction
of the population see few or no alarms in the two week period. A small handful
of users—we speculate these are the very heavy users—see 25-30 alarms over the
entire period. To summarize the distribution, we see an average of 5.3 benign
destination atoms being flagged as suspicious per user in the 2 week period. That
is, the average user will have to dismiss fewer than 1 alarm every other day when
this C&C detection system is in place on the users end-host. Since false positives
are often associated with user annoyance, our method is able to carry out the
detection with an extremely low user annoyance factor. All of our traces being
from enterprise users, who are generally well behaved, we cannot really generalize
this to other users on the Internet. In fact, it is very possible that applications
such as BitTorrent, which connect to a large number of hosts in a short time and
this might result in a lot of false positives. Since we do not look inside packet
payloads, there is little else that distinguishes a BitTorrent destination from a
C&C destination. To get around this, one solution would be possibly whitelist
applications themselves (which would legitimize all the connections they make).

Since applications like BitTorrent are the exception rather than the norm, we
believe that this extended whitelisting will be quite effective.

7 1 2 3 4 5 6

0.75

0.8

0.85

0.9

0.95

1

False Positives /day

D
et

ec
ti

on
 R

at
e

0.10.2

1.0

0.9

0.8

0.7

0.6 0.5

0.4

0.3

Fig. 4. RoC curve

Fig. 5. False positives across users (p∗ =
0.6)

5.3 Detecting Botnet Attack Traffic

In the previous discussion, we focused on detecting C&C channels. Here, we try
to understand how our method can boost the detection rates of more traditional
traffic feature (or volume) based anomaly detectors. Note that the whitelists
constructed in the training phase can be considered the set of ”known good
destination” for a particular host. Thus, all traffic going to these destinations
must be defacto ”anomaly free” and can be filtered out of the traffic stream being
passed to a conventional anomaly detector.

The traditional anomaly detectors operate by tracking a time series of some
significant traffic feature, e.g., number of outgoing connections in an interval,
and raising an alarm when this crosses a threshold. The threshold is ideally
determined based on the tail of the feature’s distribution empirically derived from
clean traffic. To distinguish the alarms in question from those triggered by C&C
destinations (as discussed previously), we denote them ”burst alarms”. Thus, the
persistence metric results in C&C alarms, and the anomaly detectors generate
burst alarms. In the experimental evaluations we describe in the following, the
(aggregate, without C&C filtered out) botnet traffic was superimposed on the
traffic of each end-host. We point out that the botnet traces are generally shorter
than the user traces; to ensure that the trace overlay extends across the user
trace, we replicated the botnet trace as often as necessary to fill up the entire
testing window of 2 weeks.

There are a number of possible traffic features one can track, and a larger
universe of anomaly detectors that can be defined on them. In the current in-
stance, we use a simple connection count detector with a 99.9%-ile threshold.
That is, the traffic feature of interest is the number of outgoing connections in 1
minute intervals, and the threshold is computed as the 99.9 percentile value of
this distribution empirically computed from the training data. Specifically, we

compare the detection results across two traffic streams, one where the outgoing
traffic is filtered by the whitelist and the other where it is not. By ”filter” we
simply mean that all traffic to destinations on the whitelist is ignored and not
passed along to the anomaly detector. Note that the same definitional threshold
is used, i.e., the 99.9%-ile, but the values are different since the time-series are
different (one of them has whitelisted destinations filtered out).

Fig. 6. Improvement in detection rate after filtering

Figure 6 plots the detection rate over the entire user population. The x-axis
enumerates the different botnets from Table 2 and the y-axis is the fraction of
users that generated a ”burst” alarm for the particular botnet. The two bars
correspond to the non-filtered and filtered traffic streams, the latter being our
enhancement. In the figure, we see a detection rate of 1.0 for some of the bot-
nets, indicating every user generated an alarm when fed the tainted trace that
included the traffic of (Gobot.T, AimBot-5, SpyBot-50, storm/Peed-69). In these
cases, the filtering provides no added benefit. This is because the traffic volumes
associated with these instances so egregious and beyond the range of ”normal”
traffic that any reasonable detector would flag this. However, there are lots of
other instances in the figure where detection with the filtered traffic is signifi-
cantly better. For instance, in the case of VB-666, which is the most dramatic
result, we see a five fold improvement in detection when the traffic is filtered.
Another example, with Aimbot-25, only 27% of the users generate an alarm in
the general case, but this number grows to 85% when the traffic is filtered— a
dramatic improvement. The intuition for why the filtering helps with the detec-
tion rate is thus: when the traffic to known good destinations is filtered out and
the threshold recomputed, the new threshold tracks the residual traffic better
and offers a small “gap” or range that is available for the botnet traffic. That is,

as long as the volume of botnet traffic stays inside this gap it will fall under the
threshold and be undetected. However this gap is small enough that even a small
volume tends to go beyond the usable range. Clearly, the benefit of filtering the
traffic is apparent when the botnet traffic volumes are low to moderate. When
the volume is large, detection is easily carried out by any reasonably anomaly de-
tector (even without filtering). Thus, filtering traffic through the whitelist helps
to uncover ”stealthier” traffic that is hidden inside. We carried out the same
comparison for other detectors and found the results to be consistent with what
we describe here. We omit details from these experiments for a lack of space.

Importantly, notice in the figure that for some of the botnet instances, the
detection rate does not reach 100%, even with the filtering. This is possibly
because of the variability in traffic across users: presumably, there is a sufficient
gap between the traffic and the threshold for some users and the additional
botnet traffic is able to squeeze into this gap. However, even when the volume
based methods fail to carry out the detection to a complete degree, C&C alarms
are generated for every botnet trace that we have collected and tested against (as
shown in the previous discussion). Thus, even when the attack traffic is small
enough to go undetected by the volume detectors, the botnets are still flagged by
tracking persistence. This goes to underscore how critical it is to track temporal
measures, rather than just volume, when dealing with botnets.

Thus, we demonstrate that by first learning whitelists of ”good” destination
atoms, and subsequently filtering out the traffic contributions of these desti-
nation atoms, we can dramatically improve the detection of botnet associated
traffic. We enable more end-hosts to reliably generate alarms for this traffic, and
to do so earlier.

6 Conclusions

In this paper, we introduced the notion of ”persistence” as a temporal mea-
sure of regularity in connection to ”destination atoms”, which are destination
aggregates. We then described a method that builds whitelists of known good
destination atoms in order to isolate persistent destinations, which are likely
C&C channels, in the traffic. The notion of persistence, a key contribution of
this work, turns out to be critical in detecting the covert channel communication
of botnets. Moreover, being a very coarse measure, persistence does not require
any protocol semantics or to look inside payloads to detect the malware.

Using a large corpus of (clean) user traffic as well as a collection of botnet
traces, we showed that our method successfully identified C&C destinations in
each and every botnet instance experimented with, even the ones that make
very few connections. We demonstrated that this detection incurs low overhead
and also has a low user annoyance factor. Even though our method is focused
on uncovering C&C communication with botnets that have a centralized infras-
tructure, we are able to uncover even those that are not, as long as there is a
certain regularity (even over short time scales) in communicating with the C&C
destinations.

In the future, a key task that we would like to undertake is to run our method
on a much larger sample of botnet traffic than we were able to collect on our
own. Unfortunately, as we learned in the course of this work, such an effort
requires a significant amount of resources, and expertise. This goes to show that
a much larger community effort is needed to collect, share and annotate traces
to support research efforts in designing botnet mitigation solutions.

References

1. de Oliveira, K.C.: Botconomics mastering the underground economy of botnets.
FIRST technical colloquium

2. McAfee: McAfee avert labs threat predictions for 2009. http://www.mcafee.com/
us/local content/reports/2009 threat predictions report.pdf

3. : Conficker working group. http://confickerworkinggroup.org/
4. Cooke, E., Jahanian, F., McPherson, D.: The zombie roundup: Understanding,

detecting and disrupting botnets. (SRUTI) Workshop (2005)
5. Bhatkar, S., Chaturvedi, A., Sekar, R.: Dataflow anomaly detection. IEEE Sym-

posium on Security and Privacy (May 2006)
6. Gao, D., Reiter, M.K., Song, D.: On gray-box program tracking for anomaly

detection. In USENIX Security Symposium (August 2004)
7. Binkley, J., Singh, S.: An algorithm for anomaly-based botnet detection. SRUTI

Workshop (2006)
8. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting

Malware Infection Through IDS-Driven Dialog Correlation. 16th USENIX Security
Symposium (Security’07) (2007)

9. Gu, G., Zhang, J., Lee, W.: Botsniffer: Detecting botnet command and control
channels in network traffic. In: Proceedings of the 15th Annual Network and
Distributed System Security Symposium (NDSS’08). (Feb 2008)

10. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: Clustering analysis of network
traffic for protocol- and structure-independent botnet detection. In: 17th USENIX
Security Symposium (Security’08). (2008)

11. Kreibich, C., Kanich, C., Levchenko, K., Enright, B., Voelker, G., Paxson, V.,
Savage, S.: On the Spam Campaign Trail. First USENIX Workshop on Large-
Scale Exploits and Emergent Threats (LEET08) (2008)

12. Holz, T., Gorecki, C., Rieck, K., Freiling, F.: Measuring and Detecting Fast-Flux
Service Networks. In: NDSS. (2008)

13. Jung, J., Paxson, V., Berger, A., Balakrishnan, H.: Fast portscan detection using
sequential hypothesis testing. Security and Privacy, 2004. Proceedings. 2004 IEEE
Symposium on (2004) 211–225

14. Sekar, V., Xie, Y., Reiter, M.K., Zhang, H.: Is host-based anomaly detection
+ temporal correlation = worm causality? Technical Report CMU-CS-07-112,
Carnegie Mellon University (March 2007)

15. McDaniel, P.D., Sen, S., Spatscheck, O., van der Merwe, J.E., Aiello, W.,
Kalmanek, C.R.: Enterprise security: A community of interest based approach.
In: NDSS. (2006)

16. Project, G.H.: Know your enemy: Fast-flux service networks.
http://www.honeynet.org/papers/ff/

17. : Clamav. http://www.clamav.net
18. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. Com-

puter Networks (1999)

