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This paper deals with the design of on board networks in satellites (also called Traveling wave tube Amplifiers (TWTA)).
These networks should connect signals arriving on some ports of the satellite to amplifiers, even in case of failures of
some amplifiers. They are made of links and expensive switches each with 4 links. So, the aim is to design networks
having as few switches as possible and satisfying the following property: there exist p edge-disjoint paths from the p
signals arriving on p+λ ports (inputs) to any set of p amplifiers (outputs) chosen from the p+k total number of outputs.
We call such networksvalid (p,λ,k)-networksand want to determine the minimum number of switchesN (p,λ,k) of
such networks. By symmetry we supposeλ ≤ k and we noten := p+k. We give tight results for small values ofk and
asymptotic results whenk = O(logn) which are tight whenk = Θ(λ) and whenλ = 0.

Keywords: key words : fault tolerant networks, switching networks, routing, TWTA redundancy, expanders, connec-
tivity, disjoint paths.

1 Introduction
Problem and Motivation. The problem we consider here was asked by Alcatel Space Industry. Signals
incoming in a telecommunication satellite have to be routedthrough an on-board network to amplifiers.
The satellites under consideration are for example used forTV and video transmission (like the Eutelsat or
Astra series) as well as for private applications. This network consists of switches with 4 links and which
can realize the connections displayed in figure 1A. The signals enter the network through ports and exit
through amplifiers. In the following ports and amplifiers will be refered as inputs and outputs. They are
respectively represented in figures by arrows (→) and boxes (2) as shown in Figure 1B. Each input and
output are connected to one of the switches of the network.

The difficulties to design such networks come from two symmetric facts. On one hand the amplifiers
may fail during satellite lifetime and cannot be repaired. So more amplifiers are needed than the number
of signals which have to be routed. On the other hand as the satellite is rotating on itself, all the inputs are
not well oriented to capt the incoming signals. So, at each moment, a lot of inputs are unused. We want to
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A: A switch can use 4 different states. B: A valid (3,1,1)-network.

Fig. 1: Introduction to networks.
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be able to route the incoming signals from the used inputs to valid amplifiers, that is to find disjoint paths
between the used inputs and valid outputs in the interconnection network. All the amplifiers are identical
so a signal can be routed to any of them. If a network is able to routep signals to amplifiers in presence
of λ useless inputs and ofk faulty amplifiers, we will say that this network is a valid(p,λ,k)-fault tolerant
network. An example of a(3,1,1)-fault tolerant network is given in Figure 1B. As a matter of fact all the
possible configurations for the unused input and the non valid output, the three used inputs can be connected
to the valid outputs. Other examples are presented in Figure2. Realizing such a network is easy, but it is
difficult to optimise it. To decrease launch costs, it is crucial to minimise the network physical weight, i.e.
for us, to minimize the number of switches. As launch costs are dramatically high, it is worth saving even
one switch. So our aim will be to construst valid(p,λ,k)-networks with the minimum number of switches
denoted byN (p,λ,k). On one side we consider asymptotic cases. The networks are large in the sense that
n andk go to infinity. For symmetry reasons, we can assumek ≥ λ. We give results fork = O(logn). On
the other side we have also studied exact values for smallk.

Related Work. The problem in which all the inputs are used, that isλ = 0, has been introduced in
[BDD02]. In [BPT] a general theory is introduced forλ = 0 and several results are obtained for small
values ofk. For example it is proven thatN (p,0,4) = ⌈5p

4 ⌉. In [BDH+03] and [DHMP05] the case of
switches with 2k > 4 links is considered forλ = 0. In [BHT06] the authors consider a variant of (p,0,k)-
networks where some signals are priorities and should be sent to amplifiers offering the best quality of
service. Finally in [BD02] the authors study the case were all the amplifiers are different. (In this work
we consider that all the amplifiers are identical so we won’t have to care how the signals go through the
switches (indeed if we are in a forbidden state we can exchange the exit of the signals, see [BDD02])).
More details could be found in extended versions of this paper.

2 Formalization
Notations. Given a functionf , we definef (A) := ∑a∈A f (a) for any finite setA. For a subsetW of vertices
of a graphG = (V,E), let us denoteδ(W) the number of edges connecting W andV\W.
(p,λ,k)−networks and valid (p,λ,k)−networks. A (p,λ,k)−networkis a tripleN = {(V,E), i,o} where
G = (V,E) is a graph andi,o are integral functions defined on V called input and output functions, such
that for anyv∈V, i(v)+o(v)+deg(v) = 4. The total number of inputs isi(V) = Σv∈V i(v) = p+λ, and the
total number of outputs iso(V) = Σv∈Vo(v) = p+ k. We noten := p+ k. A non-faulty output functionis
a functiono′ defined onV such thato′(v) ≤ o(v) for anyv∈V ando′(V) = p. A used input functionis a
functioni′ defined onV such thati′(v) ≤ i(v) for anyv∈V andi′(V) = p. A (p,λ,k)-network is saidvalid
if for any faulty output functiono′ and any used input functioni′, there arep edge-disjoint paths inG such
that each vertexv∈V is the initial vertex ofi′(v) paths and the terminal vertex ofo′(v) paths.
Design Problems. Let N (p,λ,k) denotes the minimum number of switches of a valid(p,λ,k)-network.
TheDesign Problemconsists in determiningN (p,λ,k) and in constructing a minimum(p,λ,k)-network,
or at least a valid(p,λ,k)-network with a number of vertices close to the optimal value. We introduce a
second problem. We also consider only networks with a maximum number,p+λ, of switches with an input
and an output in one to one correspondance on them and withk−λ switches with only one output. To find
minimum valid network like these is what we call theSimplified Design Problem.Networks of this kind are
especially good for practical applications, as they simplify the routing process, minimize path lengths and
lower interferences between signals.
Excess, Validity and Cut-criterion. We show that, to verify if a network is valid, instead of solving a
flow/supply problem for each possible configuration of output failures and of used inputs, it is sufficient to
look at an invariant measure of subsets of the network, theexcess, as expressed in the following proposition.

Proposition 1 (Cut Criterion) A (p,λ,k)−network isvalid if and only if, for any subset of vertices W⊂V
theexcess ofW, defined by,

ε(W) := δ(W)+o(W)−min(k,o(W))−min(i(W), p),

satisfiesε(W) ≥ 0.



Design of Minimal Fault Tolerant Networks

Fig. 2: A valid (12,4,4)-network and a valid (18,6,6)-network.

The intuition is that the signals arriving inW (in number at most min(i(W), p)) should be routed either to
the valid outputs ofW (in number at leasto(W)−min(k,o(W))) or to the links going outside (in number
δ(W)). The omitted formal proof reduces to a supply/demand flow problem.

3 Results
Recall thatλ ≤ k is assumed. We presentmethodologiesto find and provelower boundsfor the minimal
number of switches of valid networks,N (p,λ,k), and to findconstructionsclose to minimal(p,λ,k)−net-
works. To prove lower bounds we use thecut criterion (Proposition 1) to exhibit forbidden patterns for
small subgraphs, leading to linear equations linking different kinds of switches. To use these informations,
we quasi-partition the graph into small connected components of similar size which doesn’t overlap too
much. This gives bounds for the whole network. For upper bounds, the idea is first to findrobust networks
and then to make a smart choice of the location of inputs and outputs. The last step is to prove the validity
using the cut criterion. We show that robust networks can be obtained using known graphs with good
expansion and good girth as the Ramanujan graphs. We study here networks for specific values ofk and
λ and large networks, wheren andk go to infinity. Using the introduced methodologies, we provelinear
boundsfor these(p,λ,k)−networks. For small networks, we have obtained the following theorems.

Theorem 1 N (p,2,1) =N (p,1,2) =N (p,2,2) = p+2

Theorem 2 For k∈ {3,4} andλ ≥ 1, we have

N (p,λ,k) ≥ n+
n
4
−c′′4 N (p,λ,k) ≤ n+

n
4

+c′4−c,

with c′4 = ⌈n mod 4
4 ⌉, c = ⌊ k−λ

2 ⌋ and c′′4 = k−λ
2 + k−λ

8 . Remark that the difference between the bounds is at
most1.

Theorem 3 For k∈ {5,6} andλ ≥ 1, we have

N ′(p,λ,k) ≥ n+
n
2
−c′′6 N (p,λ,k) ≤ n+

n
2

+c′6−c

with c′6 = 3⌈n mod 6
6 ⌉, c= ⌊ k−λ

2 ⌋ and c′′6 = k−λ
2 + k−λ

4 . Remark that the difference between the bounds is at
most4

Examples of(p,4,4) and(p,6,6)-networks are given in Figure 2.
For large networks,different casesappear. We show that the nature of the problem differs with the order

of k andλ. We distinguish 3 cases and give lower bounds (LB) for them: λ = 0 (LB = (1− ck)(n+ n
2)),

λ = Θ(k) (LB = (1− ck)(n+ 2
3n)) andλ = O(1) (LB = (1− ck)(n+ n

2)), whereck tends to zero whenk
tends to infinity. Fork≤ clogn (wherec is a constant depending on the expansion factors of regular graphs),
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Cases (k≤ clogn) Lower Bound Upper Bound

λ = 0 (1−ck)(n+ 1
2n) n+ 1

2n
Simplified Case (1−ck) 2n 2n
General Caseλ = θ(k) (1−ck)(n+ 2

3n) n+ 3
4n

General Case (1−ck)(n+ 1
2n) n+ 3

4n

Fig. 3: Summary (n = p+k andck tends to 0, whenk goes to infinity).

we give a construction (and so an upper bound) withn+ 3
4n switches valid for any lambda and a specific

construction withn+ n
2 switches forλ = 0. In the last case (λ = O(1)), we succeed to tighten the bounds

by introducing some restrictions on the switches that may beused. One of these restriction is theSimplified
Design Problem. We solve it provingLB = (1− ck) 2n and giving a construction with 2n switches. The
intuition is the following. An(n, r,c)-E-expander is a finiter-regular graphG = (V,E) such that, for any
setA of vertices ofG with |A| ≤ |V|/2, we haveδ(A,V \A) ≥ c|A|. Take a(n,4,c = 1/4)−E-expander,
G = (V,E), of girth g, g ≥ 2

3 logn (explicit constructions of such graphs are given in [Mor94]). As G is
4−regular, there exist a familyF of vertex disjoint cycles covering all vertices ofG. We first addn new
vertices by splitting each edge ofF into two edges. On each new vertex, we put an output and input.
We now have a(p,k,k)−network,R , with 2n switches. The proof ends by proving the validity of this
network fork ≤ 1

6 logn. All these results are summarized in Figure 3. We also find a construction of valid
(p,λ,k)−networks with 3n switches fork, no more of the order of logn, but linear. The proof is based on
the study of the expansion of small sets of graphs.

4 Conclusion
It remains a lot of work to do on this general problem for example on small values for specific demands of
Alcatel but also we hope to find a tight asymptotic bound at least whenλ = O(1) andk = O(logn). We
already have some results on networks without switches withtwo outputs or inputs as well as for networks
with as many as possible (iep+ λ) switches with one input and one output andk− λ switches with one
output (extension of the simplified case). For values ofλ andk of O(logn) it remains to tighten the bounds.
It will be also interesting to study the case whereλ = Θ(n) andk = Θ(n). We have yet only partial results.
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