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Agenda

e Part I: Introduction, Motivation & Evaluation - 20 minutes
o Motivation, Definitions & Properties
o Evaluation Protocols & Metrics
e Part Il: Explanation in Al (not only Machine Learning!) - 40 minutes

o From Machine Learning to Knowledge Representation and Reasoning and Beyond

e Part lll: On The Role of Knowledge Graphs in Explainable Machine Learning - 40 minutes
e PartIV: XAl Tools, Coding and Engineering Practices - 40 minutes

e Part V: Applications, Lessons Learnt and Research Challenges - 40 minutes

o Explaining (1) object detection, (2) obstacle detection for autonomous trains, (3) flight performance, (4)
flight delay prediction, (5) risk management, (6) abnormal expenses, (7) credit decisions, (8) medical
conditions + 8 more use cases in industry 4






Disclaimer

. As MANY interpretations as research areas

(check out work in Machine Learning vs Reasoning community)

Not an exhaustive survey! Focus is on some promising approaches
Massive body of literature (growing in time)
Multi-disciplinary (Al — all areas, HCI, social sciences)

Many domain-specific works hard to uncover

Many papers do not include the keywords explainability/interpretability!



Al Adoption: Requirements
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Explainability Fairness Privacy Transparency

SR 11-7: Guidance on Model Risk Management

BOARD OF GOVERNORS
OF THE FEDERAL RESERVE SYSTEM
WASHINGTON, D.C. 20551

What's driving Stress Testing and Model Risk Management efforts?

Regulatory efforts

SR 11-7 says “Banks benefit from conducting model stress
testing to check performance over a wide range of inputs and
parameter values, including extreme values, to verify that the
model is robust”

In fact, SR14-03 explicitly calls for all models used for Dodd-
Frank Act Company-Run Stress Tests must fall under the
purview of Model Risk Management.

In addition SR12-07 calls for incorporating validation or other
type of independent review of the stress testing framework to
ensure the integrity of stress testing processes and results.

)

w

~

Article 22. Automated individual decision making, including profiling

. The data subject shall have the right not to be subject to a decision based solely on automated processing, including profiling,

which produces legal effects concerning him or her or similarly significantly affects him or her.

. Paragraph 1 shall not apply if the decision:

(a) is necessary for entering into, or performance of, a contract between the data subject and a data controller;

(b) is authorised by Union or Member State law to which the controller is subject and which also lays down suitable measures
to safeguard the data subject’s rights and freedoms and legitimate interests; or

(c) is based on the data subject’s explicit consent.

. In the cases referred to in points (a) and (c) of p ph 2, the data ller shall impl suitable measures to safeguard

the data subject’s rights and freedoms and legitimate interests, at least the right to obtain human intervention on the part of the
controller, to express his or her point of view and to contest the decision.

. Decisions referred to in paragraph 2 shall not be based on special categories of personal data referred to in Article 9(1), unless

point (a) or (g) of Article 9(2) apply and suitable measures to safeguard the data subject’s rights and freedoms and legitimate
interests are in place.

CALIFORNIA
CONSUMER

PRIVACY
ACT OF 2018

8

Credit: Lecue et al., Tutorial on XAl. AAAI 2020. https://xaitutorial2020.github.io/



Growing Global Al Regulation

GDPR: Article 22 empowers individuals with the right to demand an explanation of how an
automated system made a decision that affects them.

Algorithmic Accountability Act 2019: Requires companies to provide an assessment of the risks posed by
the automated decision system to the privacy or security and the risks that contribute to inaccurate, unfair,
biased, or discriminatory decisions impacting consumers

California Consumer Privacy Act: Requires companies to rethink their approach to capturing,
storing, and sharing personal data to align with the new requirements by January 1, 2020.

Washington Bill 1655: Establishes guidelines for the use of automated decision systems to
protect consumers, improve transparency, and create more market predictability.

Massachusetts Bill H.2701: Establishes a commission on automated decision-making,
transparency, fairness, and individual rights.

lllinois House Bill 3415: States predictive data analytics determining creditworthiness or hiring
decisions may not include information that correlates with the applicant race or zip code.

Credit: Lecue et al., Tutorial on XAl. AAAI 2020. https://xaitutorial2020.github.io/
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Introduction and Motivation
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Explanation - From a Business Perspective

11



Business to Customer Al
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. but not only Critical Systems (1)

Whena Computer
Program Keeps You in Jail

By Rutecea Woxler

COMPAS recidivism black bias

' DYLAN FUGETT BERNARD PARKER
' Prior Offense Prior Offense

1attempted burglary 1resisting arrest 3
without violence -

Subsequent Offenses

3 drug possessions Subsequent Offenses
None

LOW RISK 3 HGHRISK 10

Fugett was rated low risk after being arrested with cocaine and
marijuana. He was arrested three times on drug charges after that.




... but not only Critical Systems (2)
Finance: = FICO

CPMMUNITY

e Credit scoring, loan approval

¢ Insurance quotes

IR E

1able Machine Learning Challe

£ e

community.fico.com/s/explainable-machine-learning-challenge
The Big Read Artificial intelligence

Insurance: Robots learn the
business of covering risk

Artificial intelligence could revolutionise the industry but may also allow
clients to calculate if they need protection

’ f in N Save

Oliver Ralph MAY 16, 2017 D 24

https://www.ft.com/content/e07cee0c-3949-11e7-821a-6027b8a20f23



... but not only Critical Systems (3)

Healthcare

e Applying ML methods in medical care
is problematic.

e Al as 3"%party actor in physician-
patient relationship

* Responsibility, confidentiality?

e Learning must be done with available
data.

e Must validate models before use.

;
Stanford

MEDICINE | News Center
(emoil B w Tweet

Researchers say use of artificial intelligence in medicine raises
ethical questions

In a perspective piece, Stanford researchers discuss the ethical implications of using
machine-learning tools in making health care decisions for patients.

Patricia Hannon ,https://med.stanford.edu/news/all-news/2018/03/researchers-say-use-of-ai-in-medicine-
raises-ethical-questions.html

Intelligible Models for HealthCare: Predicting Pneumonia
Risk and Hospital 30-day Readmission

Rich Caruana Yin Lou Johannes Gehrke
Microsoft Research LinkedIn Corporation . Microsoft
rcaruana@microsoft.com ylou@linkedin.com johannes@microsoft.com
Paul Koch Marc Sturm Noémie Elhadad
Microsoft Research NewYork-Presbyterian Hospital Columbia University
paulkoch@microsoft.com mas9161@nyp.org  noemie.elhadad@columbia.edu

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, Noemie Elhadad: Intelligible Models
for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission. KDD 2015: 1721-1730



... and even More

Gender Darker Darker Lighter Lighter Largest

Classifier Male Female Male Female Gap

=. Microsoft 94.0% 79.2% 100% 98.3% 20.8%
LI | L |

Y FacE™ 99.3% 65.5% 99.2% 94.0% 33.8%
e [ G ee—— I

88.0% 65.3% 99.7% 92.9% 34.4%
I I

Joy Buolamwini, Timnit Gebru: Gender Shades: Intersectional Accuracy
Disparities in Commercial Gender Classification. FAT 2018: 77-91

Colin, but at home. @colinmadland - Sep 18, 2020
any guesses?

Q 60 19K QO 7.2 &

Colin, but at home. @colinmadland - Sep 18, 2020

Q 29 11 659 Q sk &

Colin, but at home. @colinmadland - Sep 18, 2020

Turns out @zoom_us has a crappy face-detection algorithm that
erases black faces...and determines that a nice pale globe in the
background must be a better face than what should be obvious.

QO 98 1 43K Q 211K &

Colin, but at home. @colinmadland - Sep 18, 2020
Images were taken and shared with permission.

Q4 1 174 Q ek o

Colin, but at home. @colinmadland - Sep 18, 2020

Geez...any guesses why @Twitter defaulted to show only the right

side of the picture on mobile?

vy
o)

O 83 0 2K Q 19.2k &

https://techcrunch.com/2020/10/0
2/twitter-may-let-users-choose-
how-to-crop-image-previews-after-
bias-scrutiny/

"APPLE CARD [

Accused of using
sexist algorithms

https://www.cbsnews.com/news/apple-credit-card-
goldman-sachs-disputes-claims-that-apple-card-is-sexist/

Result

Original
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B
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https://www.theverge.com/21298762/face-depixelizer-
ai-machine-learning-tool-pulse-stylegan-obama-bias



Explanation - In a Nutshell
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XAl Definitions - Explanation vs. Interpretation

: Oxtford Dictionary of
explanation | skspla'nerf(e)n | English

noun

a statement or account that makes something clear: the birth rate is central to any explanation of
population trends.

interpret | n'terprit |

verb (interprets, interpreting, interpreted) [with object]

1 explain the meaning of (information or actions): the evidence is difficult to interpret.



Al as a Black-box: Source of Confusion and Doubt

. Can I trust our Al
' decisions?

Why | am getting this - How do  answer this
tainnd :
decision? . customer complaint?
> < < Blaceh .. How do I monitor and
ack-box : ;

< Poor Decision [N  debug this model?  :

l\ ..........................................
How can | get a better 2. Is this the best model

decision? . that can be built?

. Are these Al system
" decisions fair?

Credit: Lecue et al., Tutorial on XAl. AAAI 2020. https://xaitutorial2020.github.io/



XAl

Black Box Al Confusion with Today’s Al Black
.. Box
Decision,
Black-Box Al Recommendation .
Al product > x‘ e Why did you do that?

e Why did you not do that?
e When do you succeed or fail?
e How do | correct an error?

Clear & Transparent Predictions

____________________________________________________

Exolainabl Explainabl Decision e | understand why
xplainable xplainable R
Al Al Product > x‘ e | understand why not |
Explanation e | know why you succeed or fail

e | understand, so | trust you

Credit: Lecue et al., Tutorial on XAl. AAAI 2020. https://xaitutorial2020.github.io/



Explainability by Design for Al products

fmmm—————— Model Debugging
I Feedback Loop : Model Visualization
Sommmmm - - Q‘a Train J
Model Diagnostics ‘ ,
Root Cause Analytics 7
L *‘{@ Debug - /’
X ( Model Evaluation
N

Performance monitoring I Moni
Fairness monitoring "' onitor

oy
| I |
\p/

! } Model Launch Signoff
‘\‘ O Deploy Model Release Mgmt }
_ { L ABTest
[ Model Comparison ¥
Cohort Analysis
y J @ Predict

Explamable Decisions
LAP' Support

Comphance Testing

Credit: Lecue et al., Tutorial on XAl. AAAI 2020. https://xaitutorial2020.github.io/



How to Explain”? Accuracy vs. Explainability

Learning

Challenges:
* Supervised
* Unsupervised learning

Approach:
* Representation Learning
* Stochastic selection

Output:
e Correlation
* No causation

Accuracy

Explainability

Neural Net

GAN CNN

Ensemble
RNN Method

XGB
Random

Decision
Forest

Tree

Statistical
Model

raphical Model

Linear
Model

J\

Interpretability

Non-Linear
functions

Polynomial
functions

Quasi-Linear
functions




Example of an End-to-End XAl System

0 H: Why? H: (Hmm. Seems like it might H: What happens if the
/ C: See below: be just recognizing anemone background
- texture!) Which training anemones are f
examples are most influential removed? E.g., Q
to the prediction?
1 C: These ones:
ML Classifier C: I still predict
‘ Green regions argue FISH. because
‘ - for FISH, while RED of these green
C: I predict FISH pushes towards DOG. superpixels:

There’s more green.

= Humans may have follow-up questions

= Human — Machine interactions are required

= Explanations cannot answer all users’ concerns in one shot
= Many different stakeholders
= Many different objectives

Many different expertise Weld, D., and Gagan Bansal. "The challenge of crafting intelligible intelligence." Communications of ACM (2018).



On the Role of Data in XAl

Table of baby-name data
(baby-2010.csv)

Field
name rank gender year —— ames
Jacob 1 bo 2010

Y ™~ One row

Isabella 1 girl 2010 (4 fields)
Ethan 2 boy 2010
Sophia 2 girl 2010
Michael 3 boy 2010

L L] L)

. H H

' 2000 rows ' '

. all told . '

Tabular



Evaluation (1) - Perturbation-based Approaches

Perturb top-k features by attribution and observe change in prediction
e Higher the change, better the method
e Perturbation may amount to replacing the feature with a random value

e Samek et al. formalize this using a metric: Area over perturbation curve
o Plot the prediction for input with top-k features perturbed as a function of k

o Take the area over this curve

A

Area over
perturbation
curve

Prediction for
perturbed inputs

Drop in prediction -
when top 40 features
are perturbed

10 20 30 40 50 60 Numberof
perturbed features

KDD 2019 Tutorial on Explainable Al in Industry - https://sites.google.com/view/kdd19-explainable-ai-tutorial



https://sites.google.com/view/kdd19-explainable-ai-tutorial

Evaluation (2) — From size-based to Human (Role)-based Evaluation

Evaluation criteria for Explanations [Miller, 2017]
* Truth & probability

+ Usefulness, relevance

» Coherence with prior belief

* Generalization

Cognitive chunks = basic explanation units (for different explanation needs)
* Which basic units for explanations?

* How many?

* How to compose them?

* Uncertainty & end users?

Human Factors in Explanation
* Humans prefer explanations that are both simple and highly probable
* Humans appeal to causal structure and counterfactual

Finale Doshi-Velez, Been Kim: A Roadmap for a Rigorous Science
of Interpretability. CORR abs/1702.08608 (2017)

Forough Poursabzi-Sangdeh, Daniel G. Goldstein, Jake M. Hofman,
Jennifer Wortman Vaughan, Hanna M. Wallach: Manipulating and
Measuring Model Interpretability. CoRR abs/1802.07810 (2018) 18]

Frank Keil. Explanation and understanding.Annu. Rev.
Psychol., 2006.

Tania Lombrozo. The structure and function of
explanations.Trends in cognitive sciences, 10(10):464—
470, 2006.

» Larger explanations might push humans into a more careful, rational thinking mode. | IsaacLage, Emily Chen, Jeffrey He, Menaka Narayanan,

A/B Testing for Interpretable ML

Been Kim, Sam Gershman, Finale Doshi-Velez: An
Evaluation of the Human-Interpretability of Explanation.
CoRR abs/1902.00006 (2019)

Daniel Kahneman.Thinking, fast and slow. Macmillan, 2011.

» Performance on a classification task was better when using examples | B.Kim, C. Rudin, and J.A. Shah. The Bayesian Case Model: A generative
as representation than when using non-example-based representation approach for case-based reasoning and prototype classification. In NIPS, 2014.
» Subjects are faster and more accurate at describing local decision Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. Interpretable

boundaries based on decision sets rather than rule lists

decision sets: A jointframework for description and prediction.
InProceedings of the 22nd ACM SIGKDD, 2016.



Evaluation (3) — Example-based Explanation is Better Designed for Humans

Task | Image Recognition | Sentiment Analysis | Key Word Detection | Heartbeat Classification

Domain | Tmage | Tt | Ao | Sensory data (BCG) Explanation Method | Image Study | Text Study | Audio Study | Sensor Study
Dataset |  Cifar10 | Sentimentl40 | Speech Commands | MIT-BIH Arrhythmia LIME | 477+45% | 70.4 +£3.6% | - | -
Classes | 10 \ 2 \ 10 \ 5 Anchor | 389+43% | 258 +3.5% | - | -

Table 2: An overview of the application tasks and datasets used in our study SHAP | 33.7+4.3% ‘ 599 4+ 3.8% | 34.7 + 4.8% | 32.8 +33%

Grad-CAM++  Saliency Maps LIME Anchor SHAP Explanation-by-Example Saliency Maps | 394 +4.3% ‘ - | 46.1 = 5.1% | 40.4 +3.5%

73. I '\,’ ﬁ |H ", S Grad-CAM++ | 50.8 +4.5% | - | 48.1£53% | 42.0+3.5%

iﬁ : . I E as h N el ExMatchina | 89.6 £2.6% | 43.7+£3.9% | 70.9 +4.7% | 84.8+2.5%

Anchor SHAP Explanation-by-Example
hgher @ lower

! ’ U2 1 joggin'... with my mom! positive

Anchor(s): with 028 2 shopping with my bestst! positive.

- W cookng | © dleeclubparty positive

Grad-CAM++ SHAP

J : -

normal heartbeat?

Saliency Maps

1

|
-

Explanation-by-Example

EITT

]

f
|~
(i

rormal heartbeat

B
I~
normal heartbeat normal heartbeat

Figure 2: Depiction of surveyed explanation methods for image, text, and ECG input.

A Given these reference images... ...which image is strongly activating? B Synthetic images are helpful
1.0, Natural even more
22 |
E = 0.9 4
=3 -
28 £
S 0.8
f=
s S
§ 071
=g g
=] o
£S 0.6
=g

Natural

Synthetic  Natural

Examples are (most of the time) better

Table 3: Results of the Mechanical Turk study evaluating user preference for DNN explanation
methods across image, text, audio, and sensory input domains. Survey questions individually
compare two methods at a time, with each explanation compared to all other available methods
equally. Results indicate the rate by which users selected a particular method when it is an available
explanation, with 95% bootstrap confidence intervals.

Jeya Vikranth Jeyakumar, Joseph Noor, Yu-Hsi Cheng, Luis Garcia, Mani B. Srivastava:How Can | Explain
This to You? An Empirical Study of Deep Neural Network Explanation Methods. NeurlPS 2020

A = 0003 B Synthetic Natural None C wus{ r—p=o0 |
p = 0.003 07 = 0003
% 15.0 o %
1 S os — p=0002
= o5 8 125 |
S 0. @,
g 08 4 o
g E o4 £ 100 4
o o L
S o6 - -
< - -Chance 203 S 75
S  FEEE- c 0. =4
£ o4 2 3
s o2 3 50
a 8 -4
2 8
& 02 nQ_ 01 ‘ 25 4
00 _— 0 -
Synthetic Natural  None 12 3 12 3 12 3 Synthetic Natural  None

Reference Images Confidence Rating Reference Images

Judy Borowski, Roland S. Zimmermann, Judith Schepers, Robert Geirhos,
Thomas S. A. Wallis, Matthias Bethge, Wieland Brendel: Exemplary Natural
Images Explain CNN Activations Better than Feature Visualizations. ICLR 2021.



Evaluation (4) — Humans Have Preferred Explanation Depending on Data

Learning Phase Predison Plse Lepming Phase Prodiion Pse Input, Label, and Model Output
ls:i"r‘;lﬁf‘art‘}(m i) 8 ) <» i} & - &0} z = Despite modest aspirations its occasional charms are not to be dismissed.
TyY, Yjdev—> T ftes LY 5t T }est L ) ~ .
NG (e 050 -8 ! r<84.{gpm} y = Positive § = Negative
N\ Deocici M
Po— Pe— ¢ Explanaion LIME Prototype Decision Boundary
= ) G . 4§+ Model prediction charms +.05 Most similar prototype: Step 0 | Evidence Margin: -5.21
Counterfactual ot e ﬂ {9} {@c}test A'{yc} 17 - Human simulation modest +.04 Routine and rather silly.
Simulation {2,9, 9} et —> 8 — {Tpre} {z,9, 9, €}test —> 8» {Tpost } h : Counterfactual nput dismi-ssec: —(1)? Similarity score: 9.96 out of 10 Step 1 | occasional —» rare
. & o factua icti occasional -. . Evidence Margin: -3.00
65 el . .
& Ye ¢ Counterfactual model prediction Important words: (none selected) g
= despite 18 Step 2 | modest —» impressive
>
Post Sim. _ Pre Sim. _  Explanation Sum of Words -.26 Evidence Margin: +0.32
Accuracy Accuracy Effect Baseline .24 Anchor

Figure 1: Forward and counterfactual simulation test procedures. We measure human users’ ability to predict

Est. Probability -.02

2(© | Despite impressive aspirations its rare
charms are not to be dismissed.

 —

h . p(§ = Negative | {occasional} C z) > .95

model behavior. We isolate the effect of explanations by first measuring baseline accuracy, then measuring accu-
racy after users are given access to explanations of model behavior. In the forward test, the explained examples are
distinct from the test instances. In the counterfactual test, each test instance is a counterfactual version of a model
input, and the explanations pertain to the original inputs.

Figure 2: Explanation methods applied to an input from the test set of movie reviews.

Counterfactual Simulation

Text Tabular Forward Simulation
Method n Pre Change CI P n Pre Change CI P Method n Pre Change CI P n Pre Change CI P
User Avg. 1144 62.67 - 7.07 - 1022 70.74 - 6.96 - User Avg. 1103 69.71 - 6.16 - 1063 63.13 - 7.87 -
LIME 190 - 0.99 9.58 834 179 - 11.25 8.83  .014 LIME 190 - 5.70 9.05  .197 179 - 525 10.59  .309
Anchor 181 - 1.71 9.43 704 215 - 5.01 8.58 234 Anchor 199 - 0.86 1048 869 197 - 5.66 7.91  .140
Prototype 223 - 3.68 9.67 421 192 - 1.68 10.07 711 Prototype 223 - -2.64 9.59  .566 192 - 9.53 8.55  .032
DB 230 - -1.93 13.25 756 182 - 5.27 10.08 271 DB 205 - -0.92 11.87 876 207 - 248 11.62 667
Composite 320 - 3.80 11.09 486 254 - 033 10.30 952 Composite 286 - -2.07 8,51  .618 288 - 7.36 9.38  .122

Table 1: Change in user accuracies after being given explanations of model behavior, relative to the baseline
performance (Pre). Data is grouped by domain. CI gives the 95% confidence interval, calculated by bootstrap
using n user responses, and we bold results that are significant at a level of p < .05. LIME improves simulatability
with tabular data. Other methods do not definitively improve simulatability in either domain.

Table 2: Change in user accuracies after being given explanations of model behavior, relative to the baseline
performance (Pre). Data is grouped by simulation test type. CI gives the 95% confidence interval, calculated by
bootstrap using 7 user responses. We bold results that are significant at the p < .05 level. Prototype explanations
improve counterfactual simulatability, while other methods do not definitively improve simulatability for one test.

Peter Hase, Mohit Bansal:Evaluating Explainable Al: Which Algorithmic Explanations Help Users Predict Model Behavior? ACL 2020: 5540-5552



Evaluation (5) — ... But No So Clear If Saliency Maps Are Always of Use

The Al Model

An Al model was trained to predict age using half a million color and black-and-white

images of men and women of varying ages and skin colorsOveraII,acmssmany .......
images, the Al is roughly on par with human performance. However, this accurary
varies for each image. For some images, humans are more accurate than the Al. How old do you think this person is?

For others, the Al is more accurate than humans.

<4/ <
(a) Original image (b) “Strong” (c) “Spurious” (d) “Random”

For each face, you will also see a second image highlighting which regions the Al model
thinks are most relevant for predicting age. Here, the model is focused on the neck and
right corner of the mouth. The color range is: = M | varying from blue (not
important) to red (very important). The model may be detecting either the presence OR your guess

absence of features, such as wrinkles. Please consider this image when making your Treatment AI‘m MAE

(a) Description of the model and guidelines for inter- Control (Human Alone) 10.0 (9'4 -10.5 )

preting and using the explanations. (b) Users are asked to guess a person’s age. Model Alone 8.5 (83 - 8.7)

Prediction 8.4 (7.8-9.0)

. . D e . Explain-stron 8.0(7.5-8.5

* Faulty explgngtlons did not significantly decrease trust in Exglain_spuﬁﬁus 85 28_0 ) 9.15

model predictions Explain-random 8.7 (8.1-9.2)

* Most participants claimed that explanations appeared Delayed Prediction 8.5 (8.0 - 9.0)

reasonable, even when they were obviously not focused on Empathetic 8.0 (7.6 - 8.5)

faces Show Top-3 Range 8.0(7.4-8.5)

Eric Chu, Deb Roy, Jacob Andreas: Are Visual Explanations Useful? A Case Study in Model-in-the-Loop Prediction. CoRR abs/2007.12248 (2020)



Evaluation (6) — Is Explanation Only for Debugging?

Domain

MoODEL PURPOSE

EXPLAINABILITY TECHNIQUE STAKEHOLDERS EvALUATION CRITERIA

FINANCE
INSURANCE
CONTENT MODERATION
FINANCE
FaciAL RECOGNITION
CONTENT MODERATION
HEALTHCARE
CONTENT MODERATION

LoAN REPAYMENT
RISK ASSESSMENT
MaALicious REVIEWS
CasH DISTRIBUTION
SMILE DETECTION
SENTIMENT ANALYSIS
MEDICARE ACCESS
OBJECT DETECTION

LoAaN OFFICERS
Risk ANALYSTS
CONTENT MODERATORS
ML ENGINEERS
ML ENGINEERS

FEATURE IMPORTANCE
FEATURE IMPORTANCE
FEATURE IMPORTANCE
FEATURE IMPORTANCE
FEATURE IMPORTANCE

COMPLETENESS [34]
COMPLETENESS [34]
COMPLETENESS [34]
SENSITIVITY [69]
FAITHFULNESS [7]

FEATURE IMPORTANCE QA ML ENGINEERS {2 NORM
COUNTERFACTUAL EXPLANATIONS ML ENGINEERS NORMALIZED {1 NORM
ADVERSARIAL PERTURBATION QA ML ENGINEERS {7 NORM

Umang Bhatt, Alice Xiang, Shubham Sharma, Adrian Weller, Ankur Taly, Yunhan Jia, Joydeep Ghosh, Ruchir Puri, José M. F. Moura,

The alien's preferences:

lazy or nervous — nodding

nodding and wearing glasses > clumsy

bubbly or clumsy — brave

faithful and cold or brave and passive — candy or dairy and fruit
sleepy or patient and obedient —> spices and grains or dairy

brave and sleepy or patient or laughing — dairy and fruit or grains
crying or sleepy and faithful —> grains and spices or fruit

Observations: patient, wearing glasses, lazy Ingredients:

Recommendation: milk, guava + Vegetables: okra, carrots, spinach
+ Spices: turmeric, thyme, cinnamon
+ Dairy: milk, butter, yogurt

+ Fruit: mango, strawberry, guava
+ Candy: chocolate, taffy, caramel

+ Grains: bagel, rice, pasta

Table 1: Summary of select deployed local explainability use cases

FAT* 2020: 648-657

Response Time

Response Time - Length Experiment Response Time - N Cog. Chunks Experiment

Response Time - N Var Reps Experiment

— Num OutputTemns-2  — 0.Type-Cir — it —+— Q.Type-sim
%01 --- Num. Output Terms -5 —+~ Q. Type-Sim o - mplicit —+- Q.Type-crr =
— Q. Type-Ver w — Q.Type-Ver

Centered Response Time (s)

Centered Response Time (s)

Centered Response Time (s)

Num. of Chunks

. Subjective Evaluation - Length Experiment

Num. Repetitions

—— 0. Type-ctr
— Q. Type - Ver
— 0. Type-sim

Subjective Satisfaction

Subjective Evaluation - N Cog. Chunks Experiment

Peter Eckersley:Explainable machine learning in deployment.

Subjective Evaluation - N Var Reps Experiment

— um. Output Terms -2
<= Num. Output Terms -5

Centered Subjective Score

Is the alien happy with the recommended meal? Accuracy .
O Yes ) os
, Accuracy - Length Experiment ,_Accuracy - N Cog. Chunks Experiment ., Accuracy - N Var Reps Experiment
No — Num. Output Terms - 2 — Q.Type-Ctr — Explicit — Q.Type - Sim —— Q.Type-Ctr o
1] - Num ouputTerms -5 —- Q. Type-sim {7 it — amype-crr ,, 4 0/ Type ver
s = Q.Type - Ver —— Q. Type - Ver —— Q.Type -Sim

Through Amazon
Mechanical Turk .
(900 subjects all together) ..

Accuracy

Accuracy

Accuracy

Num. of Chunks Num. Repetitions

J——
- mplct

- Q.Type-sim
4+ Q. Type-ctr
—+ Q. Type -ver

Centered Subjective Score

Num. of Chunks

0 Type-cr
4 Q. Type - Ver
4 Q.Type-sim

F/*“Rf

Centered Subjective Score

Num. Repetitions

ol Isaac Lage, Emily Chen, Jeffrey He, Menaka Narayanan, Been Kim,
Sam Gershman, Finale Doshi-Velez: An Evaluation of the Human-
Interpretability of Explanation. CoRR abs/1902.00006 (2019)



Evaluation (7) - XAl: One Objective, Many Metrics

Comprehensibility Succinctness Actionability Reusability Accuracy Completeness

How much effort How concise and What can one Could the How accurate and Is the explanation
for correct human compact is the action, do with explanation be precise is the complete, partial,
interpretation? explanation? the explanation? personalized? explanation? restricted?

Source: Accenture Point of View. Understanding Machines: Explainable Al. Freddy Lecue, Dadong Wan



Part li

Explanation in Al (not only Machine Learning!)

Freddy Lécue: On the role of knowledge graphs;in
explainable Al. Semantic Web 11(1): 41-51 (2020)



XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches
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XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches

Saliency Map
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Dependency Feature Surrogate
Plot Importance Model Artificial

Intelligence
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XAl: One Objective, Many ‘Al’'s, Many Definitions,
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XAl: One Objective, Many ‘Al's, Many Definitions, Many Approaches
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XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches
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XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches
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Overview of Explanation in Machine Learning (1)

e Many tools already available from early-days Machine Learning

Interpretable Models:
* Decision Trees

Is the person fit?

Age <30 ?

Y(-y %No
yaa?
Eats a lot of pizzas Exercises in the morning?

7 N AN

Unfit Fit Fit Unfit

KDD 2019 Tutorial on Explainable Al in Industry - https://sites.google.com/view/kdd19-explainable-ai-tutorial



Overview of Explanation in Machine Learning (1)

e Many tools already available from early-days Machine Learning

Interpretable Models:
* Decision Trees, Lists

If Past-Respiratory-Illness =Yes and Smoker =Yes and Age > 50, then Lung Cancer
Else if Allergies =Yes and Past-Respiratory-Iliness = Yes, then Asthma

Else if Family-Risk-Respiratory =Yes, then Asthma

Else if Family-Risk-Depression =Yes, then Depression

Else if Gender =Female and Short-Breath-Symptoms =Yes, then Asthma

Else if BMI > 0.2 and Age> 60, then Diabetes

Else if Frequent-Headaches =Yes and Dizziness =Yes, then Depression

Else if Frequency-Doctor-Visits > (.3, then Diabetes

Else if Disposition-Tiredness = Yes, then Depression

Else if Chest-Pain = Yes and Nausea and Yes, then Diabetes

Else Diabetes

KDD 2019 Tutorial on Explainable Al in Industry - https://sites.google.com/view/kdd19-explainable-ai-tutorial



Overview of Explanation in Machine Learning (1)

e Many tools already available from early-days Machine Learning

Interpretable Models:
* Decision Trees, Lists and
Sets and rules

If Allergies =Yes and Smoker =Yes and Irregular-Heartbeat =Yes, then Asthma

If Allergies =Yes and Past-Respiratory-Iliness =Yes and Avg-Body-Temperature > 0.1, then Asthma

If Smoker =Yes and BMI > 0.2 and Age > 60, then Diabetes

If Family-Risk-Diabetes =Yes and BMI > 0.4 =Frequency-Infections > 0.2, then Diabetes

If Frequency-Doctor-Visits > 0.4 and Childhood-Obesity =Yes and Past-Respiratory-1liness =Yes, then Diabetes
If Family-Risk-Depression =Yes and Past-Depression =Yes and Gender =Female, then Depression

If BMI > 0.3 and Insurance-Coverage =None and Avg-Blood-Pressure > (0.2, then Depression

If Past-Respiratory-1liness =Yes and Age > 50 and Smoker =Yes, then Lung Cancer

If Family-Risk-LungCancer =Yes and Allergies =Yes and Avg-Blood-Pressure > (.3, then Lung Cancer

If Disposition-Tiredness = Yes and Past-Anemia =Yes and BMI > 0.3 and Rapid-Weight-Loss =Yes, then Leukemia
If Family-Risk-Leukemia = Yes and Past-Blood-Clotting = Yes and Frequency-Doctor-Visits > 0.3, then Leukemia

If Disposition-Tiredness =Yes and Irregular-Heartbeat =Yes and Short-Breath-Symptoms =Yes and Abdomen-Pains = Yes, then Myelofibrosis

KDD 2019 Tutorial on Explainable Al in Industry - https://sites.google.com/view/kdd19-explainable-ai-tutorial



Overview of Explanation in Machine Learning (1)

e Many tools already available from early-days Machine Learning

Interpretable Models:
* Decision Trees, Lists and
Sets and rules

+ GAMs,
e GLMs,
Model Form Intelligibility | Accuracy
Linear Model y=Po+ b1x1+ ... + PnTn +++ +
Generalized Linear Model | g(y) = Bo + fiz1 + ... + BnZn R +
Additive Model y= fi(z1) + ... + fu(zn) ++ ++
Generalized Additive Model | ¢(y) = fi(z1) + ... + fa(zn) ++ ++
Full Complexity Model v =J(T1,.5%5%) + +++

Intelligible Models for Classification and Regression. Lou, Caruana and Gehrke KDD 2012

Accurate Intelligible Models with Pairwise Interactions. Lou, Caruana, Gehrke and Hooker. KDD 2013

KDD 2019 Tutorial on Explainable Al in Industry - https://sites.google.com/view/kdd19-explainable-ai-tutorial




Overview of Explanation in Machine Learning (1)

e Many tools already available from early-days Machine Learning

Interpretable Models:

* Decision Trees, Lists and
Sets and rules

* GAMs,

e GLMs,

* Linear regression,

* Logistic regression,

* KNNs

Data: titanic | naive Bayes Explanation
Model: NB

Prediction: p(survived = yes|x) = 0.671

Actual class label for this instance: yes

Feature Contribution Value

Class =

Naive Bayes model

Igor Kononenko. Machine learning for medical diagnosis:
history, state of the art and perspective. Artificial Intelligence
in Medicine, 23:89-109, 2001.



Overview of Explanation in Machine Learning (1)

e Many tools already available from early-days Machine Learning

Interpretable Models:

* Decision Trees, Lists and

Sets and rules
* GAMs, :
s Ll
* Linear regression, e
* Logistic regression, Counterfactual
* KNNs What-if
Data: titanic |naive Bayes Explanation Brent D. Mittelstadt, Chris
Model: NB ) '
Prediction: p(survived = yes|x) = 0.671 Russe_ll,. Sandra Wac_hter.:
Actual class label for this instance: yes Explaining Explanations in Al.

FAT 2019: 279-288

Feature Contribution Value

3rd Rory Mc Grath, Luca Costabello, Chan Le
Van, Paul Sweeney, Farbod Kamiab,
Zhao Shen, Freddy Lécué: Interpretable
Credit Application Predictions With
Counterfactual Explanations. CoRR
abs/1811.05245 (2018)

Class =
Age = adult

Sex = female

Naive Bayes model Dylan Sl_ack, Anna H|_Igard, Himabindu
Lakkaraju, Sameer Singh. Counterfactual
Igor Kononenko. Machine learning for medical diagnosis: Explanations Can Be Manipulated.
history, state of the art and perspective. Artificial Intelligence NeurlPS 2021.

in Medicine, 23:89-109, 2001.
https://pair-code.github.io/what-if-tool/



Overview of Explanation in Machine Learning (1)

e Many tools already available from early-days Machine Learning

Interpretable Models:

* Decision Trees, Lists and
Sets and rules

* GAMs,

e GLMs,

* Linear regression,

* Logistic regression,

* KNNs

Data: titanic | naive Bayes Explanation

Model: NB
Prediction: p(survived = yes|x) = 0.671
Actual class label for this instance: yes

Contribution

Feature
Class =
Age =

Sex =

Naive Bayes model

Igor Kononenko. Machine learning for medical diagnosis:
history, state of the art and perspective. Artificial Intelligence

in Medicine, 23:89-109, 2001.

seBy (@ Decrease By

Counterfactual
What-if

Brent D. Mittelstadt, Chris
Russell, Sandra Wachter:
Explaining Explanations in Al.
FAT 2019: 279-288

Rory Mc Grath, Luca Costabello, Chan Le
Van, Paul Sweeney, Farbod Kamiab,
Zhao Shen, Freddy Lécué: Interpretable
Credit Application Predictions With

Counterfactual Explanations. CoRR
abs/1811.05245 (2018)

Dylan Slack, Anna Hilgard, Himabindu
Lakkaraju, Sameer Singh. Counterfactual
Explanations Can Be Manipulated.
NeurlPS 2021.

https://pair-code.github.io/what-if-tool/

Predicted cancer probability

IR NNRNRNNRNNTNNaNR N ana N
20 4

Age

a1 EH) fea S0 5%)

SRF volume In central-3mm at M | —
IR thickness in fovea at M 1 |

IR thickness in central-3mm at M2 |

IRF volume in parafovea at M2 I
SRF volume in parafovea-temporal at M |
IR thickness in fovea at M2 I
ey -—————————————————————— |
TRT thickness in fovea at M2 |
IRF volume in central-3mm at M2 |
SRF area in central-3mm at M2 IR
SRF area in parafovea-temporal at M2 |
IR thickness in parafovea-nasal at M2 |
SRF volume in fovea at M1 |
SRF volume in parafovea at M2 |
IRF area in parafovea at M2 I

0 0.1 02 03 04 05 06 07 08
Relative Feature Importance

Feature Importance’

Partial Dependence Plot
Individual Conditional Expectation
Sensitivity Analysis

0.8




Overview of Explanation in Machine Learning (2)

e Focus: Artificial Neural Network

e @NeurlPS 2021

I NLP NLP
Reinforcement o “® Reinforcement
. . o Learning T ¢ Learning
° Auto-Encoder Y.
= Graph
L ] ‘ ° > ¥
Clustering | * Clustering | *%& * o ®

Counterfactual

https://nips.cc/virtual/2021/paper_vis.html?search=interpret https://nips.cc/virtual/2021/paper_vis.html?search=expla



End-to-End End to-End

{e)

Overview of Explanation in Machine Learning (3) ...

e Focus: Artificial Neural Network

-Xl = é;:,zR?U(X')\i\\ i Rl
T — f(x,, x,) = ReLU(z, -1-z,)
i . 42 Xp = il 2 >
m—-de T

1

’

(a) Standard attention model (b) RETAIN model

Attention Mechanism

Network f(x1, z2) Chaofan Chen, Oscar Li, Alina Barnett, Jonathan Su, Cynthia
Attributions at z1 = 3, z2 = 1 Rudin: This looks like that: deep learning for interpretable Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua
Integr‘fxted gradients z; = 1.5, zo = —-0.5 image recognition. CoRR abs/1806.10574 (2018) Kulas, Andy Schuetz, Walter F. Stewart: RETAIN: An
DeepLift r1 =15, xz2 = —-0.5 o .
LRP 21 =15 z3 = 0.5 Interpretable Predictive Model for Healthcare using Reverse
Prototypes ~_ Prototypes Time Attention Mechanism. NIPS 2016: 3504-3512

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine
translation by jointly learning to align and translate.
International Conference on Learning Representations, 2015

- ?;e?u(; .‘{)\ - -
I e A
-—><Zz ReLU(xz) e R

Network g(z1,z2)
Attributions at x1 = 3,22 = 1
Integrated gradients z; = 1.5, z2 = —0.5

DeepLift 1 =2, 22 =—1
LRP 1 =2, 22 =—1 good
Attribution for Deep wod

Network (Integrated gradient-based)

20f {SOL < 21.57
TA < 3165570}

Mukund Sundararajan, Ankur Taly, and Qiqi Yan.

Axiomatic attribution for deep networks. In ICML, Example_based / Prototype el
pp. 3319-3328, 2017. Surogate Model

) ) ) Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep Learning
Avantl_Shrlkum_ar, Peyton Greenside, Anshul for Case-Based Reasoning Through Prototypes: A Neural Mark Craven, Jude W. Shavlik: Extracting Tree-Structured
Kundaje: Learning Important Features Through Network That Explains Its Predictions. AAAI 2018: 3530-3537 Representations of Trained Networks. NIPS 1995: 24-30
Propagating Activation Differences. ICML 2017:
3145-3153 Been Kim, Oluwasanmi Koyejo, Rajiv Khanna:Examples are not enough,

learn to criticize! Criticism for Interpretability. NIPS 2016: 2280-2288



Overview of Explanation in Machine Learning (4)

Western Grebe Description: This is a large bird with a white neck and a black back in the water.

Class Definition: The Western Grebe is a waterbird with a yellow pointy beak, white neck and belly,
and black back.

Explanation: This is a Western Grebe because this bird has a long white neck, pointy yellow beak
and red eye.

e Focus: Artificial Neural Network

. Airplane
Tl’aln res5c unit 1243

res5c unit 924
~—

L. Albat
aysan Anaioss Description: This is a large flying bird with black wings and a white belly.

Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back
\ | and white belly.

Visual Explanation: This is a Laysan Albatross because this bird has a large wingspan, hooked
yellow beak, and white belly.

Laysan Albatross Description: This is a large bird with a white neck and a black back in the water.

Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back
and white belly.

Visual Explanation: This is a Laysan Albatross because this bird has a hooked yellow beak white
neck and black back.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva,
Antonio Torralba: Network Dissection: . .
Quantifying Interpretability of Deep Visual Visual Explanatlon

Representations. CVPR 2017: 3319-3327 Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele,
Trevor Darrell: Generating Visual Explanations. ECCV (4) 2016: 3-19

o? go™
" W ot e
1. forward computation x 2“@\2‘ e‘“pﬂ“ vﬁﬁ\" « iagl
oo gt oot 0e? \o? e

label: baseball
pred: crayfish

Qe
"
e

label: bell pepper
pred: bell pepper

label: ice lolly
pred: ice cream

() Input Image (b) Ground Truth (¢) Semantic Segmentation  (d) Aleatoric Uncertainty  (e) Epistemic Uncertainty

Uncertainty Map

Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian
Deep Learning for Computer Vision? NIPS 2017: 5580-5590

2. output redistribution

output label: abaya
pred: cloak

O]

O ® el B%S“Zﬂiiii’éi
O pr g S 4
Saliency Map / Features Attribution-based

A A

ATEFAY

Julius Adebayo, Justin Gilmer, Michael Muelly, lan J. Goodfellow, Moritz Hardt, Been Kim: Sanity Checks for Saliency Maps. NeurlPS 2018: 9525-9536



Overview of Explanation in Machine Learning (5)

e Focus: Artificial Neural Network

St -1, |

(a) Original (b) Grad-CAM () I-GOS (d) Region 1 (e) Region 2 (f) Region 3
Image heatmap heatmap (98% confidence) (97% confidence) (93% confidence)

11
ae

Beam search with width = 3

=R S
l»fnkz 24 | 25 2628

: YN (-1
SR Y

35 ‘ 37 "9'40 4
- __ AN
42943 144 | 45 46'47 48

Original image Single
with imposed attention map
arid

40 —— Combinatorial Search
/ +GOS
/ —— Grad-CAM

20 / —— Beam Search width3

Beam Search widths

— Beam Search width10

0 Beam Search width15
o 10 20 30 40 50

Number of Patches

Minimal Sufficient Explanation (with Beam Search)

Vivswan Shitole , Fuxin Li, Minsuk Kahng, Prasad Tadepalli, Alan Fern. One Explanation is Not Enough:

Structured Attention Graphs for Image Classification. NeurIPS 2021.

Misdemeanor Charge | Female
Priors Count | Priors Count |
Female Felony Charge |
Race Misdemeanor Charge !
Length of Stay Race
0.00 0.05 0.10 0.15 020 0.25 0.30 0.00 0.05 0.10 0.15 020 0.25 0.30

Absolute Feature Importance Absolute Feature Importance

(a) Explanation computed with 100 perturbations (b) Explanation with 2000 perturbations

If we perturb instance slightly,

i
R MNIST ! ~ SR .
how much does the explanation ' —
5 Imagenet H ~
change? Gormen (RS ) —
Compas : { O —
i
=25 0 25 50 75 100
BayesLIME % Increase in Stability
E :
i
MNIST i *
Imagenet - -~
German L d na!
Compas i T o
i
-100 -50 0 50 100

BayesSHAP % Increase in Stability

Error Uncertainty in Explanation for
Stability & Credibility

Dylan Slack, Sophie Hilgard, Sameer Singh, Himabindu Lakkaraju. Reliable
Post hoc Explanations: Modeling Uncertainty in Explainability. NeurlPS 2021.



Overview of Explanation in Machine Learning (6)

e Focus: Artificial Neural Network

Original CLUE ACLUE LIMEA LIMEB LIME C SHAP A SHAPB SHAPC
2l -~ -~ ¢
R S T e T T
| J 3 o]
§g=28 g=28 class: 8 class: 4 class: 5 class: 8 class: 4 class: 5
4 r £ s
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» L » ; q} L% L L Fal /7 - g
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§g==6 g=0 class: 6 class: 0 class: 9 class: 6 class: 0 class: 9
. g .
- ] -~
q R "2 M 9 2 %
§g=7 9=17 class: 7 class: 2 class: class: 7 class: 2 class: 9

Probabilistic
Model

Uncertainty
Quantification

Certain
Prediction?

Explanation

Interpretability Method
4+ LIME [4]
4 Integrated Gradients [5]
+FIDO [6]

CLUE A
< Certain Pilot Procedure TestPoine V21N Survey  Certain Context Point
Uncertai .. . .
O neertain 1) Partici A sele 4) Participants identify
Entire OO Y. ... > arthfpa nt sed cts the certainty of the test
Test Set a @1&';: atrandom . point given the two ~ ,+°
Jfrom the test set context points . -’
[ ] 3) Generate certain
Uncertain Context Point context point based on
v LSAT 0 L. method being evaluated
Test Set w/o B 2) Participant A pairs ucPa ar| T > ——
certain points the selected point with Race| whte|____ CLUE _. ®—Rand.
an uncertain context sex| Female d e
oint > Human CLUE——@

Explaining Uncertainty - Beyond Interpretation of Prediction

Javier Antoran, Umang Bhatt, Tameem Adel, Adrian Weller, José Miguel Herndndez-Lobato: Getting a clue: a method for explaining uncertainty estimates. ICLR 2021




Overview of Explanation in Machine Learning (7)

e Focus: Artificial Neural Network and Graphs

Input to
GNN

GNN'’s
Prediction

A Graph classification
Molecular
graph with
node
features

Molecule’s mutagenicity

B Node classmcatlon

Computation

graph of red
° node with node
3,6 fealures

gzgo =
%gw

Node’s structural role

& .:O.e

Ground Truth
Feature Importance

GNNEXxplainer
Grad

Att

e 00
COCIHN FBrSP I NaKLiCa

I N
(T

Not applicable

]
(]
N N

Not applicable

GNNExplainer

Ying, Z., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J. (2019).
Gnnexplainer: Generating explanations for graph neural
networks. Advances in neural information processing systems, 32.

Integrated Gradients

I
9"

BA graph

Counterfactual Graph Explanation
Mohit Bajaj, Lingyang Chu, Zi Yu Xue, Jian Pei, Lanjun Wang,
Peter Cho-Ho Lam, Yong Zhang. Robust Counterfactual
Explanations on Graph Neural Networks. NeurlIPS 2021

z Motifs

(a) Input graph.

(b) Motif containing E.

Attribute model output (or internal neurons) to input
features

Attribute model output to the layers of the model

SHAP Methods

‘ Integrated Gradients ‘

SHAP Methods

Internalinfluence

GradientSHAP

LayerGradientSHAP

Input * Gradient

GuidedGradCam

FeatureAblation /
FeaturePermutation
GuidedBackprop /

Deconvolution

‘ Saliency | Occlusion ‘ GradCam
LayerDeepLiftSHAP
DeepLiftSHAP Shapely Value Sampling verbeep LayerActivation
Deeplift LayerDeeplLift LayerGradientXActivation

LayerFeatureAblation

LayerConductance

LayerintegratedGradients

NoiseTunnel (Smoothgrad, Vargrad, Smoothgrad Square)

XAl Integrated Gradient on GNN
http://t.ly/qMzm

M Gradient
W Perturbation
B Other

Updste

SubgraphX

Yuan, H., Yu, H., Wang, J., Li, K., & Ji, S. (2021, July). On
explainability of graph neural networks via subgraph explorations.
In International Conference on Machine Learning (pp. 12241-
12252). PMLR.

P(E) = 0.472
P(E|A) = 0.658
P(E|AB) = 0.760
P(E|ABC) = 0.867
P(E|ABCD) = 0.911

(c) PGM-Explainer.
PGMExplainer

Vu, M., & Thai, M. T. (2020). Pgm-explainer: Probabilistic graphical
model explanations for graph neural networks. Advances in neural
information processing systems, 33, 12225-12235.

(d) GNNExplainer.

Explanation for
Mutagen 1 Mutagen 2 mutagens

Y . 2. Kol !
s |Ees ol | e S _.@_» PGExplainer | —»
> |, o3

- —
/‘\, L

PGExplainer

Luo, D., Cheng, W., Xu, D., Yu, W,, Zong, B., Chen, H., &
Zhang, X. (2020). Parameterized explainer for graph neural
network. Advances in neural information processing
systems, 33, 19620-19631.
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() Multi-resolution segmentation of images (b) Clustering similar segments and removing outliers

e Towards more semantic |nterpretat|on E

Squirrel Rabbit Bob Cat

Concept 8 0.0140 Concept 7 Concept 46 0.0035
v
TDN SR mlNeE

Concept 20 0.0054 Concept 8 0.0059 Concept 7 0.0031

&
Concei)t 7 0.0044

Figure 3: Concept examples with the samples that are the nearest to concept vectors in the activation space in AwWA.
The per-class ConceptSHAP score is listed above the images.

cOnceptSHAP Chih-Kuan Yeh, Been Kim, Sercan Omer Arik, Chun-Liang Li, Tomas

Pfister, Pradeep Ravikumar:On Completeness-aware Concept-
Based Explanations in Deep Neural Networks. NeurlPS 2020

@ positive (excitation)
® negative (inhibition)

Windows (4b:237)
excite the car detector
at the top and inhibit
at the bottom.

Car Body (4b:491)
excites the car
detector, especially at

the bottom.

Wheels (4b:373) excite FELan—

the car detector at the A car detector (4c:447)
bottom and inhibit at is assembled from

the top. earlier units.

Circuits in CNNs
https://distill.pub/2020/circuits/zoom-in/

LG

% -J ‘Iﬁ DD

ACE Kim:Towards Automatic Concept-based Explanations. NeurlPS

Police Van

(¢) Computing saliency of concepts

Most Salient

I Importance Scores
—1-I- .- a_,,|4

] o ..
L 1.

e
g = -

- |

Amirata Ghorbani, James Wexler, James Y. Zou, Been

27 most salient

2019: 9273-9282

water loU .14 water OR river loU.15

e’ NEE BEE

(water OR river)
AND NOT blue IoU .16

(a) inputs x river loU .08 NOT blue loU .004 /..
(b) neuron fyg3(x) blue IoU 006 (e) logical forms L(x)
. Neuron + Concept hﬁ“
(c) neuron masks M,g;(x) (d) concepts C(x) (f) IoU —

Figure 1: Given a set of inputs (a) and scalar neuron activations (b) converted into binary masks (c),
we generate an explanation via beam search, starting with an inventory of primitive concepts (d), then
incrementally building up more complex logical forms (e). We attempt to maximize the IoU score of
an explanation (f); depicted is the IoU of Myg3(x) and (water OR river) AND NOT blue.

Compositional Explanations

Jesse Mu, Jacob Andreas:Compositional Explanations of Neurons. NeurlPS 2020
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e Game Theory
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Shapley Additive Explanation

Scott M. Lundberg, Su-In Lee: A Unified Approach to Interpreting Model Predictions. NIPS 2017: 4768-
4777
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e Game Theory
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Shapley Additive Explanation

Scott M. Lundberg, Su-In Lee: A Unified Approach to Interpreting Model Predictions. NIPS 2017: 4768-
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L-Shapley and C-Shapley (with graph structure)

Jianbo Chen, Le Song, Martin J. Wainwright, Michael I. Jordan: L-Shapley and C-
Shapley: Efficient Model Interpretation for Structured Data. ICLR 2019
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e Game Theory
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Shapley Additive Explanation

Scott M. Lundberg, Su-In Lee: A Unified Approach to Interpreting Model Predictions. NIPS 2017: 4768-
4777
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L-Shapley and C-Shapley (with graph structure)

Jianbo Chen, Le Song, Martin J. Wainwright, Michael I. Jordan: L-Shapley and C-
Shapley: Efficient Model Interpretation for Structured Data. ICLR 2019

~ instancewise feature
importance (causal
influence)

Erik Strumbelj and Igor Kononenko. An efficient
explanation of individual classifications using
game theory. Journal of Machine Learning
Research, 11:1-18, 2010.

Anupam Datta, Shayak Sen, and Yair Zick.
Algorithmic transparency via quantitative input
influence: Theory and experiments with
learning systems. In Security and Privacy (SP),
2016 IEEE Symposium on, pp. 598-617. IEEE,
2016.
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e Search and Constraints Satisfaction

If A+1 then NEW Conflicts
onXandY

B.9, 10 12

-

/x) \ JQX .FQ& g

Conflicts resolution

Barry O'Sullivan, Alexandre Papadopoulos, Boi Faltings, Pearl Pu: Representative Explanations for
Over-Constrained Problems. AAAI 2007: 323-328

Robustness Computation

Hebrard, E., Hnich, B., & Walsh, T. (2004, July). Robust solutions for constraint satisfaction and
optimization. In ECAI (Vol. 16, p. 186).
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e Search and Constraints Satisfaction

If A+1 then NEW Conflicts

onXandY

B,9,10,12 A

iR

A

Conflicts resolution

Barry O'Sullivan, Alexandre Papadopoulos, Boi Faltings, Pearl Pu: Representative Explanations for
Over-Constrained Problems. AAAI 2007: 323-328

\

Robustness Computation

Hebrard, E., Hnich, B., & Walsh, T. (2004, July). Robust solutions for constraint satisfaction and
optimization. In ECAI (Vol. 16, p. 186).

Explanations

(1234, 0)

(34,12) X

Constraints
relaxation

Ulrich Junker: QUICKXPLAIN: Preferred Explanations and
Relaxations for Over-Constrained Problems. AAAI 2004:
167-172
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e Knowledge Representation and Reasoning

Ref

Trans
Eq

Prim
THING
AndR

Andl

All
Atlst

AndEq
AtLs0

All-thing

All-and

FC=C
Fc—p, Fp—=¢
Fec==e
Fas=s Fe=—0p
F c{a/B} = D{a/B}
FFCEE
F (prim eE) = (prim Fr)
F C == THING
Fc = b, Fc—=—>(and EE)
¢ = (and D EE)
Fec=—=&

F(and ..c..)= &

Fec=—0p
F(all p c) = (all p D)

i>m
F(at-least » y) = (at-least mp)
FC=(and C)
(at — least 0 p) = THING
F (all p THING) = THING
F(and (allp C)(allp D).. )=

(and (allp (and C D)) ...)

1. (at-least 3 grape) == (at-least 2 grape) AtLst
2. (and (at-least 3 grape) (prim GOOD WINE))

= (at-least 2 grape) AndL,1
3. (prim GOOD WINE) == (prim WINE) Prim
4. (and (at-least 3 grape) (prim GOOD WINE))

= (prim WINE) AndL,3
5. A = (and

(at-least 3 grape) (prim GOOD WINE)) Told
6. A == (prim WINE) Eq,4,5
7. (prim WINE) = (and (prim WINE)) AndEq
8. A == (and (prim WINE)) Eq,7,6
9. A == (at-least 2 grape) Eq,5,2

10. A = (and (at-least 2 grape) (prim WINE)) AadR,9,8

|A = (and (at-least 3 grape) (prim GOOD WINE)) |

Explaining Reasoning (through Justification) e.g., Subsumption

Deborah L. McGuinness, Alexander Borgida: Explaining Subsumption in Description Logics. IJCAI (1)
1995: 816-821
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e Knowledge Representation and Reasoning

Ref

Trans
Eq

Prim
THING

AndR
Andl

All
Atlst

AndEq
AtLs0
All-thing

All-and

Explaining Reasoning (through Justification) e.g., Subsumption

Deborah L. McGuinness, Alexander Borgida: Explaining Subsumption in Description Logics. IJCAI (1)

FC=C
Fc—p, Fp—=¢
Fec==e
- a=B Fe=—0p
F c{a/B} = D{a/B}
FFCEE
F (prim eE) = (prim Fr)
F C == THING
Fc = b, Fc—=—>(and EE)
¢ = (and D EE)

Fc=—=&r
F(and ..c..)= &

Fec=—0p
F(all p c) = (all p D)

i>m
F(at-least » y) = (at-least mp)
FC=(and C)
(at — least 0 p) = THING
F (all p THING) = THING
F(and (allp C)(allp D).. )=

(and (allp (and C D)) ...)

1995: 816-821

5

6.

7

3.

9

10. A = (and (at-least 2 grape) (prim WINE)) AadR,9,8

. (at-least 3 grape) == (at-least 2 grape)
.(and (at-least 3 grape) (prim GOOD WINE))
-

= (at-least 2 grape)

prim GOOD WINE) == (prim WINE)

Atlst

AndL,1
Prim

. (and (at-least 3 grape) (prim GOOD WINE))

= (prim WINE)
. A =(and
(at-least 3 grape) (prim GOOD WINE))
A == (prim WINE)
.(prim WINE) = (and (prim WINE))
A == (and (prim WINE))
. A == (at-least 2 grape)

AndL,3

Told

Eq,4,5
AndEq
Eq,7,6
Eq,5,2

|A = (and (at-least 3 grape) (prim GOOD WINE)) |

(' tampering)

Ny

{ alarm)

{ leaving

1

{ report}

P(alarm|=fire A ~tampering) =

Pl

larm)

N P(lcaving|~alarm) =
| smokey
P(report|-leaving) =
disjoint([fire(yes): 0.01. fire(no) : 0.99]).
smoke(Sm) «— fire(Fi) A ccsmoke(Sm, Fi).

disjoint([cosmoke(yes, yes): 0.9, cosmoke(no, yes)

disjoint([csmoke(yes. no) : 0.0, c_smoke(no, no) :

Abduction Reasoning (in Bayesian

Network)

David Poole: Probabilistic Horn Abduction and Bayesian
Networks. Artif. Intell. 64(1): 81-129 (1993)

P(alarm|fire A ~tampering) =

{ fire} P(alarm|=fire A tampering) =

0.99
0.85
0.0001
0.588
0.001
0.75
0.01

0.1]).
0.99]).
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e Knowledge Representation and Reasoning

Ref FC=C
Trans Fc:'fg:tt;::ns
E - a=B Fe=—0p
9 F c{a/B} = D{a/B}
Prim - FFC BB -
F (prim eE) = (prim Fr)
THING F C == THING
AndR Fc = b, Fc—=—>(and EE)
¢ = (and D EE)
Fec=—=&
Andl F(and ..c..)= &
Fe—=0p
Al Fall 5 o) — (all 7 D)
a>m
ALst F(at-least 1 p) —> (at—least mp)
AndEq FC=(and C)
AtLs0 (at — least 0 p) = THING
All-thing F (all p THING) = THING
All-and F(and (allp C)(allp D).. )=

Explaining Reasoning (through Justification) e.g., Subsumption

Deborah L. McGuinness, Alexander Borgida: Explaining Subsumption in Description Logics. IJCAI (1)

1995: 816-821

(and (allp (and C D)) ...)

= (at-least 2 grape)
prim GOOD WINE) == (prim WINE)

. (at-least 3 grape) == (at-least 2 grape)
2. (and (at-least 3 grape) (prim GOOD WINE))
-

Atlst

AndL,1
Prim

4. (and (at-least 3 grape) (prim GOOD WINE))

= (prim WINE)
5. A = (and
(at-least 3 grape) (prim GOOD WINE))
6. A == (prim WINE)
7. (prim WINE) = (and (prim WINE))
8. A == (and (prim WINE))
9. A == (at-least 2 grape)

10. A = (and (at-least 2 grape) (prim WINE)) AadR,9,8

AndL,3

Told

Eq,4,5
AndEq
Eq,7,6
Eq,5,2

|A = (and (at-least 3 grape) (prim GOOD WINE)) |

0.99

P(alarm|fire A ~tampering)

{ tampering; { fire} P(alarm|=fire A tampering) 0.85
P(alarm|-fire A ~tampering) = 0.0001
P(leaving|alarm) 0.88
AV N P(leaving|~alarm) = 0.001
{ alarm) | smokey P(report|leaving) = 0.75
- P(report|-leaving) = 0.0l
(leaving disjoint([fire(yes): 0.01. fire(no) : 0.99]).
I smoke(Sm) « fire(Fi) A casmoke(Sm, Fi).
~ dis joint([cosmoke(yes, yes): 0.9, cesmoke(no, yes): 0.1]).
{ report}

disjoint([csmoke(yes. no) : 0.01, c_smoke(no, no) : 0.99]).

Abduction Reasoning (in Bayesian
Network)

David Poole: Probabilistic Horn Abduction and Bayesian
Networks. Artif. Intell. 64(1): 81-129 (1993)

close

detected

open

Diagnosis Inference

Alban Grastien, Patrik Haslum, Sylvie Thiébaux: Conflict-Based
Diagnosis of Discrete Event Systems: Theory and Practice. KR
2012
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e Multi-Agents Systems

MAS INFRASTRUCTURE

INDIVIDUAL AGENT INFRASTRUCTURE

MAS INTEROPERATION
Translation Services Interoperation Services

INTEROPERATION
Interoperation Modules

CAPABILITY TO AGENT MAPPING
Middle Agents

CAPABILITY TO AGENT MAPPING
Middle Agents Components

NAME TO LOCATION MAPPING
ANS

NAME TO LOCATION MAPPING
ANS Component

SECURITY
Certificate Authority ~ Cryptographic Services

SECURITY
Security Module private/public Keys

PERFORMANCE SERVICES
MAS Monitoring Reputation Services

PERFORMANCE SERVICES
Performance Services Modules

MULTIAGENT MANAGEMENT SERVICES
Logging, Acivity Visualization, Launching

MANAGEMENT SERVICES
Logging and Visualization Components

ACL INFRASTRUCTURE
Public Ontology Protocols Servers

ACL INFRASTRUCTURE

ACL Parser  Private Ontology  Protocol Engine

COMMUNICATION INFRASTRUCTURE
Discovery Message Transfer

COMMUNICATION MODULES
Discovery Component  Message Tranfer Module

Machines, OS, Network

OPERATING ENVIRONMENT
Multicast Transport Layer: TCP/IP, Wireless, Infrared, SSL

Explanation of Agent Conflicts & Harmful
Interactions

Katia P. Sycara, Massimo Paolucci, Martin Van Velsen, Joseph A.
Giampapa: The RETSINA MAS Infrastructure. Autonomous Agents
and Multi-Agent Systems 7(1-2): 29-48 (2003)
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@ Agent(s)

Strategy
Summary
Interface

Domain .
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Application

Strategy

\

World States
Representation

Intelligent
States
Extraction

Domain
Characteristic

| S

Agent Strategy Summarization

Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization. AAMAS 2018: 1203-1207
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e Multi-Agents Systems o a
/

Strategy ﬁz Agent(s)

\,

Intelligent Strategy .
MAS INFRASTRUCTURE INDIVIDUAL AGENT INFRASTRUCTURE World States ) States Summary = User
epre = Extraction Interface =S
MAS INTEROPERATION INTEROPERATION
Translation Services Interoperation Services Interoperation Modules l ' ' '
CAPABILITY TO AGENT MAPPING CAPABILITY TO AGENT MAPPING
Middle Agents Middle Agents Components A ent Strate Summarization
NAME TO LOCATION MAPPING NAME TO LOCATION MAPPING g gy
ANS Component i ) . ) . .
SECURITY SECURITY Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization. AAMAS 2018: 1203-1207
Certificate Authority ~ Cryptographic Services Security Module private/public Keys
PERFORMANCE SERVICES PERFORMANCE SERVICES Cemmen e e el S i L
MAS Monitoring Reputation Services Performance Services Modules L=
1started
MULTIAGENT MANAGEMENT SERVICES MANAGEMENT SERVICES using my weapons because
Logging, Acivity Visualization, Launching Logging and Visualization Components the intercept geometry was selected and
ROE was achieved and
ACL INFRASTRUCTURE ACL INFRASTRUCTURE the bogey was a radar—contact and
Public Ontology Protocols Servers ACL Parser  Private Ontology  Protocol Engine the bogey was the primary-threat.
Otherwise, if
COMMUNICATION INFRASTRUCTURE COMMUNICATION MODULES the intercept geometry were not selected or
Discovery Message Transfer Discovery Component Message Tranfer Module ‘l'{hOE were not achleveddor
e bogey were not a rat ar—contact or
there was no primary-threat,
OPERATING ENVIRONMENT
Machines, OS, Network Multicast Transport Layer: TCP/IP, Wireless, Infrared, SSL Twould have achieved proximity to the bogey.
1 concluded that the bogey achieved ROE because

the bogey was a bandit and
' had received positive ID from the E2C and
electronic positive ID was attained.

Explanation of Agent Conflicts & Harmful &) ; ()
Interactions e B2 =] = ——— [ wai | | comme

’ Clear i Done

Katia P. Sycara, Massimo Paolucci, Martin Van Velsen, Joseph A. Explainable Agents

Giampapa: The RETSINA MAS Infrastructure. Autonomous Agents

and Multi-Agent Systems 7(1-2): 29-48 (2003) Joost Broekens, Maaike Harbers, Koen V. Hindriks, Karel van W. Lewis Johnson: Agents that Learn to
den Bosch, Catholijn M. Jonker, John-Jules Ch. Meyer: Do Explain Themselves. AAAI 1994: 1257-
You Get It? User-Evaluated Explainable BDI Agents. MATES 1263

2010: 28-39
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e NLP

Fine-grained

explanations are in

the form of:

* textsinareal-
world dataset;

* Numerical scores

Explanation e,

Explainable NLP

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative
Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)



Fine-grained
explanations are in
softmax the form of:

e 0000-0 )
— AN e textsinareal-
Ll
:;cnlcmlcd World dataset;
“xplanation e,
- * Numerical scores
Iil
=

Explainable NLP

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative
Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)

Overview of Explanation in Different Al Fields (5)
e NLP $= bt

Example #3 of ¢ True Class: . Atheism

[ inscons J provous Y e ] ‘

Algorithm 1 Algorithm 2
‘Words that A1 considers important: Predicted: Words that A2 considers important: Predicted:

GOD| . Atheism Posting . Atheism

mean Prediction correct: Host Prediction correct:
anyone / Re] J
this| by|
Koresh) in)
through Nntp|
Document Document

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge hq.verdix.com Nntp-Posting-Host: sarge hq.verdix.com
Organization: Verdix Corp Organization: Verdix Corp

Lines: 8 Lines: 8

LIME for NLP

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin: "Why Should | Trust You?":
Explaining the Predictions of Any Classifier. KDD 2016: 1135-1144

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
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e textsinareal-
! Document Document
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E e, - | 1 Lines: 8 Lines: 8
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| B — SIS Calculate
: Booien " ot e LIME for NLP
. Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin: "Why Should | Trust You?":
Explainable NLP Explaining the Predictions of Any Classifier. KDD 2016: 1135-1144
Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Gene — . R
Explanation Framework for Text Classification. CoRR abs/1811.00196 (201 NLP Debugger ¥ l ‘ ) 1
Encwords: [lour'| (0ol (Helps| [to'" [find! errors| [Vin'" (seqiseq [model| sing Visuall anai methos | P - B
Atention: -
unser wizeg hilft ,  fehler in [<nlo] mils zu finden mitiels viseler walgm . e ]
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wir esge helfen es etwas | auf | die amhand fir geben und <unk> o  des tha aposs yerbyyea. this comes fom urrends ot B
pivot R v

explore neighborhoods

Hendrik Strobelt, Sebastian Gehrmann, Michael Behrisch, Adam Perer, Hanspeter Pfister, Alexander M. Rush: Seq2seq-
Vis: A Visual Debugging Tool for Sequence-to-Sequence Models. IEEE Trans. Vis. Comput. Graph. 25(1): 353-363 (2019)
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e NLP

§=[50.55-5s]
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the form of:

* textsin areal-
world dataset;
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lt,\plunulmn e, : °
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(- l“] Classfier C classified \Porea
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: _____ Calculate
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Explainable NLP

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Gene
Explanation Framework for Text Classification. CoRR abs/1811.00196 (201

As fif. Why was the output o generated?
This was due to x(a;) and x(a3),
despite y(a,), which provided

‘What triggered y(a,) to provide
This was due to ﬁaﬁz. des& z‘aﬁz.

Argumentation & Explanation
Emanuele Albini, Piyawat Lertvittayakumjorn, Antonio Rago,
Francesca Toni:DAX: Deep Argumentative eXplanation for Neural
Networks. CoRR abs/2012.05766 (2020)
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Example #3 of ¢

Algorithm 1
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anyone
this
Koresh)

through

Document

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge hq.verdix.com
Organization: Verdix Corp

Lines: 8

True Class: () Athesm CEDED O ‘
Algorithm 2

Predicted: Words that A2 considers important: Predicted:
. Atheism Posting . Atheism
Prediction correct: Host Prediction correct:
v N v

by

in|

Nntp|

Document

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge hq.verdix.com
Organization: Verdix Corp

Lines: 8

LIME for NLP

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin: "Why Should | Trust You?":
Explaining the Predictions of Any Classifier. KDD 2016: 1135-1144

NLP Debugger

to find errors | in segheq models using visual analis mehods .

o febler in [<unlo) midkn zu finden mittels vswler auipen .
fehler | in  unle méeds | zu finden , sl g

dwiar | bei | den
2 <wnk [fir [form |, [mit wsode mitls | des amalyse | der

es letwas auf |die ahmd fir geben und <unk> Gt | des

der modele mwis wicer mit  der <unk> von Sentence
<unk> s suchen | die viselen e |, sue

lore neighborhoods.

pivot

Hendrik Strobelt, Sebastian Gehrmann, Michael Behrisch, Adam Perer, Hanspeter Pfister, Alexander M. Rush: Seq2seq-
Vis: A Visual Debugging Tool for Sequence-to-Sequence Models. IEEE Trans. Vis. Comput. Graph. 25(1): 353-363 (2019)



Overview of Explanation
e Planning and Schedullng

[ Explanation Type [ Rt [R2 [ R3 [ R4
Plan Patch Explanation / VAL X v X v
Model Patch Explanation v X v 4
Minimally Complete Explanation v v X ?
Minimally Monotonic Explanation v v v ?
(Approximate) Minimally Complete Explanation X 4 X v

Rita Borgo, Michael Cashmore, Daniele Magazzeni: Towards Providing
Explanations for Al Planner Decisions. CoRR abs/1810.06338 (2018)

Explanatlon of the Space of Possible Plans

Rebecca Eifler, Michael Cashmore, J6rg Hoffmann, Daniele
Magazzeni, Marcel Steinmetz: A New Approach to Plan-Space
Explanation: Analyzing Plan-Property Dependencies in
Oversubscription Planning. AAAI 2020: 9818-9826

Knowledge Problem
Base Interface

[Coomme ]

Planner
Interface

new plan

problem

Question VSuggestion

XAl Plan

Rita Borgo, Michael Cashmore, Daniele Magazzeni:
Towards Providing Explanations for Al Planner
Decisions. CoRR abs/1810.06338 (2018)

in Different Al Fields (6)

Before Intervention
R plans to explore beyond
numerical order in an effort
the goal G. -,

Gregory J. Stein. Generating High-Quality
Explanations for Navigation in Partially-
Revealed Environments. Neurips 2021

‘"‘J ! Trajectory
[ |4 - Cost: 337.5

81

S1

r

Qg "=~ B
gj{k +1 T eTkl
.
ga R 9a 9B
(a) (b) ()

Human-in-the-loop Pla

The robot After Intervention The robot R
subgoalsin  plans to explore beyond subgoals in
to reach alphabetical order in‘an effort to reach

the goal G. - 17
[

Explanatlon I would have =N
referred Sub%oal 10 (a) over
ubgoal 0 (c) if I instead il
believed that Subgoal 11 (b) + ‘ &
were more likely to lead to. " ||
the goal (29%, up from 18%); | ﬂ
and elieved that Subgoal 10
(a) were shﬁhtly more likely
to lead to the goal (22%, L&E
from 15%); , and believed that
Subgoal 0 (c) were slightly
less likely to lead to the goal
(22%, down from 30%).

rajectory
ost: I 71.7

_|

A/ \B

S1 "1

9.
@

nning

Maria Fox, Derek Long, Daniele Magazzeni: Explainable Planning. CoRR abs/1709.10256 (2017)



e Robotics

Overview of Explanation in Different Al Fields (7)

General
Picture

\/ X/ \nmh’M e
Vorr r
\nn 2609
\71}3
o v * nt [~
\nn o)
\uﬁ M, ' [
605
—l s7
‘r o —P7
¥4 n
Abstraction, A
Level 1 Level 2 Level 3 Level 4
Start and finish point of Total distance and time | Total distance and time Starting and ending land-

the complete route

taken for the complete
route

taken for the complete
route

mark of complete route

Summary

Start and finish point for
subroute on each floor of
each building

Total distance and time
taken for subroute on
each floor of each build-
ing

Total distance and angles
for subroute on each floor
of each building

Starting and ending land-
mark for subroute on
each floor of each build-
ing

Specificity, S

Detailed
Narrative

Start and finish points of
complete route plus time
taken for each edge of
route

Angle turmed at each
point plus the total dis-
tance and time taken for
each edge of route

Turn direction at each
point plus total distance
for each edge of route

All landmarks encoun-
tered on the route

Narration of Autonomous Robot Experience

Stephanie Rosenthal, Sai P Selvaraj, and Manuela Veloso. Verbalization: Narration of autonomous
robot experience. In 1JCAI, pages 862—-868. AAAI Press, 2016.

Daniel J Brooks et al. 2010. Towards State Summarization for Autonomous Robots.. In AAAI Fall

Symposium: Dialog with Robots, Vol. 61. 62.



e Robotics

Robot: I have decided to turn left.
Human: Why did you do that?

Robot: I believe that the correct action is to turn left
BECAUSE:
I'm being asked to go forward
AND This area in front of me was 20 cm higher than me
*highlights area*®
AND the area to the left has maximum protrusions of less
than 5 cm *highlights area*

Overview of Explanation in Different Al Fields (7)
AND I'm tilted to the right by more than 5 degrees.

\77!7 : ¥ '/{ r
Nl M, $ h ‘ [P
[l
;: o . —7)
Here is a display of the path through the tree that lead to

Abstraction, A this decision. *displays tree*®

Level 1 Level 2 Level 3 Level 4 Human: How confident are you in this decision?

General
Picture

Start and finish point of
the complete route

Total distance and time
taken for the complete
route

Total distance and time
taken for the complete
route

Starting and ending land-
mark of complete route

Summary

Start and finish point for
subroute on each floor of
each building

Total distance and time
taken for subroute on
each floor of each build-
ing

Total distance and angles
for subroute on each floor
of each building

Starting and ending land-
mark for subroute on
each floor of each build-
ing

Specificity, S

Start and finish points of
complete route plus time
taken for each edge of

Angle turmed at each
point plus the total dis-
tance and time taken for

Turn direction at each
point plus total distance
for each edge of route

All landmarks encoun-

tered on the route

Robot: The distribution of actions that reached this leaf
node is shown in this histogram. *displays histogram*
This action is predicted to be correct 67% of the time.

Human: Where did the threshold for the area in front come
from?

Robot: Here is the histogram of all training examples that
reached this leaf. 80% of examples where this area was

Detailed
Narrative

route each edge of route above 20 cm predicted the appropriate action to be “drive

forward™.

Narration of Autonomous Robot Experience
From Decision Tree to human-friendly

information

Raymond Ka-Man Sheh: "Why Did You Do That?" Explainable Intelligent
Robots. AAAI Workshops 2017

Stephanie Rosenthal, Sai P Selvaraj, and Manuela Veloso. Verbalization: Narration of autonomous
robot experience. In 1JCAI, pages 862—-868. AAAI Press, 2016.

Daniel J Brooks et al. 2010. Towards State Summarization for Autonomous Robots.. In AAAI Fall
Symposium: Dialog with Robots, Vol. 61. 62.



Overview of Explanation in Different Al Fields (8)

e Reasoning under Uncertainty

Probabilistic Graphical Models

Daphne Koller, Nir Friedman: Probabilistic Graphical Models - Principles and Techniques. MIT
Press 2009, ISBN 978-0-262-01319-2, pp. I-XXXV, 1-1231



Part Il

On The Role of Knowledge Graphs
in Explainable Machine Learning

Freddy Lécue: On the role of knowledge graphg,in
explainable Al. Semantic Web 11(1): 41-51 (2020)



Knowledge Graph (1)

e Set of (subject, predicate, object — SPO) triples - subject and object are
entities, and predicate is the relationship holding between them.

e Each SPO triple denotes a fact, i.e. the existence of an actual relationship
between two entities.

Alice Leonardo Da Vinci
subject predicate object @ @
Bob is interested in The Mona Lisa A
Bob is a friend of Alice P /
The Mona Lisa was created by Leonardo Da Vinci
BOb iS a Person is interested in \.\ - ///"
The Mc:na Lisa %,
La Joconde a W. is about The Mona Lisa ,
Bob is born on 14 July 1990 ®

Person 14 July 1990 . .
La Joconde a Washington

Freddy Lécué: On the role of knowledge graphs in
explainable Al. Semantic Web 11(1): 41-51 (2020)



Knowledge Graph (2)

Name Entities | Relations | Types | Facts
Freebase 40M 35K 26.5K 637M
DBpedia (en) 4.6M 1.4K 735 580M
YAGO3 17M 77 488K  150M
Wikidata 15.6M 1.7K 232K 66M
NELL 2M 425 285 433K
Google KG 570M 35K 1.5K 18B
Knowledge Vault 45M 4 5K 11K 271M
Yahoo! KG 3.4M 800 250 1.39B

e Manual Construction - curated, collaborative
e Automated Construction - semi-structured, unstructured

Right: Linked Open Data cloud - over 1200 interlinked KGs
encoding more than 200M facts about more than 50M entities.

Spans a variety of domains - Geography, Government, Life
Sciences, Linguistics, Media, Publications, Cross-domain..

Freddy Lécué: On the role of knowledge graphs in
explainable Al. Semantic Web 11(1): 41-51 (2020)



Knowledge Graph Construction

Knowledge Graph construction methods can be classified in:

e Manual — curated (e.g. via experts), collaborative (e.g. via volunteers)

e Automated — semi-structured (e.g. from infoboxes), unstructured (e.g. from text)
Coverage is an issue:

® Freebase (40M entities) - 71% of persons without a birthplace, 75% without a
nationality, even worse for other relation types [Dong et al. 2014]

e DBpedia (20M entities) - 61% of persons without a birthplace, 58% of scientists
missing why they are popular [KrompaB et al. 2015]

Relational Learning can help us overcoming these issues.

Freddy Lécué: On the role of knowledge graphs in
explainable Al. Semantic Web 11(1): 41-51 (2020)



Knowledge Graph in Machine Learning (1)

https://stats.stackexchange.com/questions/230581/decision

“tree-too-large-to-interpret Freddy Lécué: On the role of knowledge graphs in
explainable Al. Semantic Web 11(1): 41-51 (2020)



https://stats.stackexchange.com/questions/230581/decision-tree-too-large-to-interpret

Knowledge Graph in Machine Learning (2)

e e
Rattle 2016-Aug-18 16:15:42 &klisarev . .

https://stats.stackexchange.com/questions/230581/decision , , .
tree-too-large-to-interpret Freddy Lécué: On the role of knowledge graphs in

explainable Al. Semantic Web 11(1): 41-51 (2020)



https://stats.stackexchange.com/questions/230581/decision-tree-too-large-to-interpret

Knowledge Graph in Machine Learning (3)

@ Input Layer Training
Data

Input .
(unlabeled .
image) .

Neurons respond .
Low-level

to simple shapes [ | P .
{ a7V VN Y YK 1st L features to

features

L]

Neurons respond to

more complex
structures

(O Hidden Layer

Neurons respond to
highly complex,
abstract concepts

Freddy Lécué: On the role of knowledge graphs in

@ Output Layer
explainable Al. Semantic Web 11(1): 41-51 (2020)

10% WOLF 90% DOG



Knowledge Graph in Machine Learning (4

(water OR river)
AND (NOT blue)

forest-broad
OR waterfall OR
forest-needle

creek OR waterfall
OR desert-sand

pool table OR mAchiney
OR bank vault

martial arts gym
OR ice OR fountain

batters box OR
martial arts gym OR

0.34

.« *
.
.
.
.
.
ResNet18 swimming hole grotto fire escape OR ResNet18 street . *fire escape
AlexNet swimm%ng hole grotto bridge OR staircase AlexNet street . street
ResNet50 swimming hole grotto ResNet50 street . cradle
DenseNet161 hot spring DenseNet161 street escape

swimming hole
R W

fire
)

5 |

£
fire
escape

house OR porch

swimming
OR townhouse

hole

i . :
EesNet18 corr§dor clean room agueduct QR wiabuct ResNet18 forest path v%aduct
ARxNet .pogr}qc:r_ flcove. . GR ®lo¥ster-indoor AlexNet forest path viaduct
ResNet50 corridor 1gf50 ResNet50 forest path viaduct
DenseNet161 corridor corridor DenseNet161 forest path laundromat

clean
room

bridge OR viaduct

OR aqueduct viaduct

—>

0.46

H o
ey I |

washer OR
T . laundromat
-8 i N OR viaduct

Jesse Mu, Jacob Andreas:Compositional Explanations of Neurons. NeurlPS 2020

|row-level

features to

-high-level
. features

Open question: What is the
impact of semantic
representation on units in
Neural Networks?



Knowledge Graph in Machine Learning (5)

@ Input Layer Training ..
Data %
Input
(unlabeled < ==+« -...
image)

Neurons respond .
P Low-level .

to simple shapes [ | A .
{ a7V VN Y YK 1stL features to
QODQP 1tayer | fealurest:

features

Neurons respond to
more complex

structures W
Neurons respond to Q @ @
nth Layer

highly complex,
abstract concepts il .

*

. 2nd | ayer

() Hidden Layer

*

@ Output Layer * & . +Freddy Lécué: On the role of knowledge graphs in
’ * explainable Al. Semantic Web 11(1): 41-51 (2020)



Knowledge Graph in Machine Learning (6)

-
P . -
-

Description 1: This is an orange train accident < = = = *

Description 2: This is a train accident between two speed
merchant trains of characteristics X43-B and Y33-Cin a dry
environment

Description 3: This is a public transportation accident <= = * *"

Freddy Lécué: On the role of knowledge graphs in
explainable Al. Semantic Web 11(1): 41-51 (2020)



Knowledge Graph in Machine Learning (7)

“How to explain transfer learning with
appropriate knowledge representation?

1 A
| A A/
/4 1 £/
}a' , 1 /
f / 1 /
/ / ! £
E : f
1
/
T /
1 ¥
v AL/
/
. A4
V'V
T ¥

Conv Layers FC Layers

Source Learning
Domain

X E
iy
Z(l <Oﬂ'g(tt)

Step 1: Train M,,

Targ;t Learning 77 - , y
i =BT me -~

Step 1: Fine-tune M,_, 5

Jiaoyan Chen, Freddy Lécué, Jeff Z. Pan, lan Horrocks, Huajun Chen:
Knowledge-Based Transfer Learning Explanation. KR 2018: 349-358



Knowledge Graph in Machine Learning (8)

“How to explain concept drift in Machine

Learning?

With semantics augmentation

06 i
-
L 1
055 + — — — = T
B
05+ — — — ~— 1 L L
i T
045 + — — — — —— —i—- — - — &
i
0444 1 H A A —m3 1 00/ — ([ r
0.35
o|lx | e |E|mo Aale|le | E|ao s | <
S 2la|3|a CAR A G|z
A < < h B 4
(7] <
Semantic-Enhanced ML Basic ML and Time-series Forecasting
Models Models

Figure 6: [Beijing Context] Baseline Comparison of Forecasting Macro-F1 Score (Eval-
uation of Algorithm 1-3), where A = 6.

Without semantics augmentation

LB

o
=
T
[%]

S-SGD
S-LB

w

o<
P

v

LSTM

S-ASHT
ARIMA

Semantic-Enhanced ML
Models

Basic ML and Time-series Forecasting
Models

Figure 7: [Dublin Context] Baseline Comparison of Forecasting Macro-F1 Score (Evalu-
ation of Algorithm 1-3), where A = 6.

Jiaoyan Chen and Freddy Lécué and Jeff Z. Pan and Shumin Deng and Huajun Chen. Knowledge
graph embeddings for dealing with concept drift in machine learning. Journal of Web
Semantics. (2021) http://www.sciencedirect.com/science/article/pii/51570826820300585



How Does
it
Work
in Practice?



State of the Art
Machine Learning
Applied to Critical

Systems
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Unfortunately, this is of
NO use for a human
behind the system



Let’s stay back

Why this Explanation?
(meta explanation)



After Human Reasoning...

Lumbermill - .59

&m ® Browse using v

dbo:wikiPagelD
dbo:wikiPageRevisionlD

det:subject

http://purl.org/linguistics/gold/hypernym

rdf:type

rdfs:comment

rdfs:label

owl:sameAs

b Formats ~ (% Faceted Browser (4 Spargl Endpoint

352327 (xsd:integer)
734430894 (xsd:integer)

dbc:Sawmills

dbc:Saws
dbc:Ancient_Roman_technology
dbc:Timber_preparation

dbe:Timber_industry
dbr:Facility

owl:Thing
dbo:ArchitecturalStructure

A sawmill or lumber mill is a facility where logs are cut into lumber. Prior to the invention of the sawmill, boards were rived (split) and
planed, or more often sawn by two men with a whipsaw, one above and another in a saw pit below. The earliest known mechanical
mill is the Hierapolis sawmill, a Roman water-powered stone mill at Hierapolis, Asia Minor dating back to the 3rd century AD. Other
water-powered mills followed and by the 11th century they were widespread in Spain and North Africa, the Middle East and Central
Asia, and in the next few centuries, spread across Europe. The circular motion of the wheel was converted to a reciprocating motion
at the saw blade. Generally, only the saw was powered, and the logs had to be loaded and moved by hand. An early improvement
was the developm (en)

Sawmill (en)

wikidata:Sawmill
dbpedia-cs:Sawmill
dbpedia-de:Sawmill

dbpedia-es:Sawmill



What is missing?




2 m ®Browseusing ~ [ Formats + (4 Faceted Browser (£ Spargl Endpoint

About: Boulder

An Entity of Type : place, from Named Graph : http://dbpedia.org, within Data Space : dbpedia.org

n geology, a boulder is a rock fragment with size greater than 25.6 centimetres (10.1 in) in diameter. Smaller pieces are called
cobbles and pebbles, depending on tneir "grain size". While a boulder may be small enough to move or roll manually, others are
extremely massive. In common usage, a boulder is too le . aller b s are usually just called rocks
The word b or is short for er stone, from Middle English bulde sdish bulle 1. Boulder
nglomerate and boulder clay.

Value

aboabstract In geology, a boulder is a rock fragment with size greater than 25.6 centimetres (10.1 in) in diameter. Smaller pieces are called
cobbles and pebbles, depending on their "grain size". While a boulder may be small enough to move or roll manually, others are
extremely massive. In common usage, a boulder is too large for a person to move. Smaller boulders are usually just called rocks or
stones. The word boulder is short for boulder stone, from Middle English bulderston or Swedish bullersten. In places covered by ice
sheets during Ice Ages, such as Scandinavia, northern North America, and Russia, glacial erratics are common. Erratics are
boulders picked up by the ice sheet during its advance, and deposited during its retreat. They are called "erratic* because they
typically are of a different rock type than the bedrock on which they are deposited. One of them is used s the pedestal of the
Bronze Horseman in Saint Petersburg, Russia. Some noted rock formations involve giant boulders exposed by erosion, such as the
Devil's Marbles in Australia's Northern Territory, the Horeke basalts in New Zealand, where an entire valley contains only bouiders,
and The Baths on the island of Virgin Gorda in the British Virgin Islands. Boulder sized clasts are found in some sedimentary rocks,
such as coarse conglomerate and boulder clay. The climbing of large boulders is called bouldering. (en)

aboithumbnail ons: i Balanced_Rock jpg?width:

dvowikiPagelD 60784 (rscinteger)

dpowikiPageRevisioniD 743049914 (xsd:integer)

det:subject dbe:Rock_formations

doc:Rocks

- ‘ - m ®Browseusing ~ i Formats ~ 2 Faceted Browser (4 Spargl Endpoint
-

About: Rail transport

An Entity of Type : software, from Named Graph : http://dbpedia.org, within Data Space : dbpedia.org

is a means of conveyance of passengers and goods on wheeled vehicles running on rails, also known as tracks. It is
only referred to N transport. In contrast to road transport, where vehicles run on a prepared flat surface, rall
rolling stock) are onally guided by the tracks on which they run. Tracks usually consist of steel rails, installed on ties
) and ballast, on which the rolling stock, usually fitted with metal wheels, moves. Other variations are also possible, such
ed to a concrete foundation resting on a prepared subsurfac

dbo:abstract - Rail transport is a means of conveyance of passengers and goods on wheeled vehicles running on rails, also known as tracks. It is
also commonly referred to as train transport. In contrast to road transport, where vehicles run on a prepared flat surface, rail vehicles
(rolling stock) are directionally guided by the tracks on which they run. Tracks usually consist of steel rails, installed on ties (sleepers)
and ballast, on which the rolling stock, usually fitted with metal wheels, moves. Other variations are also possible, such s slab track,
where the rails are fastened to a concrete foundation resting on a prepared subsurface. Rolling stock in a rail transport system
generally encounters lower frictional resistance than road vehicles, so passenger and freight cars (carriages and wagons) can be
coupled into longer trains. The operation is carried out by a railway company, providing transport between train stations or freight
customer facilities. Power is provided by locomotives which either draw electric power from a railway electrification system or
. produce their own power, usually by diesel engines. Most tracks are accompanied by a signalliing system. Railways are a safe land
R a I I W a y -, 1 1 transport system when compared to other forms of transport. Railway transport is capable of high levels of passenger and cargo

utilization and energy efficiency, but is often less flexible and more capital-intensive than road transport, when lower traffic levels are
considered. The oldest, man-hauled railways date back to the 6th century BC, with Periander, one of the Seven Sages of Greece,



* Hardware: High performance, scalable, generic (to different
FGPA family) & portable CNN dedicated programmable
processor implemented on an FPGA for real-time embedded
inference

Software: Knowledge graph extension of object detection

-

1«

. Railway - .11

Transitionin

This is an Obstacle: Boulder obstructing the train:
XG142-R on Rail_Track from City: Cannes to City:
Marseille at due to Landslide
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Knowledge Graph in Machine Learning - An Implementation

Images RCNN hyperparmeters Tasks Knowledge Graph Semantic Augmentation Hyperparameters

s HYP1 = ~T-—~<
N\
4 I ObjectDetector ’/
-
Region Proposal
Network

Context Extractor

KG Selection

Selected KGs

e

1
|
|
1

HYP2 1

]

region :
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v 1
1

1

[

Box Predictor and Preprocessing J
/

v O y \

Thresholds

Im:tia'l Semantic Links
Predictions Between Labels

~
Semantic augmentator > N

4 Select Prediction to
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|
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{ Derive Semantic Coherence of Detections ]—»[ Compute Score to Add ]

I !

Predictions to
Augment Scores to Add

\ [ Score Augmentation ] ’
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v

Augmented Detections

\

Freddy Lécué, Jiaoyan Chen, Jeff Z. Pan,
Huajun Chen: Augmenting Transfer
Learning with Semantic Reasoning. IJCAI
2019: 1779-1785

Freddy Lécué, Tanguy Pommellet: Feeding
Machine Learning with Knowledge Graphs
for Explainable Object Detection. ISWC
Satellites 2019: 277-280

Freddy Lécué, Baptiste Abeloos, Jonathan
Anctil, Manuel Bergeron, Damien Dalla-
Rosa, Simon Corbeil-Letourneau, Florian
Martet, Tanguy Pommellet, Laura Salvan,
Simon Veilleux, Maryam Ziaeefard: Thales
XAl Platform: Adaptable Explanation of
Machine Learning Systems - A Knowledge
Graphs Perspective. ISWC Satellites 2019:
315-316

Jiaoyan Chen, Freddy Lécué, Jeff Z. Pan, lan
Horrocks, Huajun Chen: Knowledge-Based
Transfer Learning Explanation. KR 2018:
349-358
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XAl Tools, Coding and Engineering Practices
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XAl LIME on Image — Local Input Exploration | Feature Attributions

Machine Learning Model LIME
This is a “labrador” Because:

Why?

In this post, we will study how LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et. al. 2016) generates explanations for image
classification tasks. The basic idea is to understand why a machine learning model (deep neural network) predicts that an instance (image)
belongs to a certain class (labrador in this case). For an introductory guide about how LIME works, | recommend you to check my previous blog
post Interpretable Machine Learning with LIME. Also, the following YouTube video explains this notebook step by step.

Marco Tulio Ribeiro, Sameer Singh, Carlos
h tt S - t I Y ; K Guestrin:"Why Should | Trust You?": Explaining the
] [ ] Predictions of Any Classifier. KDD 2016: 1135-1144 109




XAI LUCID on Image — Neurons Exploration | Feature Visualization

Lucid: A Quick Tutorial

This tutorial quickly introduces Lucid, a network for visualizing neural networks. Lucid is a kind of spiritual successor to DeepDream, but
provides flexible abstractions so that it can be used for a wide range of interpretability research.

Note: The easiest way to use this tutorial is as a colab notebook, which allows you to dive in with no setup. We recommend you enable a free

GPU by going:

Runtime — Change runtime type — Hardware Accelerator: GPU

L] https://github.com/tensorflow/lucid/
p . . y q X https://distill.pub/2020/circuits/zoom-in/
https://microscope.openai.com/models 110


https://distill.pub/2020/circuits/zoom-in/
https://distill.pub/2020/circuits/zoom-in/
https://microscope.openai.com/models

XAl Concept on Image — Concept-based Explanation | Concepts

Class: zebra - shape: (50, 29

g

Tcav score for zebra (***: p_values < 0.05)

1.0
0.8
oKk
: 0.6
hw, Texture: knitted ,, ok i
=
g
& I 0.0
J Knitted Striped Bubbly Random
Class: tiger - shape: (50, 299, 299, 3) Tcav score for tiger (¥***: p_values < 0.05)
1.0 =
. 0.8
Texture: striped
0.6 1 sokok
D kK
0.4 4 ook
N - '
7
0.0
Knitted Striped Bubbly Random

Tcav score for squirrel (***: p_values < 0.05)

Texture: bubbly 10

0.8 1

0.6 1 x sokok

0.4 A o

0.2 1

0.0 -
Knitted Striped Bubbly Random

| |
ttps://t.IV/IXS
https://t.ly/ixSu

https://arxiv.org/pdf/1711.11279.pdf (TCAV) 111

https://github.com/deel-ai/xplique



https://distill.pub/2020/circuits/zoom-in/
https://distill.pub/2020/circuits/zoom-in/

XAl GAN Dissection on Image — Network Dissection | Neuron Interpretation

unit 335: grass-b (iou 0.27)

unit 380: grass (iou 0.27)
19 4
-- 7 Iy [a

unit 149: road-b (iou 0.26)

31 8

42 9

46 23

el BN~

unit 268: person (iou 0.25)

15

Antonio Torralba: Network Dissection:

4 49
Bem—= NN
Quantifying Interpretability of Deep Visual

18 40 8
Representations. CVPR 2017: 3319-3327 unit 387: road (iou 0.22)
46 4 31 6 23 20
http://t.ly/x41F -..E..
n n .

43 44
David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, — -
m [
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XAl Example-based on Image | Text | EGC — ExMatchina | Example
Text

18431 REVIEW: you keep disappearing and it makes me a sad panda
18431 Example 1: the end of him and me. very sad ending.
htt '//t I /P N E3 18431 Example 2: Of to work, going to be a very sad day
= = y 18431 Example 3: yeah so its been half an hour and still no reply

truck truck truck truck

Image
http://t.ly/JwGL !

i ‘ -
F
- g -

Fusion beats Fusion beats Fusion beats Fusion beats

i
08 ¢8 08 08
i

ECG A .

04 b4 04 04
i

http://t.ly/EVYG 5 0 W

0 50 100 150 [ 50 100 150 [ 50 100 150 0 50 100 150 1 1 3

°

Jeya Vikranth Jeyakumar, Joseph Noor, Yu-Hsi Cheng, Luis Garcia, Mani B. Srivastava:How Can | Explain This to You? An Empirical Study of Deep Neural Network Explanation Methods. NeurIPS 2020



XAl Integrated Gradient on Graph - Facebook Captum | Feature Attributions

Integrated Gradients

) .
o

Saliency

Attribute model output (or internal neurons) to input

features

Attribute model output to the layers of the model

SHAP Methods

| Integrated Gradients I SHAP Methods | Internalinfluence |

GradientSHAP

| LayerGradientSHAP l

| Saliency H Occlusion | | GradCam |

; LayerDeepLiftSHAP l —_
DeepURSHAP l Shapely Value Sampling I | Y s LayerActivation
DeeplLift FeatureAblation / | LayerDeepLift | | LayerGradientXActivation |
- FeaturePermutation i
Input * Gradient ‘ LayerFeatureAblation l | LayerConductance |
- GuidedBackprop /
GuidedGradCam Deconvolution | LayerintegratedGradients
M Gradient
NoiseTunnel (Smoothgrad, Vargrad, Smoothgrad Square) M Perturbation
B Other

http://t.ly/gMzm

https://medium.com/pytorch/introduction-to-captum-a-model-interpretability-
library-for-pytorch-d236592d8afa

https://captum.ai/

Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh,
Jonathan Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi
Yan, Orion Reblitz-Richardson:Captum: A unified and generic model
interpretability library for PyTorch. CoRR abs/2009.07896 (2020)



EX p I a n ati O n C O m p a r'i S O n TIPNTT)  Grad-CAM++ . Saliency Maps LIME Anchor Explanation-by-Example

. Text Input LIME Anchor SHAP Explanation-by-Example
n a Prediction probabilities ' “""‘1 » ade o 1 joggin'... with my mom! positive
- - Cooking with my stepfather | | "= I 05 7 Anchor(s): with 090 shopping with my bestst! positive

positive? (COOKIngG Wilh my stepfather m‘ ) o o 3 glee club party. positive
Jeya Vikranth Jeyakumar, Joseph Noor, Yu-Hsi Cheng, Luis Garcia, Mani B. W'"pm oot Salency Sepe —_— Exma"aﬁo"'by Example
Srivastava: How Can | Explain This to You? An Empirical Study of Deep Neural l
Network Explanation Methods. NeurlIPS 2020 M ‘
| [ |
https://github.com/nesl/Explainability-Study roma peaoest B e hes S
Explanation Method Image Study Text Study Audio Study ECG Study
LIME 47.7 £ 4.5% 704 £ 3.6%
Anchor 38.9+4.3% 25.8 + 3.5% - -
SHAP 33.7 £4.3% 59.9 £ 3.8% 34.7 £+ 4.8% 32.8 £ 3.3%
Saliency Maps 39.4 +4.3% - 46.1£5.1% 40.4 £ 3.5%
GradCAM++ 50.8 £4.5% - 48.1 + 5.3% 42.0 + 3.5%

115
Explanation by Examples 89.6 £ 2.6% 43.7 £ 3.9% 70.9£4.7% 84.8 £2.5%



DE=L

DEpendable & Explainable Learning

XPLIQUE

Explainability Toolbox for Neural Networks

Explanation Evaluation

QUANTUS

| |
N . n
A toolkit to evaluate neural network explanation: e W
ImageNet — "ladybug" Saliency (SA Gradient Shap (GS) FusionGrad (FG u u

i : , Evaluation of Attribution Techniques:
8 W Deletion, Insertion, MuFidelity, Stability

o 0 Saliency 0.060707692307692296
§ 1 Gradientinput -0.05155384615384615
2 GuidedBackprop -0.05783076923076923
3 IntegratedGradients -0.11649230769230767
4| Smoohoraa COTOTEMASISIBIETT
5 SquareGrad 0.13367692307692308
b) <) S [Varind o)
7 GradCAM 0.13896923076923076
Faithfulness 12 3 4 1 293 4 1 23 4 1234 8 GradCAMPP 0.1731076923076923
9 Occlusion 0.
g Method name Deeton score ower s beter
= 0 Saliency 1.8778294324874878
_131 1 Gradientinput 1.546083927154541
= 2 GuidedBackprop 1.8130334615707397
\": 3 IntegratedGradients 1.138811469078064
Sl 4 SmoothGrad 2.134702682495117
.a § SquareGrad 1.8556183576583862
= 6 VarGrad 1.8918383121490479
[+ 7 GradCAM 2.1379902362823486
B s GradcAeP 2.0910z371388408
2 9 Occlusion -0.13544484972953796
/ 2 -
.;yc index Method name Insertion score (higher is better)
< o Sateny 225972816406
3 I I 1 Gradientinput 1.9150968790054321
5‘ 2 GuidedBackprop 2.088884115219116
=¥ 3 IntegratedGradients 1.869066834449768
Randomisation Complexity M y l 2 Sametied Ul
a S8 ) Mean Random Black White 6 VarGrad 3.7059926086694336
B . e . 7 GradCAM 4.3629655638012695
PlXOl rcplACOII‘Ol)‘/ h‘lat(‘,g_\ 8 GradCAMPP 4.04218053817749
 [Occkon oaa1is00s88825
aun
Anna Hedstrom, Leander Weber, Dilyara Bareeva, Franz Motzkus, Wojciech Samek, Sebastian ™. et pame Sttty seore(lower i beer e
Lapuschkin, Marina M.-C. Hohne. Quantus: An Explainable Al Toolkit for Responsible 2 GuidodBackrop 000016013044696165347
A ) . 3 iraidradirt 0000sEB40403405703
Evaluation of Neural Network Explanations. https://arxiv.org/abs/2202.06861 ¢« Smoonciad s aasssssrootooir
5 SquareGrad 0.05670683830976486
6 VarGrad 0.0565398707985878
. L . 7 GradcM c00tserate0reazsas
https://github.com/understandable-machine-intelligence-lab/Quantus s [omacanre 754820 135700780.05
s TS TERGAGTROTERTS
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XAl Applications, Lessons Learnt and Research Challenges
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Explainable Boosted Object Detection — Industry Agnostic

Training Training
Dataset Process

Pre-traine:
model

Task &. Object Detection

Model First step
detections

Knowledge

Graph Selection Selected KG,
Labels T Labels

Knowledge

Graphs

"'Paddle’ confidence is
augmented as class 'Boat' and
‘Canoe’. are in both (1) image
and (2) as properties range of
Paddle in knowledge graph"

Explainable Layer

concept Boat. (color print).

Fig. 2. Left image: results from baseline Faster RCNN: Paddle: 50% confidence, Per-
son: 66%, Man: 46%. Right image: results from the semantic augmentation: Paddle:
74% confidence, Person: 66%, Man: 56%, Boat: 58% with explanation: Person,
Paddle, Water as part of the context in the image and knowledge graph of

Challenge: Object detection is usually performed from a
large portfolio of Artificial Neural Networks (ANNSs)
architectures trained on large amount of labelled data.
Explaining object detections is rather difficult due to the
high complexity of the most accurate ANNs.

Al Technology: Integration of Al related technologies
i.e., Machine Learning (Deep Learning / CNNs), and
knowledge graphs / linked open data.

XAl Technology: Knowledge graphs and Artificial
Neural Networks

THALES



s | s O =) o oS e
Th ad IeS X A I Explainable Artificial Intelligence - U [ E—

shapley
Q
How the app works ? A

Industry . g
Agnostic il -

Context

Explanation in Machine Learning systems has been identified to be
the one asset to have for large scale deployment of Artificial
Intelligence (Al) in critical systems

Explanations could be example-based (who is similar), features- O
based (what is driving decision), or even counterfactual (what-if
scenario) to potentially action on an Al system; they could be s T oeename
represented in many different ways e.g., textual, graphical, visual .

T8
Goal

(3 emamems @ seocavea oprsions

All representations serve different means, purpose and operators. We
designed the first-of-its-kind XAl platform for critical systems i.e., the
Thales Explainable Al Platform which aims at serving explanations P T —
through various forms B B

Approach: Model-Agnostic e

[Al:ML] Grad-Cam, Shapley, Counter-factual, Knowledge graph

T H FAN L E S Video: https:



https://drive.google.com/file/d/1zoKidieGH5zaahOn8ekXXBo74BEeZvc-/view

Debugging Artificial Neural Networks — Industry Agnostic

[ Autodesk Maya Preview Release 36 - Not for Resale: untitled
File Edit Modify Create Display Window Assets Select Mesh EditMesh

Polygons.

Toos Normals Color CreateUVs EditUVs Musde XGen Pipeline Cache Biffost Help

TR mp iR 8 W RN YR T vuvesufae

Surfaces Animation Rendering  PaintEffects Toon  Musde  Fluids Fur  nHar  nCoth  Custom

> L i e _o T L W ) . 0
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Display | Render  Anim
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Challenge: Designing Artificial Neural Network
architectures requires lots of experimentation
(i.e., training phases) and parameters tuning
(optimization strategy, learning rate, number of
layers...) to reach optimal and robust machine
learning models.

Al Technology: Artificial Neural Network

XAl Technology: Artificial Neural Network, 3D
Modeling and Simulation Platform For Al

Video: https://drive.google.com/file/d/1ZTwndNzC9bN9ouP9cjjuXcyzZ30YlcgU/view

Zetane.com


https://drive.google.com/file/d/1ZTwndNzC9bN9ouP9cjjuXcyzZ3OYIcgU/view

Obstacle Identification Certification (Trust) — Transportation

THALES

Challenge: Public transportation is getting more and more
self-driving vehicles. Even if trains are getting more and more
autonomous, the human stays in the loop for critical decision,
for instance in case of obstacles. In case of obstacles trains
are required to provide recommendation of action i.e., go on
or go back to station. In such a case the human is required to
validate the recommendation through an explanation exposed
by the train or machine.

Al Technology: Integration of Al related technologies i.e.,
Machine Learning (Deep Learning / CNNs), and semantic
segmentation.

XAl Technology: Deep learning and Epistemic uncertainty




Explaining Flight Performance — Transportation

Challenge: Predicting and explaining
aircraft engine performance

Al Technology: Artificial Neural Networks

T H /0\ L E S XAl Technology: Shapely Values




Explainable On-Time Performance — Transportation

KLM / Transavia Flight Delay Prediction

PLANE INFO ARRIVAL TURNAROUND DEPARTURE

Status / Aircraft Flight ETA  Status Delay Code Gate Slot Progress Milestones Flight ETA  Status Delay Code

© utwat v =
O idstew v —
] v |
@ kshdbs v

(1 v | e—
] v —
(0 v —
] v —
®a v /3
] v —
®a v ==
] v —
9 v —
o v ==

Jiaoyan Chen, Freddy Lécué, Jeff Z. Pan, lan Horrocks, Huajun Chen: Knowledge-Based Transfer
Learning Explanation. KR 2018: 349-358

Nicholas McCarthy, Mohammad Karzand, Freddy Lecue: Amsterdam to Dublin Eventually Delayed?
LSTM and Transfer Learning for Predicting Delays of Low Cost Airlines: AAAI 2019

Challenge: Globally 323,454 flights are delayed every year.
Airline-caused delays totaled 20.2 million minutes last year,
generating huge cost for the company. Existing in-house
technique reaches 53% accuracy for predicting flight delay,
does not provide any time estimation (in minutes as opposed
to True/False) and is unable to capture the underlying
reasons (explanation).

Al Technology: Integration of Al related technologies i.e.,
Machine Learning (Deep Learning / Recurrent neural
Network), Reasoning (through semantics-augmented case-
based reasoning) and Natural Language Processing for
building a robust model which can (1) predict flight delays in
minutes, (2) explain delays by comparing with historical
cases.

XAl Technology: Knowledge graph embedded Sequence
Learning using LSTMs

INNOVATION ARCHITECTURE:

ACCENTU
LABS

THALES



Explainable Risk Management — Finance

Portfolio 1 Portfolio Overview Joha Smith

All Contracts (123) Contract Lifecycle

®) Negative EAC Estimate View all Contracts »

Net Potential Loss
Cont
Dea!
A0

4
9, >2% o+ 9 o
s AL 0
o, o
0 (]
0} >0 (o]

0% 100%
Contract Start Contract End

(]

N
Revenue (size) Newly Added

_—
low high

Jiewen Wu, Freddy Lécué, Christophe Guéret, Jer Hayes, Sara van de Moosdijk, Gemma
Gallagher, Peter McCanney, Eugene Eichelberger: Personalizing Actions in Context for Risk
Management Using Semantic Web Technologies. International Semantic Web Conference (2)
2017:367-383

Alvaro H. C. Correia, Freddy Lécué: Human-in-the-Loop Feature Selection. AAAI 2019: 2438-2445

INNOVATION ARCHITECTURE:

ACCENTU
LABS

Challenge: Accenture is managing every year more than
80,000 opportunities and 35,000 contracts with an expected
revenue of $34.1 billion. Revenue expectation does not
meet estimation due to the complexity and risks of critical
contracts. This is, in part, due to the (1) large volume of
projects to assess and control, and (2) the existing non-
systematic assessment process.

Al Technology: Integration of Al technologies i.e., Machine
Learning, Reasoning, Natural Language Processing for
building a robust model which can (1) predict revenue loss,
(2) recommend corrective actions, and (3) explain why such
actions might have a positive impact.

XAl Technology: Knowledge graph embedded Random
Forrest



Explainable Anomaly Detection — Finance (Compliance)

‘ AFS: Accenture intelligent Finance System
I § Expersas Overview of Austn va. ofwr Clies +
‘

4]
= |

B

Cortes Pares

Easersen Pecge

accenture

INNOVATION ARCHITECTURE:

ACCENTU
LABS
Data analysis
for spatial interpretation
of abnormalities:
abnormal expenses

—

Semantic explanation
(structured in classes:
fraud, events, seasonal)
of abnormalities

Detailed semantic
explanation (structured
in sub classes e.g.
categories for events)

Freddy Lécué, Jiewen Wu: Explaining and predicting abnormal
expenses at large scale using knowledge graph based
reasoning. J. Web Sem. 44: 89-103 (2017)

Challenge: Predicting and explaining abnormally employee expenses (as high accommodation price in 1000+ cities).

Al Technology: Various techniques have been matured over the last two decades to achieve excellent results. However most methods address the problem

from a statistic and pure data-centric angle, which in turn limit any interpretation. We elaborated a web application running live with real data from (i) travel and
expenses from Accenture, (ii) external data from third party such as Google Knowledge Graph, DBPedia (relational DataBase version of Wikipedia) and social

events from Eventful, for

explaining abnormalities.

XAl Technology: Knowledge graph embedded Ensemble Learning . Video: https://www.dropbox.com/s/sst232guOyeqy21/1UI-2017-Final.mp4?dI=0



https://www.dropbox.com/s/sst232gu0yeqy21/IUI-2017-Final.mp4?dl=0

Counterfactual Explanations for Credit Decisions — Finance

{'D Drag sliders to change constraints. RECOM MENDED CHANGES

External Risk Estimate

O O

. THALES
M Since Oldest Trade Open ®

&

a;r

Ord O
113 INNOVATION ARCHITECTURE:
M Since Most Recent Trade O... ACCENTU

Average M In File
Or i

s &

o)

65

Num Satisfactory Trades

@ Select categorical constraints.
Max Delq 2 Public Rec Last 12M
Current: unknown delinquency l
10 selected Y o

M Since Oldest ~ Average M In File Num Satisfactory  Percent Install Net Fraction ~ Net Fraction Install Num Revolving ~ Num Bank 2 Natl
Trade Open Trades Trades Revolving Burden Burden Trades W Balance  Trades W High
Max Delq Ever Utilization
Current: 60 days delinquent @ InputValue Increase By () Decrease By

Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, Freddy Lécué: Interpretable Credit Application Predictions With
Counterfactual Explanations. FEAP-Al4fin workshop, NeurlPS, 2018.



Explanation of Medical Condition Relapse — Health

THALES Challenge: Explaining medical condition relapse in the
context of oncology.

Al Technology: Relational learning

XAl Technology: Knowledge graphs and Artificial
Neural Networks

Knowledge graph
parts explaining
— medical condition

relapse




Explaining Visual Question Answering — Industry Agnostic

Tabular QA Visual QA Reading Comprehension Challenge: What is the robustness of Visual
Rank|  Nation|GoldSilver [Bronze Total - Peyton  Manning  became the first Question Answering models? What is the
1 India 102 |58 [37 197 quarterback ever to lead two different . t f t o)
r P a teams to multiple Super Bowls. He is also ImpaC Oor semantics:
2 |Nepal B2 Jlo 24 65 the oldest quarterback w0 olay 1
3 Sri Lanka [16 42 |62 120 se : ;S Iquz;lr - a;g e;f;r : ptay " Z
uper bowi at age A e past recort . oL
4 |Pakisan 10 |36 [0 |16 was held by John Elway, who led the Al Technology: Artificial Neural Networks.
5 Bangladesh 2 10 |35 47 Broncos to victory in Super Bowl XXXIlI at
6  |Bhuan 116 7 4 | age 38 and is currently Denver’s Executive . H
p— Bhutanm}l__[_' -]—— Vice President of Football Operations and XAl TeChnOIOgy' Integrated Gradlents
[ |Maldives 0 o 4 4 General Mane
ger
Q: How many medals did India win? Q: How symmetrical are the white Q: Name of the quarterback who
A 197  bricks on either side of the building? was 38 in Super Bowl XXXIII?
A very A: John Elway e
° ..
Neural Programmer (2017) model Kazemi and Elqursh (2017) model. Yu et al (2018) model. °l09 Google Al
33.5% accuracy on WikiTableQuestions 61.1% on VQA 1.0 dataset 84.6 F-1 score on SQUAD (state of the art) *e®

(state of the art = 66.7%)

Q: How symmetrical are the white bricks on either side of the building?

: What is the man doing? — What is the tweet doing?
A: very

How many children are there? — How many tweet are there?
Q: How asymmetrical are the white bricks on either side of the building?

A: very , .

O How b are s white brcks on eifrer side of the bulding? - VQA model’s response remains the same
. FIOW DIg are the wnite DricKks on eilther siae o e pullding + . . .

Avery ° 75.6% of the time on questions that it

Q: How fast are the bricks speaking on either side of the building? Origina”y answered CorreCtIy

A: very -

Source: Explainable Al in Industry. KDD 2019 Tutorial. Ankur Taly, Mukund Sundararajan, Kedar Dhamdhere, Pramod Mudrakarta



Relevance Debugging and Explaining — Industry Agnostic

Challenge: A Machine Learning system can fail in many different
points e.g., data features selection, construction, inconsistencies.
How to debug bad performance in machine learning models and
prediction?

[ ]
LI“kEd m® Al Technology: Artificial Neural Networks.

XAl Technology: Model / Prediction comparison

LR REIRY 657 0017652437

Lead Software Engineer - Platform
Confidential

RRRE A% ] 5P 6 686083¢-4 )

Lead Software Engineer - Platform
Confidential

KDD 2019 Tutorial on Explainable Al in Industry - https://sites.google.com/view/kdd19-explainable-ai-tutorial



Explaining Recommendation — Social Media

Challenge: How to establish trust between Social Media
and their users? Explaining post / news recommendation is
crucial for users to engage with content providers.

Al Technology: Artificial Neural Networks.

XAl Technology: Recommendation-based
Why Am | Seeing This? We Have an
Answer for You

I . { & Youre a member of Woofers and Puppers
1
| 1.
m— ¢ You've liked Eric Chang's posts more
. — . than posts from others
You ve commenad on posts with
3 more than other media types
. | 41 10 Woolers and Puppens
l l‘ pula compared ta other peats

Onher Tactors #30 Influence the orde

of posts. Learn More

KDD 2019 Tutorial on Explainable Al in Industry - https://sites.google.com/view/kdd19-explainable-ai-tutorial



Model Explanation for Sales Prediction — Sales

@ What are top driver features for a certain company to
have high/low probability to upsell/churn?

L@ Feature Contributor J

Linked [T].

® Which top driver features can be perturbed if we want
to increase/decrease probability for a certain company?
[@ Feature Influencer J

i

Company: CompanyX
Upsell LCP (LinkedIn Career Page) Top Feature Contributor

0 f1: 430.5

€9 f2:216

 £3:10097.57

Q fa: 15

| Not Likely | Less Like|y| Likely

0 0.25 0.5 0.75 1

Top Feature Influencer (Positive)

f5:0 =54, 70.03
f6: 168— 0, /~0.03
£7:0=0.24, //0.02

Top Feature Influencer (Negative)

f1: 430.5 —148.7, \\, 0.20
£2:216=0, \\ 0.17
f8:423—146.0, \\ 0.07

Challenge: How to predict and explain upsell / churn for a
company?

Al Technology: Artificial Neural Networks.

XAl Technology: Features importance (contribution, influence),
LIME.

KDD 2019 Tutorial on Explainable Al in Industry - https://sites.google.com/view/kdd19-explainable-ai-tutorial



Explaining Talent Search Results — Human Resources

et Expenence Dougrer

Praduct Desigries

frowaction Designer

an

Linked [}

T N —— e ——  ——

Challenge: How to rationalize a talent search for a recruiter when
looking for candidates for a given role. Features are dynamic and
costly to compute. Recruiters are interested in discriminating
between two candidates to make a selection.

Al Technology: Generalized Linear Mixed Models, Artificial Neural
Networks, XGBoost

XAl Technology: Generalized Linear Mixed Models (inherently
explainable), Integrated Gradient, Features Importance in XGBoost

Feature Description Difference (1 vs 2) Contribution

Feature.......... Description.......... -2.0476928 -2.144455602
Feature.......... Description.......... -2.3223877 1.903594618

Feature.......... Description.......... 0.11666667 0.2114946752
Feature.......... Description.......... -2.1442587 0.2060414469
Feature.......... Description.......... -14 0.1215354111
Feature.......... Description.......... 1 0.1000282466
Feature.......... Description.......... -92 -0.085286277
Feature.......... Description.......... 0.9333333 0.0568533262
Feature.......... Description.......... -1 -0.051796317
Feature.......... Description.......... -1 -0.050895940

KDD 2019 Tutorial on Explainable Al in Industry - https://sites.google.com/view/kdd19-explainable-ai-tutorial



Explaining Breast Cancer Survival Rate Prediction — Health

Age at
diagnosis

Post
Menopausal?

i
i
ER status 6
i ]
i

Yes No Unknown
Positive = Negative
HER2 status

Positive = Negative Unknown

Ki-67 status Positive Negative Unknown

Tumour size

(mm) o - Z *
Tumour grade 0 1 2 3

o Screening = Symptoms Unknown

Positive nodes o - 2 -
o Yes No Unknown

Detected by

Results

Curves  Chart Texts Icons

| New recording |
These results are for women who have already had surgery. This table

shows the percentage of women who survive atleast 5 10 15 years

after surgery, based on the information you have provided.

Treatment Additional Benefit Overall Survival %
Surgery only - 72%
+ Hormone therapy 0% 72%

If death from breast cancer were excluded, 82% would survive at

least 10 years. o
Show ranges? o Yes No

predxct

breast cancer

Challenge: Predict is an online tool
that helps patients and clinicians
see how different treatments for
early invasive breast cancer might
improve survival rates after surgery.

Al Technology: competing risk
analysis

XAl Technology: Interactive
explanations, Multiple
representations.

David Spiegelhalter, Making Algorithms trustworthy, NeurIPS 2018 Keynote

predict.nhs.uk/tool



Explaining Energy Consumption — A Global Perspective — Energy

Site Selector
......
[ ]
Mexico
Site Details
Name Type Sqft

Zion Dado Building | Offices 2700

Country Address

United States 54 Beaver Ridge Dr., Omaha, NE 12302

This Month Avg. KWh
28,126
Benchmark 35,60

Key Indicators
7-8 am / Contribution 6-10 pm / Contribution
8.25% 21.07%
s T.45% st 20127
Electricity Consumption

Weather Conditions

Monthly Avg. Temp (°F)

Challenge: Predicting energy consumption
is crucial to satisfy high-demand. However
some demands might be difficult to
forecast, particularly in case of abnormal
events. How to augment energy
consumption data with open / event data
to reach better accuracy and explainability
of out-of-distribution demand.

Al Technology: Artificial Neural Network

XAl Technology: Artificial Neural Network,
Data Augmentation, Knowledge Graphs



Explaining Energy Consumption — A Local Perspective — Energy

Welcerne 10 Lecire irsland PAYG
Top Up App

electric
Ireland

Once Off Top Up

® 12 Leinster Road

5 982621 889800 0000020

€30.00

= View your 1op up history

M View your meters

€30.00

@ Cottage

i 16684 48396 32765 26794

janedoh@gmail com

Challenge: Predicting local (home) energy
consumption is crucial to satisfy high-
demand. Local understanding of
consumption requires high-granularity data
about energy consumption, which is
achieved by analyzing energy signature,
and characterizing user patterns on energy
consumption.

Al Technology: Artificial Neural Network

XAl Technology: Artificial Neural Network,
Shapley values

— electri

o Ireland






Some Tutorials, Workshops, Challenges

Tutorial:

AAAI 2022: Explanations in Interactive Machine Learning (#1): //si i j22-xim|-f

IJCAI 2021: Theoretically Unifying Conceptual Explanation and Generalization of DNNs (#1) Jlijcai- i ideo='

AAAI 2021 Explainable Al for Societal Event Predictions: Foundations, Methods, and Applications (#1) N j I I j-21-1

AAAI 2021 eXplainable Recommender Systems (#1) hitp: j ibz,it/~] jeri i

AAAI 2021 / NeurlPS 2020 Explaining Machine Learning Predictions: State-of-the-art, Challenges, and Opportunities (#2) - hitp:/explainml-tutorial.github jo/ + video: hitps://mww.youtube com/watch?v=EbpU4p _Ohes
AAAI 2021 From Explainability to Model Quality and Back Again (#1)

AAAI 2021 Tutorial On Explainable Al: From Theory to Motivation, Industrial Applications and Coding Practices (#3) - hitps:/xaitutorial2019 qithub jo/ hitps:/xaitutorial2020 github io/

IJCAI 2020 Tutorial on Logic-Enabled Verification and Explanation of ML Models (#1) - https:/alexeyignatiev.github.io/ijcai20-tutorial/index.html

ICIP 2018 / EMBC 2019 Interpretable Deep Learning: Towards Understanding & Explaining Deep Neural Networks (#2) - http://interpretable-ml.org/icip2018tutorial/ - hitp:/interpretable-ml.org/embc2019tutorial/
ICCV 2019 Tutorial on Interpretable Machine Learning for Computer Vision (#2) - hitps:/interpretablevision.github jo/

KDD 2019 Tutorial on Explainable Al in Industry (#1) - hitps:/sites.google.com/view/kdd19-explainable-aj-tutorial

Workshop:

AAAI 2022 Workshop on Explainable Artificial Intelligence (#6 — follow-up of AAAI 2021 + IJCAI serie) - hitps:/sites.goodle.com/view/eaai-ws-2022

NeurlPS 2021: eXplainable Al approaches for debugging and diagnosis (#1) https:/nips.cc/virtual/2021/workshop/21856

BlackboxNLP 2020: Analyzing and interpreting neural networks for NLP (#3): hitps:/blackboxnlp github.jo/

|IEEE VIS Workshop on Visualization for Al Explainability 2020 (#3) - hitps:/visxai.io/

ISWC 2020 Workshop on Semantic Explainability (#2) - hitp://mwww.semantic-explainability.com/

IJCAI 2020 Workshop on Explainable Artificial Intelligence (#4) - https:/sites.aooale.com/view/xai2020/home 55 paper submitted in 2019

IJCAI 2019 Workshop on Optimisation and Explanation in Al (#1) - https://www.doc.ic.acuk/~kc2813/OXA|/

SIGIR 2020 Workshop on Explainable Recommendation and Search (#3) hitps://ears2020 github io

ICAPS 2020 Workshop on Explainable Planning (#3)- hitps:/kcl-planning.github.io/XAIP-Workshops/ICAPS 2019 23 papers submitted in 2019 hitps:/icaps20subpages icaps-conference org/workshops/xaip/
KDD 2019 Workshop on Explainable Al for fairess, accountability, and transparency (#1) — hitps:/xai.kdd2019 a.intuit.com

ICCV 2019 Workshop on Interpreting and Explaining Visual Artificial Intelligence Models (#1) - http:/xai.unist.ac.kr/workshop/2019/

NeurlPS 2019 Workshop on Challenges and Opportunities for Al in Financial Services: the Impact of Fairness, Explainability, Accuracy, and Privacy - hitps://sites google.com/view/feap-ai4fin-2018/
CD-MAKE 2021 — Workshop on Explainable Al (#4) - hitps:/cd-make net/make-explainable-ai/

AAAI 2019/ CVPR 2019 Workshop on Network Interpretability for Deep Learning (#1 and #2) - hitp:/networkinterpretability.org/ - hitps:/explainai.net/

IEEE FUZZ 2019/ Advances on eXplainable Artificial Intelligence (#2) - hitps:/sites.goodle.com/view/xai-fuzzieee2019

International Conference on NL Generation - Interactive Natural Language Technology for Explainable Artificial Intelligence (EU H2020 NL4XAL; #1) - hitps:/sites.google.com/view/nl4xai2019/

Conference

2021 ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT) (#4) hitps:/facctconference.org/

Challenge:

2018: FICO Explainable Machine Learning Challenge (#1) - hitps:
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(Some) Software Resources

QUANTUS: https://github.com/understandable-machine-intel
DEEL XPLIQUE: https://github.com/deel-ai/xplique (combination of existing tools: feature attribution + Open Al visualization + Google concept explanation) (with metrics)

ligence-lab/Quantus (with metrics)

Facebook Fairseq: https://github.com/pytorch/fairseq (to capture attention weights per input token... and much more)

Saliency-based XAl: https://github.com/chihkuanyeh/saliency evaluation + https://github.com/pair-code/saliency/blob/master/Examples.ipynb (Vanilla Gradients, Guided Backpropogation, Integrated Gradients, Occlusion)

Explainer: https://github.com/dbvis-ukon/explainer (explainable Al and interactive machine learning)

XAl Empirical studies: https://paperswithcode.com/paper/how-can-i-explain-this-to-you-an-empirical

Facebook Captum - https://github.com/pytorch/captum

IBM-MIT shared-interest https://github.com/aboggust/shared-interest

Google-CMU Post-training Concept-based Explanation: https://github.com/chihkuanyeh/concept _exp

Google-Stanford Automatic Concept-based Explanations: https://github.com/amiratag/ACE

Google Testing with Concept Activation Vectors https://github.com/tensorflow/tcav

DeepExplain: perturbation and gradient-based attribution methods for Deep Neural Networks interpretability. github.com/marcoancona/DeepExplain

iNNvestigate: A toolbox to iNNvestigate neural networks' predictions. github.com/albermax/innvestigate

SHAP: SHapley Additive exPlanations. github.com/slundberg/shap
Microsoft Explainable Boosting Machines. https://github.com/Microsoft/interpret

GANDissect: Pytorch-based tools for visualizing and understanding the neurons of a GAN. https://github.com/CSAILVision/GANDissect

ELI5: A library for debugging/inspecting machine learning classifiers and explaining their predictions. github.com/TeamHG-Memex/eli5

Skater: Python Library for Model Interpretation/Explanations. github.com/datascienceinc/Skater

Yellowbrick: Visual analysis and diagnostic tools to facilitate machine learning model selection. github.com/DistrictDataLabs/yellowbrick

Lucid: A collection of infrastructure and tools for research in neural network interpretability. github.com/tensorflow/lucid

LIME: Agnostic Model Explainer. https://github.com/marcotcr/lime

Sklearn_explain: model individual score explanation for an already trained scikit-learn model. https://github.com/antoinecarme/sklearn_explain

Heatmapping: Prediction decomposition in terms of contributions of individual input variables

Deep Learning Investigator: Investigation of Saliency, Deconvnet, GuidedBackprop and more. https://github.com/albermax/innvestigate

Google PAIR What-if: Model comparison, counterfactual, individual similarity. https://pair-code.github.io/what-if-tool/

Google tf-explain: https:/tf-explain.readthedocs.io/en/latest/

IBM Al Fairness: Set of fairness metrics for datasets and ML models, explanations for these metrics. https:/github.com/IBM/aif360
Blackbox auditing: Auditing Black-box Models for Indirect Influence. https://github.com/algofairness/BlackBoxAuditing

Model describer: Basic statiscal metrics for explanation (visualisation for error, sensitivity). https://github.com/DataScienceSquad/model-describer

AXA Interpretability and Robustness: https://axa-rev-research.qgithub.io/ (more on research resources — not much about tools)
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(Some) Initiatives: XAl in USA

Challenge TA1: , Deep TA 2:
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TA1: Explainable Learners
> Explainable learning systems that include both an explainable model and an explanation interface
TA2: Psychological Model of Explanation

> Psychological theories of explanation and develop a computational model of explanation from those theories



(Some) Initiatives: XAl in Canada

® DEEL (Dependable Explainable Learning) Project 2019-2024
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(Some) Initiatives: XAl in EU
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Conclusion



Why do we need XAl by the way?

o To empower individual against undesired effects of automated decision making
e To reveal and protect new vulnerabilities
o To implement the “right of explanation”

e To improve industrial standards for developing Al-powered products, increasing
the trust of companies and consumers

o To help people make better decisions

e To align algorithms with human values

e To preserve (and expand) human autonomy
e To scale and industrialize Al



Conclusion

Explainable Al is motivated by real-world applications in Al — Needs of Actionable XAl

Not a new problem — a reformulation of past research challenges in Al

Multi-disciplinary: multiple Al fields, HCI, social sciences (multiple definitions)

In Al (in general): many interesting / complementary approaches

Many industrial applications already — crucial for Al adoption in critical systems

Need “Explainability by Design” when building Al products



Open Research Questions

e There is no agreement on what an explanation is
e There is not a formalism for explanations

e There is no work that seriously addresses the problem of
quantifying the grade of comprehensibility of an explanation for
humans

e Isit possible to join local explanations to build a globally
interpretable model?

e What happens when black box make decision in presence of latent
features?

e What if there is a cost for querying a black box?
e How to balance between explanations & model secrecy?




Future Challenges

o Creating awareness! Success stories!

o Foster multi-disciplinary collaborations in XAl research.
e Help shaping industry standards, legislation.

e More work on transparent design.

¢ Investigate symbolic and sub-symbolic reasoning.

o XAl as a methodology for debugging ML systems

e Evaluation:
o We need benchmark - Shall we start a task force?
o We need an XAl challenge - Anyone interested?

o Rigorous, agreed upon, human-based evaluation protocols



Thanks! Questions?

e Feedback most welcome :-)

o freddy.lecue@inria.fr (@freddy.lecue)

o p.minervini@ucl.ac.uk

o riccardo.quidotti@unipi.it

o fosca.giannotti@isti.cnr.it

e Tutorial website: https://xaitutorial2022.github.io

e To try Thales XAl Platform, please send an email to freddy.lecue@thalesgroup.com
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