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Disclaimer

•As MANY interpretations as research areas (check out work in 
Machine Learning vs Reasoning community)

• Not an exhaustive survey! Focus is on some promising approaches
• Massive body of literature (growing in time)
• Multi-disciplinary (AI – all areas, HCI, social sciences)
• Many domain-specific works hard to uncover
• Many papers do not include the keywords explainability/interpretability!
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Explanation in AI
Explanation in AI aims to create a suite of techniques that produce more explainable models, 
while maintaining a high level of searching, learning, planning, reasoning performance: 
optimization, accuracy, precision; and enable human users to understand, appropriately trust, 
and effectively manage the emerging generation of AI systems .
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Motivation (1)
• Criminal Justice
• People wrongly denied parole
• Recidivism prediction
• Unfair Police dispatch
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[Rudin 2018]

propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

aclu.org/other/statement-concern-about-predictive-policing-aclu-and-16-civil-rights-privacy-racial-justice

nytimes.com/2017/06/13/opinion/how-computers-are-harming-criminal-justice.html



Motivation (2)

• Finance:
• Credit scoring, loan approval
• Insurance quotes
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community.fico.com/s/explainable-machine-learning-challenge

https://www.ft.com/content/e07cee0c-3949-11e7-821a-6027b8a20f23



Motivation (3)
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[Caruana et al. 2015, Holzinger et al. 2017, Magnus et al. 2018]

Patricia Hannon ,hJps://med.stanford.edu/news/all-news/2018/03/researchers-say-use-of-ai-in-medicine-raises-

ethical-quesRons.html

• Healthcare 

• Applying ML methods in medical 
care is problematic.

• AI as 3rd-party actor in physician-
patient relationship

• Responsibility, confidentiality?

• Learning must be done with 
available data.

Cannot randomize cares given to 
patients!

• Must validate models before use.



Motivation (4)
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[Caruana et al. 2015, Holzinger et al. 2017, Magnus et al. 2018]

• Critical Systems



The Need for Explana0on 

• Critical systems / Decisive moments
• Human factor: 

• Human decision-making affected by greed, prejudice, fatigue, poor 
scalability.

• Bias
• Algorithmic decision-making on the rise. 

• More objective than humans?
• Potentially discriminative 
• Opaque 
• Information and power asymmetry

• High-stakes scenarios = ethical problems!
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[Lepri et al. 2018]



Tutorial Outline (1)

• Explanation in AI 8:40 – 9:30
• Definitions & Properties

• Explanations in different AI fields

• The Role of Humans

• Evaluation Protocols & Metrics

• Explainable Machine Learning 9:30 – 10:30
• What is a Black Box?

• Interpretable, Explainable, and Comprehensible Models

• Open the Black Box Problems

• Break 10:30 – 11:00
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Tutorial Outline (2)

• Explainable AI with Background Knowledge 11:00 – 11:15
• Explainability in terms of Domain Knowledge

• State of the art to use domain knowledge

• Machine Learning on Knowledge Graphs 11:15 – 12:00
• Knowledge Graphs

• Relational Learning

• Neuro-Symbolic Reasoning and Neural Theorem Provers

• Applications 12:00 – 12:30
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Overview of explana/on in different AI fields (1)

• Machine Learning
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Auto-encoder
Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep Learning for Case-
Based Reasoning Through Prototypes: A Neural Network That Explains 
Its Predictions. AAAI 2018: 3530-3537

Surogate Model
Mark Craven, Jude W. Shavlik: ExtracVng Tree-Structured 
RepresentaVons of Trained Networks. NIPS 1995: 24-30

Feature Importance, Partial Dependence Plot, Individual Conditional Expectation

Interpretable Models: 
• Linear regression, 
• Logistic regression, 
• Decision Tree, 
• GLMs, 
• GAMs
• Naive Bayes, 
• KNNs



Overview of explanation in different AI fields (2)

• Computer Vision
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Uncertainty Map

Saliency Map

Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian Deep Learning for 
Computer Vision? NIPS 2017: 5580-5590

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow, Moritz Hardt, Been 
Kim: Sanity Checks for Saliency Maps. NeurIPS 2018: 9525-9536

Visual Explanation
Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele, 
Trevor Darrell: Generating Visual Explanations. ECCV (4) 2016: 3-19



Overview of explanation in different AI fields (3)

• Game Theory
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Shapley Additive Explanation
Scott M. Lundberg, Su-In Lee: A Unified Approach to Interpreting Model Predictions. NIPS 2017: 4768-

4777



Overview of explanation in different AI fields (4)

• Search and Constraint Satisfaction
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Conflicts resolution
Barry O'Sullivan, Alexandre Papadopoulos, Boi Faltings, Pearl Pu: Representative Explanations for 
Over-Constrained Problems. AAAI 2007: 323-328

Constraints relaxation
Ulrich Junker: QUICKXPLAIN: Preferred Explanations and 
Relaxations for Over-Constrained Problems. AAAI 2004: 
167-172



Overview of explanation in different AI fields (5)

• Knowledge Representation and Reasoning
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Explaining Reasoning (through Justification) e.g., Subsumption
Deborah L. McGuinness, Alexander Borgida: Explaining Subsumption in Description Logics. IJCAI (1) 
1995: 816-821

Diagnosis Inference
Alban Grastien, Patrik Haslum, Sylvie Thiébaux: Conflict-
Based Diagnosis of Discrete Event Systems: Theory and 
Practice. KR 2012

Abduction Reasoning (in Bayesian Network)
David Poole: ProbabilisZc Horn AbducZon and Bayesian 
Networks. ArZf. Intell. 64(1): 81-129 (1993)



Overview of explanation in different AI fields (6)

• Multi-agent Systems
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Agent Strategy Summarization
Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization. AAMAS 2018: 1203-1207

ExplanaNon of Agent Conflicts and Harmful InteracNons
Katia P. Sycara, Massimo Paolucci, Martin Van Velsen, Joseph A. Giampapa: The 
RETSINA MAS Infrastructure. Autonomous Agents and Multi-Agent Systems 7(1-2): 
29-48 (2003)

Explainable Agents
Joost Broekens, Maaike Harbers, Koen V. Hindriks, Karel van den Bosch, Catholijn M. Jonker, John-
Jules Ch. Meyer: Do You Get It? User-Evaluated Explainable BDI Agents. MATES 2010: 28-39



Overview of explanation in different AI fields (7)

• NLP
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LIME for NLP
Marco Túlio Ribeiro, Sameer Singh, Carlos Guestrin: "Why Should I Trust You?": Explaining the 
Predictions of Any Classifier. KDD 2016: 1135-1144

Explainable NLP
Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative 
Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)

Fine-grained 
explanations are in the 
form of: 
• texts in a real-world 

dataset;
• Numerical scores



Overview of explanation in different AI fields (8)

• Planning and Scheduling
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XAI Plan
Rita Borgo, Michael Cashmore, Daniele Magazzeni: Towards Providing Explanations for AI Planner 
Decisions. CoRR abs/1810.06338 (2018)

Human-in-the-loop Planning
Maria Fox, Derek Long, Daniele Magazzeni: Explainable Planning. CoRR
abs/1709.10256 (2017)



Overview of explanation in different AI fields (9)

• Robo$cs
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Narration of Autonomous Robot Experience
Stephanie Rosenthal, Sai P Selvaraj, and Manuela Veloso. Verbalization: 
Narration of autonomous robot experience. In IJCAI, pages 862–868. AAAI 
Press, 2016.

From Decision Tree to human-friendly information 
Raymond Ka-Man Sheh: "Why Did You Do That?" Explainable Intelligent 
Robots. AAAI Workshops 2017

Daniel J Brooks et al. 2010. Towards State Summariza$on for Autonomous 
Robots.. In AAAI Fall Symposium: Dialog with Robots, Vol. 61. 62.



The Need to Explain

• User Acceptance & Trust [Lipton 2016, Ribeiro 2016, Weld and Bansal 2018] 

• Legal
• Conformance to ethical standards, fairness
• Right to be informed [Goodman and Flaxman 2016, Wachter 2017]

• Contestable decisions

• Explanatory Debugging [Kulesza et al. 2014, Weld and Bansal 2018]

• Flawed performance metrics
• Inadequate features
• Distributional drift 

• Increase Insightfulness [Lipton 2016]

• Informativeness
• Uncovering causality [Pearl 2009]
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knowyourmeme.com/photos/842961-the-simpsons
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BeginningExplainable 
AI



27 January 2019 AAAI 2019, Tutorial on Explainable AI https://xaitutorial2019.github.io/

Oxford Dictionary of  English



Transparent Design vs Post-hoc Explanation

Transparent design reveals how a model 
functions.

Post-hoc Explanation explains why a 
black-box model behaved that way.
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[MiJelstadt et al. 2018]

Black-box 
AI System

Explanation Sub-system

Input Data
Explanation

!"

Input Data

Interpretability 

Black-box System

Transparent System

!"



So, What is an Explanation?
• No formal, technical, agreed upon definition!
• Comprehensive philosophical overview out of scope of the tutorial

• Not limited to machine learning!
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[Lipton 2016, TomseL et al. 2018, Rudin 2018]

Black-box 

AI System

Explanation Sub-system

Input Data
Explanation

!"

[Miller 2017]



What About Interpretability?

• Interpretability as Mul0-Faceted Concept
• Interpretability is an ill-defined term!
• Not a monolithic concept

[Lipton 2016]
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Input Data
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Levels of Model Transparency 
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[Lipton 2016, Lepri et al. 2017, Mittelstadt et al. 2018, Weld and Bansal 2018]

Simulatability
Understanding of the functioning of the model
• Can a human easily predict outputs?
• Can a human examine the model all at once?

Decomposability
Understanding at the level of single components (e.g. 

parameters)

Algorithmic Transparency
Understanding at the level of training algorithm

Transparent model

Transparent Model Components

Transparent Training Algorithm



Interpretability Goes Beyond the Model
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Incomplete problem formalization
• Safety: cannot entirely test for safety
• Ethics: Notion of fairness too abstract to be encoded
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[Freitas 2014 , Lipton 2016, Doshi-velez and Kim 2017, Wend and Bansal 2017 , Rudin 2018]

Desire for Explainable AI Must be Justified

Credit scoring

Healthcare Criminal Justice
Ad servers

Movie 
recommenders

High-stakes decisions

No big consequences for 
unacceptable results

Explainable AI Requirements

Completeness 
of Problem 
Formalization

Consequences 
on humans

Sufficiently well-studied 
and validated in real 
applications

Interpretability comes at cost: Trade-off interpretability/predictive power



High-Stakes Scenarios Deserve Transparent 
Models
• Post-hoc explanations can be unreliable

• Design white-box, interpretable models straight away!

• (Or retro-fit approximate but interpretable models over complex 

ones)

• Problem: with thousands+ features DNNs perform better: post-hoc 

explanation the only way (?)
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[Rudin 2018, MiTelstadt et al. 2018]



(Some) Desired Properties of Explainable AI 
Systems
• Informativeness

• Low cognitive load

• Usability

• Fidelity 

• Robustness

• Non-misleading

• Interactivity /Conversational

27 January 2019 AAAI 2019, Tutorial on Explainable AI https://xaitutorial2019.github.io/

[Lipton 2016, Doshi-velez and Kim 2017, Rudin 2018, Weld and Bansal 2018, Mittelstadt et al. 2019]



Explanation as System-Human Conversation

- Humans may have follow-up ques3ons

- Explana3ons cannot answer all users’ concerns
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[Weld and Bansal 2018]



Role-based Interpretability

• End users “Am I being treated fairly?”
“Can I contest the decision?”
“What could I do differently to get a 
positive outcome?”

• Engineers, data scientists: “Is my system working 
as designed?”
• Regulators “ Is it compliant?”
• C-suite

An ideal explainer should model the user background. 
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[Tomsett et al. 18]

[Tomsett et al. 2018, Weld and Bansal 2018, Poursabzi-Sangdeh 2018, Mittelstadt et al. 2019]

“Is the system interpretable?” à “To whom is the system interpretable?”
No Universally Interpretable Model!



Designing Explanations is Task-Related 

• Interpretability is always scenario-dependent!
What does interpretability mean in a specific context? Ask the experts!

• What is the ultimate goal of the explanation in that specific context, 
for that specific task?

• How incomplete is the problem formulation?

• Time constraints

• Which user expertise?
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[Lipton 2016, Rudin 2018, Doshi-Velez and Kim 2017]



Evaluation: Interpretability as Latent Property

• Not directly measurable!

• Rely instead on measurable outcomes:

• Any useful to individuals?

• Can user estimate what a model will predict?

• How much do humans follow predictions?

• How well can people detect a mistake?

• No established benchmarks

• How to rank interpretable models? Different degrees of 

interpretability?

27 January 2019 AAAI 2019, Tutorial on Explainable AI https://xaitutorial2019.github.io/

Interpretability 



Evaluation Approaches
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[Doshi-Velez and Kim 2017]



Human-Independent Metrics: Size

• Size is over-simplistic  [Freitas 14]

• E.g.: # nodes in a decision tree, size of a local explanation
• Humans can handle at most 7±2 symbols [Miller1956, Rudin2018]

• Size does not capture semantics of the model
• Extreme simplicity insufficient! e.g. medical experts and larger models, [Freitas 2014]

• What does too large mean?
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[Doshi-Velez and Kim 2017, Poursabzi-Sangdeh 18]



Human-based Evaluation is Essential

Evaluation criteria for Explanations [Miller, 2017]

• Truth & probability
• Usefulness, relevance
• Coherence with prior belief
• Generalization

Cognitive chunks = basic explanation units (for different explanation needs)
• Which basic units for explanations?
• How many?
• How to compose them?
• Uncertainty & end users?
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[Doshi-Velez and Kim 2017, Poursabzi-Sangdeh 18]



Open Challenges

• More formal studies on interpretability
• Rigorous, agreed upon evaluation protocols
• More work on transparent design
• Human involvement (e.g. better interactive, “social” explanations) [Miller 2017]

• Define industry standards (e.g. AI Service Factsheet [Hind et al. 2018)]

• Improve existing legislation 
• “Right to explanation” vs “right to be informed” [Wachter et al. 2017]

• Legislation & Explanations: How accurate ? How complete? How faithful to 
the model? [Rudin 2018]

27 January 2019 AAAI 2019, Tutorial on Explainable AI https://xaitutorial2019.github.io/



tl;dr

• Explana'ons and interpretability are required for be5er human trust, 
system debug, and legal compliance.
• No monolithic, agreed upon defini'on of Explainable AI
• Adop'on spans mul'ple AI fields
• Explainability, interpretability come at a cost
• Design with humans and task in mind
• Human-based evalua'on is essen'al
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Black Box Model

A black box is a DMML 
model, whose internals are 
either unknown to the 
observer or they are known 
but uninterpretable by 
humans.

- Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box 
models. ACM Computing Surveys (CSUR), 51(5), 93.



Needs For Interpretable Models



COMPAS recidivism black bias 



No Amazon free same-day delivery 
for restricted minority neighborhoods 



The background bias



Since 25 May 2018, GDPR establishes a right for all individuals to obtain “meaningful explanations of the logic 
involved” when “automated (algorithmic) individual decision-making”, including profiling, takes place.

Right of Explanation



Interpretable, Explainable and 
Comprehensible Models



Desiderata of an Interpretable Model

• Interpretability (or comprehensibility): to which extent the model 
and/or its predic6ons are human understandable. Is measured with 
the complexity of the model.

• Fidelity: to which extent the model imitate a black-box predictor.

• Accuracy: to which extent the model predicts unseen instances.

- Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.



Desiderata of an Interpretable Model

• Fairness: the model guarantees the protection of groups against 
discrimination.

• Privacy: the model does not reveal sensitive information about people.

• Respect Monotonicity: the increase of the values of an attribute either 
increase or decrease in a monotonic way the probability of a record of 
being member of a class.

• Usability: an interactive and queryable explanation is more usable than 
a textual and fixed explanation.

- Andrea Romei and Salvatore Ruggieri. 2014. A multidisciplinary survey on discrimination analysis. Knowl. Eng.
- Yousra Abdul Alsahib S. Aldeen, Mazleena Salleh, and Mohammad Abdur Razzaque. 2015. A comprehensive review on 

privacy preserving data mining. SpringerPlus .
- Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.



Desiderata of an Interpretable Model

• Reliability and Robustness: the interpretable model should maintain 
high levels of performance independently from small variations of the 
parameters or of the input data.
• Causality: controlled changes in the input due to a perturbation should 

affect the model behavior.
• Scalability: the interpretable model should be able to scale to large 

input data with large input spaces.
• Generality: the model should not require special training or restrictions. 



Recognized Interpretable Models

Linear Model

Rules

Decision Tree



Complexity

• Opposed to interpretability.

• Is only related to the model and not 
to the training data that is unknown.

• Generally estimated with a rough 
approximation related to the size of 
the interpretable model.

• Linear Model: number of non 
zero weights in the model.

• Rule: number of attribute-value 
pairs in condition.

• Decision Tree: estimating the 
complexity of a tree can be hard.

- Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?: Explaining the predictions of any classifier. KDD.
- Houtao Deng. 2014. Interpreting tree ensembles with intrees. arXiv preprint arXiv:1408.5456.
- Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.



Open the Black Box Problems



Problems Taxonomy



XbD – eXplanation by Design



BBX - Black Box eXplanation



Classification Problem

X = {x1, …, xn}



Model Explanation Problem
Provide an interpretable model able to mimic the overall logic/behavior of 
the black box and to explain its logic.

X = {x1, …, xn}



Outcome Explana/on Problem
Provide an interpretable outcome, i.e., an explanation for the outcome of 
the black box for a single instance.

x



Model Inspection Problem
Provide a representation (visual or textual) for understanding either how the 
black box model works or why the black box returns certain predictions more 
likely than others.

X = {x1, …, xn}



Transparent Box Design Problem
Provide a model which is locally or globally interpretable on its own.

X = {x1, …, xn}

x



Categorization

• The type of problem

• The type of black box model that the explanator is able to open

• The type of data used as input by the black box model

• The type of explanator adopted to open the black box



Black Boxes

• Neural Network (NN)
• Tree Ensemble (TE)
• Support Vector Machine (SVM)
• Deep Neural Network (DNN)



Types of Data

Text
(TXT)

Tabular
(TAB)

Images 
(IMG)



Explanators
• Decision Tree (DT)
• Decision Rules (DR) 
• Features Importance (FI)
• Saliency Mask (SM)
• Sensitivity Analysis (SA)
• Partial Dependence Plot (PDP)
• Prototype Selection (PS)
• Activation Maximization (AM)



Reverse Engineering

• The name comes from the fact that we can only observe
the input and output of the black box.
• Possible actions are:
• choice of a particular comprehensible predictor
• querying/auditing the black box with input records 

created in a controlled way using random perturbations
w.r.t. a certain prior knowledge (e.g. train or test)

• It can be generalizable or not:
• Model-Agnostic
• Model-Specific

Input Output



Model-Agnos+c vs Model-Specific

independent

dependent



Solving The Model Explanation Problem



Global Model Explainers

• Explanator: DT
• Black Box: NN, TE
• Data Type: TAB

• Explanator: DR
• Black Box: NN, SVM, TE
• Data Type: TAB

• Explanator: FI
• Black Box: AGN
• Data Type: TAB



Trepan – DT, NN, TAB

01 T = root_of_the_tree()
02 Q = <T, X, {}>
03 while Q not empty & size(T) < limit
04 N, XN, CN = pop(Q)
05 ZN = random(XN, CN)
06 yZ = b(Z), y = b(XN)
07 if same_class(y ∪ yZ)
08 continue
09 S = best_split(XN ∪ ZN, y ∪ yZ)
10 S’= best_m-of-n_split(S)
11 N = update_with_split(N, S’)
12 for each condition c in S’
13 C = new_child_of(N)
14 CC = C_N ∪ {c}
15 XC = select_with_constraints(XN, CN)
16 put(Q, <C, XC, CC>)
- Mark Craven and JudeW. Shavlik. 1996. Extrac'ng tree-structured representa'ons of trained networks. NIPS.

black box 
auditing



RxREN – DR, NN, TAB

- M. Gethsiyal Augasta and T. Kathirvalavakumar. 2012. 
Reverse engineering the neural networks for rule
extraction in classification problems. NPL.

01 prune insignificant neurons
02 for each significant neuron
03 for each outcome
04 compute mandatory data ranges
05 for each outcome
06 build rules using data ranges of each neuron
07 prune insignificant rules
08 update data ranges in rule conditions analyzing error

black box 
auditing



Solving The Outcome Explanation Problem



Local Model Explainers

• Explanator: SM
• Black Box: DNN, NN
• Data Type: IMG

• Explanator: FI
• Black Box: DNN, SVM
• Data Type: ANY

• Explanator: DT
• Black Box: ANY
• Data Type: TAB



Local Explanation

• The overall decision 
boundary is complex
• In the neighborhood of a 

single decision, the 
boundary is simple
• A single decision can be 

explained by auditing the 
black box around the 
given instance and 
learning a local decision.



LIME – FI, AGN, ANY

01 Z = {}
02 x instance to explain 
03 x’ = real2interpretable(x)
04 for i in {1, 2, …, N}
05 zi= sample_around(x’)
06 z = interpretabel2real(z’)
07 Z = Z ∪ {<zi, b(zi), d(x, z)>}
08 w = solve_Lasso(Z, k)
09 return w

- Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?: 
Explaining the predictions of any classifier. KDD.

black box 
auditing



LORE – DR, AGN, TAB

01 x instance to explain
02 Z= = geneticNeighborhood(x, fitness=, N/2)
03 Z≠ = geneticNeighborhood(x, fitness≠, N/2) 
04 Z = Z= ∪ Z≠
05 c = buildTree(Z, b(Z))
06 r = (p -> y) = extractRule(c, x)
07 ϕ = extractCounterfactual(c, r, x)
08 return e = <r, ϕ>

- Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Dino Pedreschi, Franco Turini, 
and Fosca Giannotti. 2018. Local rule-based explanations of black box decision
systems. arXiv preprint arXiv:1805.10820

r = {age ≤ 25, job = clerk, income ≤ 900} -> deny

Φ = {({income > 900} -> grant),
({17 ≤ age < 25, job = other} -> grant)}

black box 
auditing



Meaningful Perturbations – SM, DNN, IMG

01 x instance to explain
02 varying x into x’ maximizing b(x)~b(x’)
03 the variation runs replacing a region R of x with:

constant value, noise, blurred image
04 reformulation: find smallest R such that b(xR)≪b(x)

- Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).

black box 
audi7ng



Solving The Model Inspection Problem



Inspection Model Explainers

• Explanator: SA
• Black Box: NN, DNN, AGN
• Data Type: TAB

• Explanator: PDP
• Black Box: AGN
• Data Type: TAB

• Explanator: AM
• Black Box: DNN
• Data Type: IMG, TXT



VEC – SA, AGN, TAB

• Sensitivity measures are variables 
calculated as the range, gradient, 
variance of the prediction.
• The visualizations realized are 

barplots for the features 
importance, and Variable Effect 
Characteristic curve (VEC) plotting 
the input values versus the (average) 
outcome responses.

- Paulo Cortez and Mark J. Embrechts. 2011. Opening black box data mining models using sensitivity analysis. CIDM.

VEC

feature distribuJon black box 
auditing



Prospector – PDP, AGN, TAB

• Introduce random perturbations on input values to understand to 
which extent every feature impact the prediction using PDPs.
• The input is changed one variable at a time.

- Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).

black box 
auditing



Solving The Transparent Design Problem



Transparent Model Explainers

• Explanators: 
• DR
• DT
• PS

• Data Type: 
• TAB



CPAR – DR, TAB

• Combines the advantages of associative 
classification and rule-based classification. 
• It adopts a greedy algorithm to generate 

rules directly from training data. 
• It generates more rules than traditional 

rule-based classifiers to avoid missing 
important rules. 
• To avoid overfitting it uses expected 

accuracy to evaluate each rule and uses the 
best k rules in prediction.

- Xiaoxin Yin and Jiawei Han. 2003. CPAR: Classification based on predictive association rules. SIAM, 331–335



CORELS – DR, TAB

• It is a branch-and bound algorithm that provides the optimal solution 
according to the training objective with a certificate of optimality.
• It maintains a lower bound on the minimum value of error that each 

incomplete rule list can achieve. This allows to prune an incomplete 
rule list and every possible extension. 
• It terminates with the optimal rule list and a certificate of optimality.

- Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., & Rudin, C. 2017. Learning certifiably optimal rule lists. KDD.



Take Home Message



Open The Black Box!

• To empower individual against undesired effects of 
automated decision making 
• To reveal and protect new vulnerabilities
• To implement the “right of explanation”
• To improve industrial standards for developing AI-

powered products, increasing the trust of companies 
and consumers
• To help people make better decisions
• To align algorithms with human values 
• To preserve (and expand) human autonomy



Open Research Questions

• There is no agreement on what an explanation is
• There is not a formalism for explanations
• There is no work that seriously addresses the 

problem of quantifying the grade of 
comprehensibility of an explanation for humans
• Is it possible to join local explanations to build a 

globally interpretable model?
• What happens when black box make decision in 

presence of latent features?
• What if there is a cost for querying a black box?
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Explana'on with Background Knowledge
ØWe tend to give explanation in terms of our current 

knowledge.

ØFrom our childhood we learn that dog has 4 legs, 1 
head, 1 tongue, 1 tail etc.

ØWhen we see any image of dog our thinking 
automatically try to capture those objects.

ØWe always want to conform with our previously 
acquired knowledge (Background Knowledge). Will not it be better if we can 

explain in terms of our 
knowledge?  



How ?

Hard to make connection between our knowledge and a model which is 
trained by reducing loss. 

Idea found in current literature is similar to inductive programming.  
– Use background knowledge in the form of linked data and

ontologies to help explain. 
– Link inputs and outputs to background knowledge. 
– Use a symbolic learning system to generate an explanatory theory. 





Current symbolic systems

• ECII1

• DL – Learner2

• OWL Miner3

• DL – Miner4



Input Needed for These Systems

• Background informa/on/Ontology/Knowledge Graphs

• Some posi/ve and/or nega/ve examples

• Mapping between model dataset and the ontology

27 January 2019 AAAI 2019, Tutorial on Explainable AI https://xaitutorial2019.github.io/



Real-world Background Info as Knowledge Graphs

• Cyc
• Wordnet
• Suggested Merged Upper Ontology (SUMO)
• Dbpedia
• Freebase

Positive & Negative

• Mapping each instance as an individual and put it in exact hierarchy.5
Mapping between dataset and Ontology

• The concept is considered is positive and all others are negative.5



Experiment using MIT ADE20K-Dataset
http://groups.csail.mit.edu/vision/datasets/ADE20K/ 



Experiment using MIT ADE20K-Dataset

Images come with annotations of objects in the picture: 

001 # 0 # 0 # sky # sky # ""
002 # 0 # 0 # road, route # road # ""
005 # 0 # 0 # sidewalk, pavement # sidewalk # ""
006 # 0 # 0 # building, edifice # building # ""
007 # 0 # 0 # truck, motortruck # truck # ""
008 # 0 # 0 # hovel, hut, shack, shanty # hut # "”
009 # 0 # 0 # pallet # pallet # ""
011 # 0 # 0 # box # boxes # ""
001 # 1 # 0 # door # door # ""
002 # 1 # 0 # window # window # ""
009 # 1 # 0 # wheel # wheel # ""



Mapping

Objects in image annotations became individuals (constants), which can be typed with the 
ontology. 

contains road1 
contains window1 
contains door1 
contains wheel1 
contains sidewalk1 
contains truck1 
contains box1 
contains building1 



Posi%ve 
Examples 
(Outdoor 
Warehouse)

Negative 
Examples 
(Indoor 
Warehouse)

Proof of Concept Experiment 



Proof of Concept Experiment 
Positive: 

img1: road, window, door, wheel, sidewalk, truck, box, building 
img2:  tree, road, window, timber, building, lumber 
img3:  hand, sidewalk, clock, steps, door, face, building, window, road 

Negative: 
img4: shelf, ceiling, floor

img5: box, floor, wall, ceiling, product

img6: ceiling, wall, shelf, floor, product 

results include: 



This image contains building, truck, 
door, window which are 
usually found in warehouse.
So it seems this picture is a 
Warehouse picture.

Warehouse

External Knowledge
Base

Symbolic Learning System

DL Model which merges explanation with Background information



Summary

• This is just beginning of using background information to enhance 
explanation.
• There are many open questions-

v Where we can get effective background information?

v How to relate already available background information with my current 
model?

vAre those explanations enough to satisfy our quest?
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Outline

! Knowledge Graphs
○ What are they?
○ Applications in Industry and Academia
○ Problems with building large-scale Knowledge Graphs

! Relational Learning in Knowledge Graphs
○ Observable Feature Models
○ Latent Feature Models
○ Combining and Interpreting Observable and Latent Feature Models

! Neuro-Symbolic Reasoning



Knowledge Graphs
! Set of (subject, predicate, object — SPO) triples - subject and object are 

entities, and predicate is the relationship holding between them.
! Each SPO triple denotes a fact, i.e. the existence of an actual relationship 

between two entities.

subject predicate object

Bob is interested in The Mona Lisa

Bob is a friend of Alice

The Mona Lisa was created by Leonardo Da Vinci

Bob is a  Person

La Joconde à W. is about  The Mona Lisa

Bob is born on 14 July 1990



Knowledge Graphs
Name Entities Relations Types Facts

Freebase 40M 35K 26.5K 637M
DBpedia (en) 4.6M 1.4K 735 580M

YAGO3 17M 77 488K 150M
Wikidata 15.6M 1.7K 23.2K 66M

NELL 2M 425 285 433K
Google KG 570M 35K 1.5K 18B

Knowledge Vault 45M 4.5K 1.1K 271M
Yahoo! KG 3.4M 800 250 1.39B

• Manual Construction - curated, collaborative
• Automated Construction - semi-structured, unstructured

Right: Linked Open Data cloud - over 1200 interlinked KGs 
encoding more than 200M facts about more than 50M entities.

Spans a variety of domains - Geography, Government, Life 
Sciences, Linguistics, Media, Publications, Cross-domain..
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Knowledge Graphs Construction
Knowledge Graph construction methods can be classified in:

• Manual — curated (e.g. via experts), collaborative (e.g. via volunteers)

• Automated — semi-structured (e.g. from infoboxes), unstructured (e.g. from text)

Coverage is an issue:

• Freebase (40M entities) - 71% of persons without a birthplace, 75% without a 
nationality, even worse for other relation types [Dong et al. 2014]

• DBpedia (20M entities) - 61% of persons without a birthplace, 58% of scientists 
missing why they are popular [Krompaß et al. 2015]

Relational Learning can help us overcoming these issues.



Relational Learning in Knowledge Graphs

! Dyadic Multi-Relational Data [Nickel et al. 2015, Getoor et al. 2007]

! Many possible relational learning tasks:
○ Link Prediction — Identify missing relationships between entities
○ Collective Classification — Classify entities based on their relationships
○ Link-Based Clustering — Cluster entities based on their relationships
○ Entity Resolution — Entity mapping/deduplication

Relational structure is a rich source of information.
In general, the i.i.d. assumption does not hold in this context.



Statistical Relational Learning

yspo = {1 if xspo ∈ "
0 otherwise

entries in Y ∈ {0,1}|ℰ|×|ℛ|×|ℰ|

Task — model the existence of each triple                                              as 
binary random variables                      indicating whether         is in the KG:

xspo = (s, p, o) ∈ ℰ × ℛ × ℰ
yspo ∈ {0,1} xspo

Every realisation of      denotes a possible world - modelling            allows 
predicting triples based on the state of the entire Knowledge Graph.

Scalability is important - e.g. on Freebase (40M entities), the number of variables 
to represent can be quite large:

Y P (Y)

|ℰ × ℛ × ℰ | > 1019



Types of Statistical Relational Learning Models

Depending on our assumptions on            , we end up with three model classes:
• Latent Feature Models: variables                      are conditionally independent 

given the latent features      associated with subject, predicate, and object:

• Observable Feature Models: related to Latent Feature Models, but      are now 
graph-based features, such as paths linking the subject and the object.

• Graphical Models: variables                      are not assumed to be conditionally 
independent — each        can depend on any of the other random variables in     .

P (Y)
yspo ∈ {0,1}

Θ
∀xi, xj ∈ ℰ × ℛ × ℰ, xi ≠ xj : yi ⊥⊥ yj ∣ Θ

Θ

yspo ∈ {0,1}
yspo Y



Conditional Independence Assumption

Assuming all        variables are conditionally independent allows modelling their 
existence via a scoring function                       representing the likelihood that a triple 
is in the KG, conditioned on the parameters     :

P (Y ∣ Θ) = ∏
s∈ℰ

∏
p∈ℛ

∏
o∈ℰ

P (yspo ∣ Θ)  if yspo = 1

1 − P (yspo ∣ Θ)  otherwise
 with P (yspo ∣ Θ) = σ (f (s, p, o ∣ Θ))

yspo
f (s, p, o ∣ Θ)

Θ

Scoring Function - depending on the type of features used by                 we have 
two families of models -  Observable and Latent Feature Models.

f ( ⋅ ∣ Θ)



Observable Feature Models - Uni-Relational Similarities

Uni-Relational Similarity Measures: based on homophily — similar entities are 
likely to be related — and neighbourhood similarity.

• Local: derive similarity between entities from their local neighbourhood                           
(e.g. Common Neighbours, Adamic-Adar Index [Adamic et al. 2003], Preferential Attachment [Barabási et al. 1999], ..)

• Global: derive similarity between entities using the whole graph                                     
(e.g. Katz Index [Katz, 1953], Leicht-Holme-Newman Index [Leicht et al. 2006], PageRank [Brin et al. 1998], ..)

• Quasi-Local: trade-off between computational complexity and predictive accuracy           
(e.g. Local Katz Index [Liben-Nowell et al. 2007], Local Random Walks [Liu et al. 2010], ..)



Observable Feature Models - Rule Mining and ILP
Rule Mining and Inductive Logic Programming methods extract rules via 
mining methods, and use them to infer new links.

• Logic Programming (deductive): from facts and rules, infer new facts (First-Order Logic)

• Inductive Logic Programming (ILP): from correlated facts, infer new rules                          
(e.g. Progol [Muggleton, 1993], Aleph [Srinivasan, 1999], DL-Learner [Lehmann, 2009], FOIL [Quinlan, 1990], ..)

• Rule Mining: AMIE [Galárraga et al. 2015] is orders of magnitude faster than traditional ILP 
methods, and consistent with the Open World Assumption in Knowledge Graphs:
• Partial Completeness Assumption
• Efficient search space exploration via Mining Operators



Observable Feature Models - Path Ranking Algorithm

Path Ranking Algorithm (PRA) uses length-bounded random walks as features 
between entity pairs for predicting a target relation [Lao et al. 2010].

Abe Bart

Homer

-./012/.30456

7/.30456 7/.30456

Springfield

89:3;<0 89:3;<0−1

A PRA model scores a subject-object pair by a 
linear function of their path features:

where      is the set of all length-bounded 
relation paths, and     are parameters estimated 
via L1,L2-regularised logistic regression.

f (s, p, o) = ∑
π∈Πp

P(s → o ∣ π) × θπ,p

Π
θ

Some extensions: Subgraph Features [Gardner et al. 2015], Multi-Task [Wang et al. 2016]



Observable Feature Models are Interpretable

Body ⇒ Head Confidence
@/;A39-@BC.(X, Y ) ⇒ @/;A39-@BC.(Y, X ) 0.99
9;D/..931EC(X, Y ) ⇒ 9;D/..931EC(Y, X ) 0.96

@/;A39-@BC.(X, Z ) ∧ @/;A39-@BC.(Z, Y ) ⇒ @/;A39-@BC.(X, Y ) 0.88
9;G66989/431EC(X, Y ) ⇒ 78/H;IC.(Y, X ) 0.87

78/H;IC.(X, Y ) ⇒ 9;G66989/431EC(Y, X ) 0.75
13/8;J94@(X, Z ) ∧ 13/8;J94@(Z, Y ) ⇒ 13/8;J94@(X, Y ) 0.73

9;KC003L431EC(X, Y ) ⇒ 9;KC003L431EC(Y, X ) 0.66
13/8;J94@(X, Z ) ∧ 9M7C.4;(Z, Y ) ⇒ 9M7C.4;(X, Y ) 0.61

9068N30L3;(Z, X ) ∧ 9;<043.3;431<0(Z, Y ) ⇒ 9;<043.3;431<0(X, Y ) 0.53

Rules extracted by AMIE+ [Galárraga et al. 2015] from the YAGO3-10 dataset [Dettmers et al. 2018]



Latent Feature Models
Variables        are conditionally independent given a set of latent features and 
parameters     . Latent means that are not directly observed in the data, and thus 
need to be estimated.

yspo

Θ

es eo

Rp

yspo

o ∈ ℰs ∈ ℰ

p ∈ ℛ

f(s, p, o) = fp(es, eo) {
es, eo ∈ ℝk,
fp : ℝk × ℝk ↦ ℝ

Relationships between entities s and o can be inferred 
from the interactions of their latent features         :es, eo

The latent features inferred by these models can be 
very hard to interpret.



Latent Feature Models - Scoring Functions

Models Scoring Functions Parameters

RESCAL [Nickel et al. 2011]

NTN [Socher et al. 2013]

TransE [Bordes et al. 2013]

DistMult [Yang et al. 2014]

HolE [Nickel et al. 2016]

ComplEx [Nickel et al. 2016]

ConvE [Dettmers et al. 2017]

− es + rp − eo
2
1,2

⟨es, rp, eo⟩

Re (⟨es, rp, eo⟩)
r⊤

p (ℱ−1 [ℱ[es] ⊙ ℱ[eo]])

f (vec (f ([es; rp] * ω)) W) eo

rp ∈ ℝk

rp ∈ ℝk

rp ∈ ℝk

rp ∈ ℝk, W ∈ ℝc×k

rp ∈ ℂk

u⊤
p f (esW[1…d ]

p + Vp [es
eo] + bp) Wp ∈ ℝk2×d , Vp ∈ ℝ2k×d , bp, up ∈ ℝk

e⊤
s Wpeo Wp ∈ ℝk×k

Relationships between entities are determined by interactions between latent 
features — this yields different choices for the scoring function                         :fp : ℝk × ℝk ↦ ℝ
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Relationships between entities are determined by interactions between latent 
features — this yields different choices for the scoring function                         :fp : ℝk × ℝk ↦ ℝ



Latent Feature Models - Scoring Functions

Models Scoring Functions Parameters

RESCAL [Nickel et al. 2011]

NTN [Socher et al. 2013]

TransE [Bordes et al. 2013]

DistMult [Yang et al. 2015]

HolE [Nickel et al. 2016]

ComplEx [Nickel et al. 2016]

ConvE [Dettmers et al. 2017]

− es + rp − eo
2
1,2

⟨es, rp, eo⟩

Re (⟨es, rp, eo⟩)
r⊤

p (ℱ−1 [ℱ[es] ⊙ ℱ[eo]])

f (vec (f ([es; rp] * ω)) W) eo

rp ∈ ℝk

rp ∈ ℝk

rp ∈ ℝk

rp ∈ ℝk, W ∈ ℝc×k

rp ∈ ℂk

u⊤
p f (esW[1…d ]

p + Vp [es
eo] + bp) Wp ∈ ℝk2×d , Vp ∈ ℝ2k×d , bp, up ∈ ℝk

e⊤
s Wpeo Wp ∈ ℝk×k

Relationships between entities are determined by interactions between latent 
features — this yields different choices for the scoring function                         :fp : ℝk × ℝk ↦ ℝ



Latent Feature Models - Learning
Another core differente among models is the loss function minimised for fitting the 
latent parameters      to the data — let                                                             :Θ

Losses Formulation Models

Quadratic Loss Tensor Factorisation,           
RESCAL (ALS)

Pairwise Loss SE, NTN, TransE, HolE

Cross-Entropy Loss ComplEx

Multiclass Loss
ConvE, ComplEx-N3 

∑
(xspo,yspo)∈W

yspo − fspo
2

2

∑
x+ ∈W+

∑
x−∈W−

ℒ(x+ , x−) e.g .= max {0,γ + fx−
− fx+}

∑
(x,y)∈W

[y log (px) + (1 − y)log (1 − px)]

∑
xspo∈W+

ℒ(pspo,1) + ∑̃
s∈ℰ

ℒ(ps̃po, ys̃po) + ∑̃
o∈ℰ

ℒ(pspõ, yspõ)

fspo = f (xspo ∣ Θ)  and pspo = σ (fspo)

[Dettmers et al. 2017,

Lacroix et al. 2018]



Latent Feature Models - Predictive Accuracy
Evaluation Metrics — Area Under the Precision-Recall Curve (AUC-PR), Mean 
Reciprocal Rank (MRR), Hits@k. In MRR and Hits@k, for each test triple:

• Modify its subject with all the entities in the Knowledge Graph,
• Score all the triple variants, and compute the rank of the original test triple,
• Repeat for the object.

MRR = 1
|Y |

|Y|

∑
i= 1

1
ranki

, HITS@k = |{ranki ≤10} |
|Y |

From [Lacroix et al. ICML 2018]



Latent Feature Models - Interpreting the Embeddings
Learned relation embeddings — using ComplEx with a pairwise margin-based loss 
— for WordNet (left), DBpedia, and YAGO (right) [Minervini et al. ECML 2017]



Latent Feature Models - Interpreting the Embeddings
Learned relation embeddings — using ComplEx with a pairwise margin-based loss 
— for WordNet (left), DBpedia, and YAGO (right) [Minervini et al. ECML 2017]



Latent Feature Models - Post Hoc Interpretability
Generate an explanation model by training Bayesian Networks or Association Rules 
on the output of a Latent Feature Model. [Carmona et al. 2015, Peake et al. KDD 2018, Gusmão et al. 2018]



Combining Observable and Latent Feature Models
• Additive Relational Effects (ARE) [Nickel et al. NeurIPS 2014] — combines Observable 

and Latent Features in a single linear model:

• Knowledge Vault [Dong et al. KDD 2014] — combines the prediction of Observable and 
Latent Feature Models via stacking:

• Adversarial Sets [Minervini et al. UAI 2017] — incorporate observable features, in the 
form of First-Order Logic Rules R, in Latent Feature Models:

f ARE
spo = w⊤

LFM,pΘLFM,so + w⊤
OBS,pΘPRA,so

fKV
spo = fFUSION (f OFM

spo , fLFM
spo )

ℒ(Θ ∣ R) = ℒLFM(Θ) + max
[⊆](ℰ)

ℒRULE(Θ, R)



Neuro-Symbolic Reasoning

Neural Models
• Can generalise from high-dimensional, 

noisy, ambiguous inputs (e.g. sensory)
• Not interpretable
• Hard to incorporate knowledge
• Propositional fixation [McCarthy, 1988]

Rule-Based Models
• Can learn from small data
• Issues with high-dimensional, noisy, 

ambiguous inputs (e.g. images)
• Easy to interpret, provide explanations

Neural and rule-based models have complementary strengths and weaknesses:

Neuro-Symbolic Reasoning systems can combine the strengths of rule-based and 
neural architectures.



Forward Chaining — ∂ILP (Differentiable ILP) [Evans et al. JAIR 2018]

• Start with a language definition and a set of 
background axioms

• Generate a set of clauses — Datalog rules
• Given axioms and clauses, infer some conclusions
• Calculate the loss between the reached conclusions 

and the desired ones
• The system is end-to-end differentiable: we can 

back-propagate the error to the clause weights, 
representing our belief that rules should be in our 
program.

loss

cross 
entropy

predicted 
label

extract

conclusion 
valuation

infer

true label

target atom

clause weightsclausesinitial 
valuation

generate

computed 
value

differentiable
function

non-differentiable
function

parametersinputs

differentiable
path

non-differentiable
path

Legend

program template

convert

languageaxioms



Backward Chaining — Differentiable Proving
Knowledge Base:
6/4@3.56(/B3, @CM3.)

7/.30456(@CM3., B/.4)
-./01I/4@3.56(X, Y ) ⇐

6/4@3.56(X, Z ),
7/.30456(Z, Y ) .

-./012/56(/B3, B/.4)

7/.30456(@CM3., B/.4)

6/4@3.56(/B3, @CM3.)
-./01I/4@3.56(X, Y )

X //B3 Y /B/.4 6/4@3.56(X //B3, Z )
7/.30456(Z, Y /B/.4)

6/4@3.56(X //B3, Z )

proof score S1

proof score S2

6/4@3.56(X //B3, Z /@CM3.)

Z

7/.30456(Z /@CM3., Y /B/.4)

7/.30456(Z /@CM3., Y /B/.4)

…

6/4@3.56(X //B3, Z /B/.4)

7/.30456(Z /B/.4, Y /B/.4)

7/.30456(Z /B/.4, Y /B/.4)

…

Idea — use Prolog’s 
backward chaining algorithm, 
and compare symbol 
embeddings insteand of 
simply matching symbols.

subgoal:

subgoal:subgoal:

[Rocktäschel et al. 2017,
Minervini et al. 2018]



Differentiable Proving — Rule Learning

6/4@3.56(/B3, @CM3.)
7/.30456(@CM3., B/.4)

θ1(X, Y ) ⇐
θ2(X, Z ),
θ3(Z, Y ) .

-./012/56(/B3, B/.4)

7/.30456(@CM3., B/.4)

6/4@3.56(/B3, @CM3.)
-./01I/4@3.56(X, Y )

X //B3 Y /B/.4 6/4@3.56(X //B3, Z )
7/.30456(Z, Y /B/.4)

6/4@3.56(X //B3, Z )

proof score S1

proof score S2

6/4@3.56(X //B3, Z /@CM3.)

Z

7/.30456(Z /@CM3., Y /B/.4)

7/.30456(Z /@CM3., Y /B/.4)
subgoal:

…

6/4@3.56(X //B3, Z /B/.4)

7/.30456(Z /B/.4, Y /B/.4)
7/.30456(Z /B/.4, Y /B/.4)

…

θ1, θ2, θ3 ∈ ℝk

Idea — learn rule embeddings via 
backpropagation, and decode by 
looking at existing relation 
embeddings.

subgoal:

subgoal:

Knowledge Base:



Differentiable Proving — Training
Train the model parameters — i.e. the entity and predicate embeddings, and the 
embeddings appearing in the rules — by learning to prove facts in the Knowledge 
Graph using all the remaining facts: ℒKB(θ ) = − ∑

FinK
log [n tpKB∖F

θ (F, d )] − ∑
F̃∼corru pt(F )

log [1 − n tpKB
θ (F̃, d )]



Explainable Neural Link Prediction



Neuro-Symbolic Integration — Recent Advances

• Recursive Reasoning Networks [Hohenecker et al. 2018] — given a OWL RL ontology, 
uses a differentiable model to update the entity and predicate representations.

• Deep ProbLog [Manhaeve et al. NeurIPS 2018] — extends the ProbLog probabilistic logic 
programming language with neural predicates that can be evaluated on e.g. 
sensory data (images, speech).

• Logic Tensor Networks [Serafini et al. 2016, 2017] — fully ground First Order Logic rules.

• AutoEncoder-like Architectures [Campero et al. 2018] — use end-to-end differentiable 
reasoning in the decoder of an autoencoder-like architecture to learn the 
minimal set of facts and rules that govern your domain via backprop.
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Challenge: Public transportation is getting more and more
self-driving vehicles. Even if trains are getting more and
more autonomous, the human stays in the loop for critical
decision, for instance in case of obstacles. In case of
obstacles trains are required to provide recommendation of
action i.e., go on or go back to station. In such a case the
human is required to validate the recommendation through
an explanation exposed by the train or machine.

AI Technology: Integration of AI related technologies i.e.,
Machine Learning (Deep Learning / CNNs), and semantic
segmentation.

XAI Technology: Deep learning and Epistemic uncertainty

Obstacle Identification Certification (Trust) - Transportation



Challenge: Globally 323,454 flights are delayed every year.
Airline-caused delays totaled 20.2 million minutes last year,
generating huge cost for the company. Existing in-house
technique reaches 53% accuracy for predicting flight delay,
does not provide any time estimation (in minutes as
opposed to True/False) and is unable to capture the
underlying reasons (explanation).

AI Technology: Integration of AI related technologies i.e.,
Machine Learning (Deep Learning / Recurrent neural
Network), Reasoning (through semantics-augmented case-
based reasoning) and Natural Language Processing for
building a robust model which can (1) predict flight delays in
minutes, (2) explain delays by comparing with historical
cases.

XAI Technology: Knowledge graph embedded Sequence
Learning using LSTMs

Explainable On-Time Performance - Transportation

Jiaoyan Chen, Freddy Lécué, Jeff Z. Pan, Ian Horrocks, Huajun Chen: Knowledge-Based Transfer 
Learning Explanation. KR 2018: 349-358

Nicholas McCarthy, Mohammad Karzand, Freddy Lecue: Amsterdam to Dublin Eventually Delayed? 
LSTM and Transfer Learning for Predicting Delays of Low Cost Airlines: AAAI 2019



Challenge: Accenture is managing every year more than
80,000 opportunities and 35,000 contracts with an
expected revenue of $34.1 billion. Revenue expectation
does not meet estimation due to the complexity and risks
of critical contracts. This is, in part, due to the (1) large
volume of projects to assess and control, and (2) the
existing non-systematic assessment process.

AI Technology: Integration of AI technologies i.e., Machine
Learning, Reasoning, Natural Language Processing for
building a robust model which can (1) predict revenue
loss, (2) recommend corrective actions, and (3) explain
why such actions might have a positive impact.

XAI Technology: Knowledge graph embedded Random
Forrest

Copyright © 2017 Accenture. All rights reserved.

Explainable Risk Management - Finance

Jiewen Wu, Freddy Lécué, Christophe Guéret, Jer Hayes, Sara van de Moosdijk, Gemma Gallagher, 
Peter McCanney, Eugene Eichelberger: Personalizing Actions in Context for Risk Management Using 
Semantic Web Technologies. International Semantic Web Conference (2) 2017: 367-383
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Data analysis 
for spatial interpretation 

of abnormalities:  
abnormal expenses  

Semantic explanation 
(structured in classes: 

fraud, events, seasonal) 
of abnormalities 

Detailed semantic 
explanation (structured 

in sub classes e.g. 
categories for events) 

Challenge: Predicting and explaining abnormally employee expenses (as high accommodation price in 1000+ cities).

AI Technology: Various techniques have been matured over the last two decades to achieve excellent results. However most methods address the

problem from a statistic and pure data-centric angle, which in turn limit any interpretation. We elaborated a web application running live with real

data from (i) travel and expenses from Accenture, (ii) external data from third party such as Google Knowledge Graph, DBPedia (relational DataBase

version of Wikipedia) and social events from Eventful, for explaining abnormalities.

XAI Technology: Knowledge graph embedded Ensemble Learning

Explainable anomaly detection – Finance (Compliance)

Freddy Lécué, Jiewen Wu: Explaining and predicting abnormal 
expenses at large scale using knowledge graph based 
reasoning. J. Web Sem. 44: 89-103 (2017)



Counterfactual Explanations for Credit Decisions 

• Local, post-hoc, contrastive 
explanations of black-box 
classifiers

• Required minimum change in 
input vector to flip the 
decision of the classifier. 
• Interactive Contrastive 

Explanations

Challenge: We predict loan applications with off-the-shelf,
interchangeable black-box estimators, and we explain
their predictions with counterfactual explanations. In
counterfactual explanations the model itself remains a
black box; it is only through changing inputs and outputs
that an explanation is obtained.

AI Technology: Supervised learning, binary classification.

XAI Technology: Post-hoc explanation, Local explanation,
Counterfactuals, Interactive explanations

Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, Freddy Lécué: Interpretable Credit Application Predictions With Counterfactual Explanations. 
FEAP-AI4fin workshop, NeurIPS, 2018.



Counterfactual Explanations for Credit Decisions 

Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, Freddy Lécué: Interpretable Credit Application Predictions With Counterfactual Explanations. 

FEAP-AI4fin workshop, NeurIPS, 2018.



Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, Freddy Lécué: Interpretable Credit Application Predictions With Counterfactual Explanations. 

FEAP-AI4fin workshop, NeurIPS, 2018.



predict.nhs.uk/tool

Challenge: Predict is an online
tool that helps patients and
clinicians see how different
treatments for early invasive
breast cancer might improve
survival rates after surgery.

AI Technology: competing risk 
analysis

XAI Technology: Interactive 
explanations, Multiple 
representations.

Breast Cancer Survival Rate Prediction

David Spiegelhalter, Making Algorithms trustworthy, NeurIPS 2018 Keynote



(Some) Software Resources

• DeepExplain: perturbation and gradient-based attribution methods for Deep Neural Networks interpretability.y
github.com/marcoancona/DeepExplain

• iNNvestigate: A toolbox to iNNvestigate neural networks' predictions. github.com/albermax/innvestigate

• SHAP: SHapley Additive exPlanations. github.com/slundberg/shap

• ELI5: A library for debugging/inspecting machine learning classifiers and explaining their predictions. github.com/TeamHG-
Memex/eli5

• Skater: Python Library for Model Interpretation/Explanations. github.com/datascienceinc/Skater

• Yellowbrick: Visual analysis and diagnostic tools to facilitate machine learning model selection. 
github.com/DistrictDataLabs/yellowbrick

• Lucid: A collection of infrastructure and tools for research in neural network interpretability. github.com/tensorflow/lucid

http://github.com/marcoancona/DeepExplain
https://github.com/albermax/innvestigate
https://github.com/slundberg/shap
https://github.com/TeamHG-Memex/eli5
https://github.com/datascienceinc/Skater
https://github.com/DistrictDataLabs/yellowbrick
https://github.com/tensorflow/lucid


Conclusions



• Explainable AI is motivated by real-world application of AI

• Not a new problem – a reformulation of past research challenges in AI

• Multi-disciplinary: multiple AI fields, HCI, social sciences (multiple 
definitions)
• In Machine Learning: 
• Transparent design or post-hoc explanation?
• Background knowledge matters!
• We can scale-up symbolic reasoning by coupling it with representation learning on 

graphs.
• In AI (in general): many interesting / complementary approaches

AAAI 2019, Tutorial on Explainable AI https://xaitutorial2019.github.io/

Take-Home Messages



Future Challenges

• Creating awareness! Success stories!
• Foster multi-disciplinary collaborations in XAI research.
• Help shaping industry standards, legislation.
• More work on transparent design. 
• Investigate symbolic and sub-symbolic reasoning.

• Evaluation:
• We need benchmark - Shall we start a task force?
• We need an XAI challenge - Anyone interested?
• Rigorous, agreed upon, human-based evaluation protocols

27 January 2019 AAAI 2019, Tutorial on Explainable AI https://xaitutorial2019.github.io/



27 January 2019 AAAI 2019, Tutorial on Explainable AI https://xaitutorial2019.github.io/
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