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Disclaimer

* As MANY interpretations as research areas (check out work in
Machine Learning vs Reasoning community)

* Not an exhaustive survey! Focus is on some promising approaches

* Massive body of literature (growing in time)

* Multi-disciplinary (Al — all areas, HCI, social sciences)

* Many domain-specific works hard to uncover

* Many papers do not include the keywords explainability/interpretability!
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Explanation in Al

Explanation in Al aims to create a suite of techniques that produce more explainable models,

while maintaining a high level of searching, learning, planning, reasoning performance:
optimization, accuracy, precision; and enable human users to understand, appropriately trust,

and effectively manage the emerging generation of Al systems .
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Motivation (1) e e Nework Times

OP-ED CONTRIBUTOR

* Criminal Justice When a Computer
* People wrongly denied parole ngram Keeps Youin Jail

* Recidivism prediction By Rebecca Weer
e Unfair Police dispatch Y D S . 6

nytimes.com/2017/06/13/opinion/how-computers-are-harming-criminal-justice.html

How We Analyzed the
COMPAS Recidivism Algorithm

by Jeff Larson, Sarya Mattu, Lauren Kirchner and Julia Angwin

STATEMENT OF CONCERN ABOUT PREDIC R

POLICING BY ACLU AND 16 CIVIL RIGHTS PRIVACY, propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
RACIAL JUSTICE, AND TECHNOLOGY

ORGANIZATIONS

o ° @ @ e aclu.org/other/statement-concern-about-predictive-policing-aclu-and-16-civil-rights-privacy-racial-justice

[Rudin 2018]
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Motivation (2)

* Finance:
* Credit scoring, loan approval

* Insurance quotes FICO
= C ;"MMUNITY’
The Big Read Artificial intelligence

Insurance: Robots learn the A A X1

bllSineSS Ofcovering risk nable Machine Learning Challenc

Artificial intelligence could revolutionise the industry but may also allow community.fico.com/s/explainable-machine-learning-challenge
clients to calculate if they need protection

, f in n Save
Oliver Ralph MAY 16, 2017 D 24

https://www.ft.com/content/e07cee0c-3949-11e7-821a-6027b8a20f23
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Motivation (3) @ 3nierd

News Center

(5 cmait 1 W Tweet
* Healthcare

* Applying ML methods in medical Researchers say use of artificial intelligence in medicine raises

' i ni astion
care is problematic. ethical questions

A| as 3 rd- p a rty actor | N p hys | cia n- In a perspective piece, Stanford researchers discuss the ethical implications of using
. . . machine-learning tools in making health care decisions for patients.
patient relationship

Patricia Hannon ,https://med.stanford.edu/news/all-news/2018/03/researchers-say-use-of-ai-in-medicine-raises-

* Responsibility, confidentiality? ethical-questions.html
* Learning must be done with
available data. Intelligible Models for HealthCare: Predicting Pneumonia
Cannot randomize cares given to Risk and Hospital 30-day Readmission
patients!
e Must lidat dels bef MF.!ich 2%ruanih L_m\ﬂn C(L)ou " Johar&nceisgtehme
| | r n ICr
ust validate modeils betore use. rcaruag%migfgs%ﬂ.com ylou@linkergi?\?cgm johannes@microsoft.com
Paul Koch Marc Sturm Noémie Elhadad
Microsoft Research NewYork-Presbyterian Hospital Columbia University

aulkoch@microsoft.com mas9161@nyp.or noemie.elhad lumbia.
[Caruana et al. 2015, Holzinger et al. 2017, Magnus et al. 2018] P @ ROy ORI SORRCORRIE oM
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Motivation (4)

* Critical Systems

390 km/h
8500m ~
) 650 km/h 4 650 km/h
Sy / are are
:‘5 -
< 810 km/h 810 km/h
\L \L
6000m
Steady Horizontal Steady Horizontal
Flight Hypergravity Microgravity Hypergravity Flight
19 1.5-1.8g 0g 1.5-1.8g 19
20 seconds 20 seconds 20 seconds
[Caruana et al. 2015, Holzinger et al. 2017, Magnus et al. 2018]
https://xaitutorial2019.github.io/
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The Need for Explanation
HUMAN +
* Critical systems / Decisive moments piACH
* Human factor:
- Human decision-making affected by greed, prejudice, fatigue, poor
scalability.
* Bias

e Algorithmic decision-making on the rise.
* More objective than humans?
* Potentially discriminative
* Opaque
e Information and power asymmetry

* High-stakes scenarios = ethical problems!

[Lepri et al. 2018]
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Tutorial Outline (1)

* Explanation in Al 8:40 - 9:30
e Definitions & Properties
* Explanations in different Al fields
* The Role of Humans
e Evaluation Protocols & Metrics

* Explainable Machine Learning 9:30-10:30
 What is a Black Box?

* Interpretable, Explainable, and Comprehensible Models
* Open the Black Box Problems

* Break 10:30-11:00
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Tutorial Outline (2)

* Explainable Al with Background Knowledge 11:00-11:15
* Explainability in terms of Domain Knowledge
 State of the art to use domain knowledge

* Machine Learning on Knowledge Graphs 11:15-12:00
* Knowledge Graphs
* Relational Learning
* Neuro-Symbolic Reasoning and Neural Theorem Provers

* Applications 12:00 -12:30

27 January 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/
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Overview of explanation in different Al fields (1)
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Interpretable Models: cons et
* Linear regression, T Tt T -

* Logistic regression, Feature Importa?\ce, Partial Dependence Plot, Individual Conditional Expectation
* Decision Tree, .

* GLMs, (1 n s
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Auto-encoder Surogate Model
Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep Learning for Case- Mark Craven, Jude W. Shavlik: Extracting Tree-Structured
Based Reasoning Through Prototypes: A Neural Network That Explains Representations of Trained Networks. NIPS 1995: 24-30

Its Predictions. AAAI 2018: 3530-3537
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Overview of explanation in different Al fields (2

* Computer Vision

(a) Input bmage (b) Ground Truth (c) Semaatic Segmentation (d) Alcasonic Uncertainty (e) Epsstemic Uncertmnty
pe pe % : ™ )

Uncertainty Map

Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian Deep Learning for
Computer Vision? NIPS 2017: 5580-5590

Westem Grebe Description: This is a large bird with a white neck and a black back in the water
Class Definton: The Western Grebe is a waterbird with a yellow pointy beak, white neck and belly,
-~ and black back.
o Explanation: This is a Western Grabe because this bird has a long white neck, pointy yeliow beak
- and red eye
Laysan Albatross

 Description This is a large flying bird with black wings and a white belly,
Class Defintion: The Laysan Albatross is a large seabird with a hooked yeliow beak, black back

SN and white belly
h Visual Explanation: This is a Laysan Albalross because this bird has a large wingspan, hooked
: yeliow beak, and white belly

Laysan Albatross Description: This is a large bird with a white neck and a black back in the water.

Class Defintion: The Laysan Albalross s a large seabird with a hooked yellow beak, black back
and white belly

Visual Explanation: This is a Laysan Abbatross because this bird has a hooked yeliow beak white
neck and black back.

Visual Explanation

Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele,
Trevor Darrell: Generating Visual Explanations. ECCV (4) 2016: 3-19
Integrated  Gradsent

) ! Edge
Guided Guided Integrated Gradients
Gradient SmoothGrad  gackProp GradCAM  Gradients SmoothGrad  Input Detector
,':)r: o r
: - e .. - 'lﬂ.‘. 7:.'.0 2 -~
8 e oot :
» .~ N A pee s E
,’ ©a B "; - 2y ks v
3

Saliency Map
Julius Adebayo, Justin Gilmer, Michael Muelly, lan J. Goodfellow, Moritz Hardt, Been
Kim: Sanity Checks for Saliency Maps. NeurlIPS 2018: 9525-9536
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Overview of explanation in different Al fields (3)

* Game Theory

R 24" e T BN YO 2l A My

Shapley Additive Explanation

Scott M. Lundberg, Su-In Lee: A Unified Approach to Interpreting Model Predictions. NIPS 2017: 4768-
4777
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Overview of explanation in different Al fields (4)

e Search and Constraint Satisfaction

B.9,10,12
) &

Conflicts resolution

Barry O'Sullivan, Alexandre Papadopoulos, Boi Faltings, Pearl Pu: Representative Explanations for
Over-Constrained Problems. AAAI 2007: 323-328
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Explanations

(1384, 9)

‘!;\,A- s n (134, 2) 250
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Constraints relaxation

Ulrich Junker: QUICKXPLAIN: Preferred Explanations and
Relaxations for Over-Constrained Problems. AAAI 2004:
167-172
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Overview of explanation in different Al fields (5)

* Knowledge Representation and Reasoning
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Explaining Reasoning (through Justification) e.g., Subsumption

Deborah L. McGuinness, Alexander Borgida: Explaining Subsumption in Description Logics. IJCAI (1)
1995: 816-821
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Abduction Reasoning (in Bayesian Network)

David Poole: Probabilistic Horn Abduction and Bayesian
Networks. Artif. Intell. 64(1): 81-129 (1993)
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Diagnosis Inference

Alban Grastien, Patrik Haslum, Sylvie Thiébaux: Conflict-
Based Diagnosis of Discrete Event Systems: Theory and
Practice. KR 2012
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Overview of explanation in different Al fields (6)
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Explanation of Agent Conflicts and Harmful Interactions
Explainable Agents
Joost Broekens, Maaike Harbers, Koen V. Hindriks, Karel van den Bosch, Catholijn M. Jonker, John-

Katia P. Sycara, Massimo Paolucci, Martin Van Velsen, Joseph A. Giampapa: The

RETSINA MAS Infrastructure. Autonomous Agents and Multi-Agent Systems 7(1-2) '
Jules Ch. Meyer: Do You Get It? User-Evaluated Explainable BDI Agents. MATES 2010: 28-39
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29-48 (2003)
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Overview of explanation in different Al fields (7)

* NLP

®® 6 Fine-grained
— explanations are in the
606 -0 form of:
1 e e textsin areal-world
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| _Explainable NLP

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative
Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)
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LIME for NLP

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin: "Why Should | Trust You?": Explaining the
Predictions of Any Classifier. KDD 2016: 1135-1144
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Overview of explanation in different Al fields (8)

. . . .
* Planning and Scheduling e £ JX, i A T &
— @:;‘\ (J:‘) Sros oide
1ase et
o & il 3 : : S

’
. e Ceww
—ﬂ-.__‘ . .
/X C:_ Human-in-the-loop Planning
A .
. ' Maria Fox, Derek Long, Daniele Magazzeni: Explainable Planning. CoRR
‘
—

abs/1709.10256 (2017)

XAl Plan

Rita Borgo, Michael Cashmore, Daniele Magazzeni: Towards Providing Explanations for Al Planner
Decisions. CoRR abs/1810.06338 (2018)
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Overview of explanation in different Al fields (9)
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Raymond Ka-Man Sheh: "Why Did You Do That?" Explainable Intelligent
Robots. AAAI Workshops 2017
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The Need to Explain

* User Acceptance & Trust [Lipton 2016, Ribeiro 2016, Weld and Bansal 2018]
* Legal
* Conformance to ethical standards, fairness
* Right to be informed [Goodman and Flaxman 2016, Wachter 2017]
e Contestable decisions
* Explanatory Debugging [Kulesza et al. 2014, Weld and Bansal 2018]

* Flawed performance metrics
* Inadequate features
* Distributional drift

* Increase Insightfulness [Lipton 2016]
* Informativeness
* Uncovering causality [Pearl 2009]

27 January 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/
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Oxtord Dictionary of English
explanation | skspla'nerf(a)n |

noun

a statement or account that makes something clear: the birth rate is central to any explanation of
population trenads.

Interpret | in'te:prit |

verb (interprets, interpreting, interpreted) /with object]

1 explain the meaning of (information or actions): the evidence is difficult to interpret.

27 January 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/
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Transparent Design vs Post-hoc Explanation

Black-box System

Transparent design reveals how a model — R
functions.
Input Data
Interpretablllty Transparent System

Black-box

Al System
Post-hoc Explanation explains why a ' —
black-box model behaved that way. \ |

Explanation
Input Data

o
[Mittelstadt et al. 2018] ;

Explanation Sub-system
27 January 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/



AAALETES

So, What is an Explanation?

* No formal, technical, agreed upon definition!

* Comprehensive philosophical overview out of scope of the tutorial [miller 2017]

¢ NOt I|m |t€d tO maCh Ine lea rni ngl [Lipton 2016, Tomsett et al. 2018, Rudin 2018]
Black-box
Al System
<
N— A
. - Y
Explanation
Input Data

27 January 2019

Explanation Sub-system
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What About Interpretability?

* Interpretability as Multi-Faceted Concept

* Interpretability is an ill-defined term!

* Not a monolithic concept
[Lipton 2016]
Black-box System

—
Input Data

Interpretability. __Transparent System

27 January 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/



Levels of Model Transparency

27 January 2019

Simulatability

Understanding of the functioning of the model
* Can a human easily predict outputs?
* Can a human examine the model all at once?

Decomposability

Understanding at the level of single components (e.g.
parameters)

Algorithmic Transparency

Understanding at the level of training algorithm

Transparent model

Transparent Model Components

Transparent Training Algorithm

[Lipton 2016, Lepri et al. 2017, Mittelstadt et al. 2018, Weld and Bansal 2018]

AAAI 2019, Tutorial on Explainable Al
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Interpretability Goes Beyond the Model

Features — Simulatability

Decomposability

Algorithmic
Transparency

Performance Metric

Data collection -

Stakeholders Scenario, Task

27 January 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/
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Desire for Explainable Al Must be Justified

Interpretability comes at cost: Trade-off interpretability/predictive power

Consequences No big consequences for
on humans unacceptable results
High-stakes decisions
Movie . Credit scoring
recommenders |
Healthcare Criminal Justice
Ad servers
: ‘ >
Explainable Al Requirements
Completeness Sufficiently well-studied Incomplete problem formalization
of Problem ' ‘ :
. and validated in real « Safety: cannot entirely test for safety
Formalization applications

e Ethics: Notion of fairness too abstract to be encoded

[Freitas 2014, Lipton 2016, Doshi-velez and Kim 2017, Wend and Bansal 2017, Rudin 2018]
27 January 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/
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High-Stakes Scenarios Deserve Transparent
Models

* Post-hoc explanations can be unreliable

* Design white-box, interpretable models straight away!

* (Or retro-fit approximate but interpretable models over complex
ones)

* Problem: with thousands+ features DNNs perform better: post-hoc
explanation the only way (?)

[Rudin 2018, Mittelstadt et al. 2018]

27 Januar y 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/
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(Some) Desired Properties of Explainable Al

Systems

* Informativeness

* Low cognitive load

e Usability

* Fidelity

* Robustness

* Non-misleading

* Interactivity /Conversational

[Lipton 2016, Doshi-velez and Kim 2017, Rudin 2018, Weld and Bansal 2018, Mittelstadt et al. 2019]

27 January 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/
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Explanation as System-Human Conversation

[Weld and Bansal 2018]

0 H: Why? H: (Hmm. Seems like 1t maght H: What happens if the
J C: See below be just recognizing anemone background
- texture!) Whach traming ancmoncs are f
examples are most influential removed? Eg., Q
10 the prediction?
1 C: These ones
ML Classifier C: 1 il predice
‘ Ureen re """":“""' Rl FISH. becanse
fov FISH, while RED of these oreen
C: A predict FISH ;'lni!.‘\ towards DOG . ]

3, "
\“’ (f, AEWA

‘,}h'l\' § Bikne grven

- Humans may have follow-up questions

- Explanations cannot answer all users’ concerns

27 January 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/
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Role-based Interpretability
“Isthesystem-interpretable?” 2 “To whom is the system interpretable?”

No Universally Interpretable Model!

Creators

Examiners

* End users “Am | being treated fairly?”
“Can | contest the decision?”

“What could | do differently to get a
positive outcome?”

* Engineers, data scientists: “Is my system working
as de5|gned?”

* Regulators “ Is it compliant?” |
* C-suite

S—8—&

Operators Executors Decision:
subjects

[Tomsett et al. 18]

Data-subjects

An ideal explainer should model the user background.

[Tomsett et al. 2018, Weld and Bansal 2018, Poursabzi-Sangdeh 2018, Mittelstadt et al. 2019]

27 January 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/
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Designing Explanations is Task-Related

* Interpretability is always scenario-dependent!
What does interpretability mean in a specific context? Ask the experts!

 What is the ultimate goal of the explanation in that specific context,
for that specific task?

* How incomplete is the problem formulation?
* Time constraints
* Which user expertise?

[Lipton 2016, Rudin 2018, Doshi-Velez and Kim 2017]

27 January 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/



AVAVALS 9

Evaluation: Interpretability as Latent Property

* Not directly measurable!

* Rely instead on measurable outcomes:
* Any useful to individuals?
e Can user estimate what a model will predict?
 How much do humans follow predictions?
 How well can people detect a mistake?

 No established benchmarks

* How to rank interpretable models? Different degrees of z
interpretability?

"
Interpretability

27 January 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/



Evaluation Approaches

Humans Tasks

: . Real Real
Application-grounded Evaluation
More i
ot , Real Simple
specc;f,c Human-grounded Evaluation Tasks
an

Costly : : No Real Proxy |
Functionally-grounded Evaluation Humana 1l Taske

[Doshi-Velez and Kim 2017]

27 January 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/



i AVAVALS

Human-Independent Metrics: Size

* Size is over-simplistic [Freitas 14]

* E.g.: # nodes in a decision tree, size of a local explanation

 Humans can handle at most 72 symbols [Miller1956, Rudin2018]

 Size does not capture semantics of the model

* Extreme simplicity insufficient! e.g. medical experts and larger models, [Freitas 2014]
What does too large mean?

[Doshi-Velez and Kim 2017, Poursabzi-Sangdeh 18]

27 January 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/
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Human-based Evaluation is Essential

Evaluation criteria for Explanations [miller, 2017]

* Truth & probability

e Usefulness, relevance

* Coherence with prior belief
* Generalization

Cognitive chunks = basic explanation units (for different explanation needs)
* Which basic units for explanations?
* How many?
 How to compose them?
* Uncertainty & end users?

[Doshi-Velez and Kim 2017, Poursabzi-Sangdeh 18]

27 January 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/
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Open Challenges

* More formal studies on interpretability

* Rigorous, agreed upon evaluation protocols

* More work on transparent design

* Human involvement (e.g. better interactive, “social” explanations) [miller 2017]
* Define industry standards (e.g. Al Service Factsheet [Hind et al. 2018)]

* Improve existing legislation
* “Right to explanation” vs “right to be informed” [wWachter et al. 2017]

 Legislation & Explanations: How accurate ? How complete? How faithful to
the model? [Rudin 2018]

27 January 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/
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tl:dr

* Explanations and interpretability are required for better human trust,
system debug, and legal compliance.

* No monolithic, agreed upon definition of Explainable Al
* Adoption spans multiple Al fields

* Explainability, interpretability come at a cost

* Design with humans and task in mind

* Human-based evaluation is essential

27 January 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/
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Black Box Model

A black box is a DMML
model, whose internals are
either unknown to the
observer or they are known

but uninterpretable by
humans.

- Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box
models. ACM Computing Surveys (CSUR), 51(5), 93.



.oV iy - IR
§ ) : / | : N -‘.\..\ " » /"L_‘_\
. ’t/ \g\ - ;/’ '. \\‘ \N—\\ |

- = " o "\\\ - . N .



COMPAS recidivism black bias

2 DYLAN FUGETT BERNARD PARKER
Prior Offense Prior Offense
1attempted burglary 1resisting arrest F
without violence '
Subsequent Offenses
L 3 drug possessions Subsequent Offenses
| None
LOW RISK 3 HiGHrRisk 10

Fugett was rated low risk after being arrested with cocaine and
marijuana. He was arrested three times on drug charges after that.
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Right of Explanation

General
Data
Protection
Regulation

Since 25 May 2018, GDPR establishes a right for all individuals to obtain “meaningful explanations of the logic
involved” when “automated (algorithmic) individual decision-making”, including profiling, takes place.
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Desiderata of an Interpretable Model

* Interpretability (or comprehensibility): to which extent the model
and/or its predictions are human understandable. Is measured with
the complexity of the model.

* Fidelity: to which extent the model imitate a black-box predictor.

e Accuracy: to which extent the model predicts unseen instances.

- Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.
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Desiderata of an Interpretable Model

Fairness: the model guarantees the protection of groups against
discrimination.

Privacy: the model does not reveal sensitive information about people.

Respect Monotonicity: the increase of the values of an attribute either
increase or decrease in a monotonic way the probability of a record of
being member of a class.

Usability: an interactive and queryable explanation is more usable than
a textual and fixed explanation.

\ YL 4
():
Andrea Romei and Salvatore Ruggieri. 2014. A multidisciplinary survey on discrimination analysis. Knowl|. Eng. - \ b
Yousra Abdul Alsahib S. Aldeen, Mazleena Salleh, and Mohammad Abdur Razzaque. 2015. A comprehensive review on -

privacy preserving data mining. SpringerPlus . ‘
Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.
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Desiderata of an Interpretable Model

* Reliability and Robustness: the interpretable model should maintain

high levels of performance independently from small variations of the
parameters or of the input data.

* Causality: controlled changes in the input due to a perturbation should
affect the model behavior.

» Scalability: the interpretable model should be able to scale to large
input data with large input spaces.

* Generality: the model should not require special training or restrictions.
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Recognized Interpretable Models

1st, 2@, survived ’ PREDICTION: p(survived = yes | X) = 0.671
female Pclass? l OUTCOME: YES
/ 3rd class > | ot survived ’ Feature contribution Value
sex? | B -eemeee o

y survived | L I e - ,,,,,,,,,,,,, | e | 3rd
male age? ‘ Age - - | - L0034 52

}‘ not survived Sx _ _ 1194 - female

Decision Tree Linear Model

if conditioni A conditiony A conditions then outcome

Rules
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Complexity I— J

* Opposed to interpretability. * Linear Model: number of non
zero weights in the model.

* Is only related to the model and not
to the training data that is unknown. ¢ Rule: number of attribute-value
pairs in condition.

* Generally estimated with a rough
approximation related to the size of ¢ Decision Tree: estimating the
the interpretable model. complexity of a tree can be hard.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?: Explaining the predictions of any classifier. KDD.
Houtao Deng. 2014. Interpreting tree ensembles with intrees. arXiv preprint arXiv:1408.5456.
Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.



Open the Black Box Prob\ems

=% "




Problems Taxonomy

OPEN THE BLACK
BOX PROBLEMS
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MODEL l OUTCOME MODEL




XbD — eXplanation by Design @

TRANSPARENT
BOX DESIGN
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BBX - Black Box eXplanation '

BLACK BOX TRANSPARENT
EXPLANATION BOX DESIGN
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Classification Problem

TRAINING BLACK BOX
ST R L EARNER I*—* BLACK BOX lr—» PREDICTION
2
X =1{Xy, «ue, X}
TEST
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Model Explanation Problem '

Provide an interpretable model able to mimic the overall logic/behavior of
the black box and to explain its logic.

?
!

£
213

%f’
f
§

INTERPRETABLE
—— | BLACKBOX |—» GLOBAL| |—»

PREDICTOR

TEST
INSTANCES

a7
§
f

i
|

:
g
1]
£
:

X =1{Xy, «ue, X}

|
£
:
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Outcome Explanation Problem '

Provide an interpretable outcome, i.e., an explanation for the outcome of
the black box for a single instance.

INTERPRETABLE
TEST R,: IF(Qutlook = Sunny) AND
INSTANCE | »| BLACKBOX f > PRLE([))(I:éTLOR > | \Windy= False) THEN Play=Yes

X




/A AVAVALS

Model Inspection Problem '

Provide a representation (visual or textual) for understanding either how the
black box model works or why the black box returns certain predictions more
likely than others.

-capat s e -

TEST VISUAL - ' '
nsTAnces| *| BUACKBOX I ceopentanon [ T - A
X =1{Xy, «uey X} SRR




Transparent Box Design Problem @

Provide a model which is locally or globally interpretable on its own.

TRAINING INTERPRETABLE INTERPRETABLE R, : FOutiook = Sunny) AND
—p b b | (Windy= False) THEN Play=Yes
— ———— Trus) THEN Play=No
X ={Xy, oo Xp} W;m
R, : IFDutiook = Rairy) AND
TEST &t.mw-;p | “WI' m%ﬂb
INSTANCE | (Fhumicity= Norma) THEN Play=Yes
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Categorization as — .
¢ — . o000

* The type of problem

* The type of black box model that the explanator is able to open

* The type of data used as input by the black box model

* The type of explanator adopted to open the black box
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Black Boxes —
¢ — . o000
* Neural Network (NN)

* Tree Ensemble (TE)

e Support Vector Machine (SVM)

* Deep Neural Network (DNN)




Types of Data

Table of baby-name dats

{baby-2010.cav)

Fleld
name rank gender year ——  aAnes
Jacodb 1 bo 2010

y -'\ One row
isabtells 1 giri 2010 (4 fields)
Ethan 2 tay 2010
Sophia 2 garl 2010
Michael 3 boy 2010

. . .
. H H
. 2000 rows . .
- = . -
. all zold . .
. . .

Tabular

(TAB)

® __—°

" i
‘—'—-000

S5 DY W

leave ﬂs\od

R AN
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Explanators

e Decision Tree (DT)

* Decision Rules (DR)

e Features Importance (F/)
 Saliency Mask (SM)

* Sensitivity Analysis (SA)
 Partial Dependence Plot (PDP)
* Prototype Selection (PS)

e Activation Maximization (AM)
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Reverse Engineering

* The name comes from the fact that we can only observe
the input and output of the black box.
* Possible actions are:
* choice of a particular comprehensible predictor

» querying/auditing the black box with input records
created in a controlled way using random perturbations
w.r.t. a certain prior knowledge (e.g. train or test)

Input Output

* |t can be generalizable or not:
* Model-Agnostic
* Model-Specific
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Trepan 22] Craven et al. 199 DT NN TAB v v
[57] Krnshnan et al 1999 DT NN TAB v v v
DecText [12] Box 2002 DT NN TAB v v v
GPD1 [46) johansson et al 2009 DT NN TAB v v v v
Tree Metrcs {17) Chapman et al 1998 DT TE TAB v
CCM (26} Domingos et al 1998 Dl Ik IAB v v v
- [34] Gibboas et al 013 DT TE TAB v v
STA {140} Zhou et al W16 Dl I IAB v
COT [104] Schetuun et al 2007 D1 TE TAB v
81 Hara et al 2016 DT 11 TAR g v ’
TP
Conj Rules
G-REX
REFNI {141) Zhou et al 2003 DR NN [AB v v v v

RxREN [6) Augasta et al 012 DR NN TAB v v v
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Global Model Explainers

* Explanator: DT R, : IF(Outiook = Sunny) AND
* Black Box: NN, TE (Windy= False) THEN Play=Yes
* Data Type: TAB R, : IFOutlook = Sunny) AND
(Windy= True) THEN Play=No
* Explanator: DR %HELT@PI:yﬂ:%E: :
* Black Box: NN, SVM, TE R, : IF{Dutlook = Rainy) AND
* Data Type: TAB (Humidity= High) THEN Play=No
R; : IHOutlook = Rainy) AND
* Explanator: Fl e et i e

* Black Box: AGN
* Data Type: TAB



Trepan -pT, NN, TAB 6@

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

T =
Q:

while Q not empty & size(T) < limit

black box
auditing

BareNuclei < 4.5

root of the tree()

<T, X, {}>

N, Xy, Cy = pop(Q)

Zy = andom(XN, Cyx) |

Yz = b(Z), v = b(Xy) ‘ maligrent) (SIS

if same class(y U yjy) 2% %
continue

best split(Xy U Zy, v U y,)

S’'= best m-of-n split(S)

N update with Spllt(N S')

for each condition ¢ in S’

C = new child of(N)

Cc = CNU {c}

X. = select with constraints(Xg, Cy)
put(Q, <C, XC, Ce>)

Mark Craven and JudeW. Shavlik. 1996. Extracting tree-structured representations of trained networks. NIPS.

(28] 28]

benign malignant

.80 .20 17 83
2% 7%

nlformltyCeIlSlze <45
malignant
31 .69
9%

BareNuclei< 2.5
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RXREN - DR, NN, TAB

01 prune insignificant neurons
02 for each significant neuron
03 for each outcome

lack box

ammmi—*compute mandatory data ranges

05 for each outcome

06 build rules using data ranges of each neuron

07 prune insignificant rules

08 update data ranges in rule conditions analyzing error

if ((data(ly) = L1z Adata(l}) < Uyz) A (data(lp) > Ly Adata(lp) < Upz) A
(data(l3) = L33z Adata(lz) < Usz)) then class =C3

else

if ((data(l,) = Ly Adata(ly) < Uyy) A (data(lz) > L3 Adata(l3) < Usy))

then class =C,
M. Gethsiyal Augasta and T. Kathirvalavakumar. 2012.
Reverse engineering the neural networks for rule

extraction in classification problems. NPL. class = Cy

else
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- [134] Xu et al 2015 SM DNN IMG v v .
[30] rong et al 2017 SM DNN IMG v
CAM [139] Zhou et al 2016 SM DNN MG v v v
Grad-CAM [106] Selvarap et al 2016 M DNN MG . v v
- [109] Simonsan et al, 2013 SM DNN MG v v
PWD 7] Bach et al 2015 Y DNN IMG . .
- {113] Sturm et al 2016 SM DNN MG v v
DID [78] Monmtavonetal 2017 SM DNN IMG
DeaplIFT [107]  Shrnkumar et al 2017 Fl DNN ANY v v
CP [64 Landecker et al 2013 S\ NN IMG <

VEP

Explanb) [89]

Poulin ¢t al

Strumbel; et al

2006 Fl SVM |AB v v
2010 Fl AGN TAB v v v v
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Local Model Explainers

* Explanator: SM
* Black Box: DNN, NN
* Data Type: IMG

e Explanator: Fl
e Black Box: DNN, SVM
* Data Type: ANY

e Explanator: DT
* Black Box: ANY
* Data Type: TAB

R,: IF(Outlook = Sunny) AND
(Windy= False) THEN Play=Yes
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Local Explanation

* The overall decision /
boundary is complex /

* In the neighborhood of a o e
single decision, the / &
boundary is simple .

* A single decision can be
explained by auditing the ‘H ‘ ® 52
black box around the R
given instance and |
learning a local decision. | :




0 1

duration_in_month <= ...
0.11

LIME —F1 AGN, ANY

g:count_check_statusz...
Q.09
01 4 = {} personal_status_sex=..-.
. . 0.07
02 X lnstance to explain gmnmem_as_mcomem
| — . 007
03 X real2interpretable(Xx) e
04 for i in {1, 2, .., N} 005l
05 z;= sample around(x’)
06 z = 1nterpretabel2real(z’)
07 z =2 U {<z;, b(z;), d(x, z)>)}
08 w = solve Lasso(Z, k) ™~
black box
09 return w auditing

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?:
Explaining the predictions of any classifier. KDD.




job

LORE -DR, AGN, TAB .y

income < 900 age < 17

e
01 x instance to explain igranideny
02 7Z. = geneticNeighborhood(x, fltness=, N/2)
03 Zz. = geneticNeighborhood(x, fitness,, N/2)
04 2 = 2- U 2, black box
05 ¢ = buildTree(Z, b(Z)4  auditing
06 r = (p -> y) = extractRule(c, X)
07 ¢ = extractCounterfactual(c, r, X)

08 return e = <r, ¢>

| r = {age < 25, job = clerk, income £ 900} -> deny |

® = {({income > 900} -> grant),
({17 < age < 25, job = other} -> grant)}

age < 25

gﬂml‘ deny

\%
mcome < 1500
N
job grant
cler y \the1

Pedreschi, Franco Turini,
f black box decision
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Meaningful Perturbations -sm, ban, MG

01 X 1lnstance to explain black box
02 varying x into x’' maximizing b(x)~b(x’ )/ auditing
03 the variation runs replacing a region R of x with:

constant value, noise, blurred image
04 reformulation: find smallest R such that b(xyz)<b(x)

flute: 0.9973 flute: 0.0007 Learned Mask

Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).
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NID [83] Olden et al 2002 SA NN IAB v
GDP [5) Baechrens 2010 SA AGN TAB v v v
Qfl [24) Datta et al 2016 SA AGN TAB v N v
G [115]) Sundararjan 2017 SA DNN ANY v v
VEC [18]) Cortez et al 2011 SA AGN [AB v . v
VIN [42) Hooker 2004 PDP AGN TAB v v v
ICE [35) Goldstein et al 2015 roP AGN [AB v v v v
Prospector  [55) Krause of al 2016 PDP AGN TAB v v v
Aunditing [2] Adler et al 2016 PDP AGN TAB v v . v
OPIA
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.
[-') - . s " SN, LA - v

— (112] Sprngenbergetal 2014 AM DNN IMG v v
DGN-AM [80] Nguyen et al 2016 AM DNN IMG v v v
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Inspection Model Explainers

* Explanator: SA P——
e Black Box: NN, DNN, AGN
* Data Type: TAB

e Explanator: PDP
* Black Box: AGN
* Data Type: TAB

m’i. KN L = 124 wh LY - " " L
ogn_ol_nwvivad etk

: :
, . il
| Bl R

* Explanator: AM
* Black Box: DNN
* Data Type: IMG, TXT
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VEC -sa AGN, TAB

 Sensitivity measures are variables i A e
calculated as the range, gradient, / | -8
variance of the prediction, 2 4 feature distribution black box 8

. o . \ auditing | *

* The visualizations realized are \ -
barplots for the features 3 - \

. : VEC \ - 8

importance, and Variable Effect /

Characteristic curve (VEC) plotting  _ —\':T' 7 - §
o - \.

the input values versus the (average) \| / | &

outcome responses. AN )

Paulo Cortez and Mark J. Embrechts. 2011. Opening black box data mining models using sensitivity analysis. CIDM.



Prospector - prop AGN, TAB

* Introduce random perturbations on input values to understand to
which extent every feature impact the prediction using PDPs.

* The input is changed one variable at a time.

demographic (age) - r: 0.15258
1.0

sy

9 9 9 Glucose
BEGEE ~

- 1.4
™. blackbox = .
og @ 0.1 't—fr—‘ l'r,
.~ auditing
0% 35 40 45 50 55 60 6 70 75 80
age_at_enroliment (staticSum) ;f:vrem State
T'hﬁ—ﬁ—rﬂﬁH’Iri”]ﬂ”nd—[ﬂ“l”l”l[ﬂ-_ [l Original Score
_enlment_ !staﬁcSum) demographic (age) (0.153)

0000 ~
0000 -

E—— G

30 35 40 45 50 55 60 65 70 75

Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).
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CPAR {135) Yin et al. 2003 DR TAB v
FRI [127) Wang et al 015 DR [AB v
BRL {66) Letham et al 2015 DR TAB
ILBR (114) Su et al 2015 DR TAB v
s [{61) Lalkkamyju et al. 2016 DR TAB
Rule Set [1%0] Wang et al 2016 DR TAB v
1 Rule {75) Malioutov et al 2017 DR TAB v
PS [9] Bien et al 2011 PS ANY v
BCM {51} Kim et al 2014 S ANY v
OT-SpAMs [125) Wang et al 2015 DT TAB v

Solving The Transparent Design Problem
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Transparent Model Explainers

* Explanators:
* DR
e DT
* PS

* Data Type:
* TAB




/A AAAEETLY
CPAR -Dr 1AB

* Combines the advantages of associative (A =2, Ay =1, Ay = 1).

classification and rule-based classification. (A1 =2, A3 =1, A4 =2, A =3).
. (A1=2, A3=1,A2=1).
* It adopts a greedy algorithm to generate

rules directly from training data.
Al=2—T— A2=] —>Ad=]

* It generates more rules than traditional
rule-based classifiers to avoid missing —A3=] —T A4 ——>A2=3
important rules.

* To avoid overfitting it uses expected
accuracy to evaluate each rule and uses the
best k rules in prediction.

Xiaoxin Yin and Jiawei Han. 2003. CPAR: Classification based on predictive association rules. SIAM, 331-335
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CORELS -DR, 7B

* It is a branch-and bound algorithm that provides the optimal solution
according to the training objective with a certificate of optimality.

* It maintains a lower bound on the minimum value of error that each
incomplete rule list can achieve. This allows to prune an incomplete
rule list and every possible extension.

* It terminates with the optimal rule list and a certificate of optimality.

if (age = 18 — 20) and (sex = male) then predict yes

else if (age = 21 — 23) and (priors = 2 — 3) then predict yes
else if (priors > 3) then predict yes

else predict no

- Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., & Rudin, C. 2017. Learning certifiably optimal rule lists. KDD.






I AAALETEY
Open The Black Box!

* To empower individual against undesired effects of
automated decision making

 To reveal and protect new vulnerabilities

* To implement the “right of explanation”

e To improve industrial standards for developing Al-
powered products, increasing the trust of companies
and consumers

 To help people make better decisions
 To align algorithms with human values
 To preserve (and expand) human autonomy
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Open Research Questions

* There is no agreement on what an explanation is
* There is not a formalism for explanations

* There is no work that seriously addresses the

problem of quantifying the grade of
comprehensibility of an explanation for humans

* Is it possible to join local explanations to build a
globally interpretable model?

* What happens when black box make decision in
presence of latent features?

 What if there is a cost for querying a black box?
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Explanation with Background Knowledge

» We tend to give explanation in terms of our current
knowledge.

» From our childhood we learn that dog has 4 legs, 1
head, 1 tongue, 1 tail etc.

» When we see any image of dog our thinking
automatically try to capture those objects.

» We always want to conform with our previously
acquired knowledge (Background Knowledge).

-

Will not it be better if we can
explain in terms of our
knowledge?

J
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How 7

Hard to make connection between our knowledge and a model which is
trained by reducing loss.

ldea found in current literature is similar to inductive programming.
— Use background knowledge in the form of linked data and

ontologies to help explain.
— Link inputs and outputs to background knowledge.
— Use a symbolic learning system to generate an explanatory theory.



Knowledge Base

TBox (KB Schema)

| Man = Human N Male
Father = Man N 3hasChild.Human

Explanation
Positive and negative



Current symbolic systems

* ECIIY

* DL — Learner?

* OWL Miner3

* DL—- Miner?
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Input Needed for These Systems

e Background information/Ontology/Knowledge Graphs
e Some positive and/or negative examples

* Mapping between model dataset and the ontology

27 Januar y 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/
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Real-world Background Info as Knowledge Graphs
* Cyc
* Wordnet
* Suggested Merged Upper Ontology (SUMO)
* Dbpedia
* Freebase

Positive & Negative

* The concept is considered is positive and all others are negative.>

Mapping between dataset and Ontology

* Mapping each instance as an individual and put it in exact hierarchy.”



Experiment using MIT ADE20K-Dataset

http://groups.csail.mit.edu/vision/datasets/ADE20K/



Experiment using MIT ADE20K-Dataset

Images come with annotations of objects in the picture:

001 # 0 # @ # sky # sky # ""

002 # 0 # 0 # road, route # road # ""

005 # 0 # O # sidewalk, pavement # sidewalk # ""
006 # 0 # @ # building, edifice # building # ""
007 # 0 # 0 # truck, motortruck # truck # "" y
008 # O # @ # hovel, hut, shack, shanty # hut # "'TS.
009 # 0 # O # pallet # pallet # ""

011 # 0 # O # box # boxes # ""

001 # 1 # @ # door # door # ""

002 # 1 # 0 # window # window # ""

009 # 1 # 0 # wheel # wheel # ""



JINESSSSREERRA AR
Mapping

Objelcts in image annotations became individuals (constants), which can be typed with the
ontology.

contains roadl
contains windowl
contains doorl
contains wheell
contains sidewalkl
contains truckl
contains box1l
contains buildingl




&.;'

: :
HH

Negative

Positive Examples i
Examples (Indoor :‘ A
(Outdoor Warehouse) ™ B8
Warehouse) I ;

A
.

w:wyo-l 'L;,.; PG g MPR A N R \l'l o
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Proof of Concept Experiment

Positive:
img1: road, window, door, wheel, sidewalk, truck, box, building
img2: tree, road, window, timber, building, lumber
img3: hand, sidewalk, clock, steps, door, face, building, window, road

Negative:
img4: shelf, ceiling, floor

img5: box, floor, wall, ceiling, product

img6: ceiling, wall, shelf, floor, product

| | Jcontains.Transitway
results include:

Jdcontains.LandArea



DL Model which merges explanation with Background information

External Knowledge
Base

)

Symbolic Learning System

This image contains building, truck,
door, window which are

usually found in warehouse.

So it seems this picture is a
Warehouse picture.




s AVAVALS] 9

Summary

* This is just beginning of using background information to enhance
explanation.

* There are many open questions-
** Where we can get effective background information?

*** How to relate already available background information with my current
model?

s Are those explanations enough to satisfy our quest?
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Qutline

e Knowledge Graphs

o What are they?

o  Applications in Industry and Academia

o  Problems with building large-scale Knowledge Graphs
e Relational Learning in Knowledge Graphs

o Observable Feature Models

o Latent Feature Models

o Combining and Interpreting Observable and Latent Feature Models
e Neuro-Symbolic Reasoning



Knowledge Graphs

e Set of (subject, predicate, object — SPO) triples - subject and object are
entities, and predicate is the relationship holding between them.

e Each SPO triple denotes a fact, i.e. the existence of an actual relationship
between two entities.

subject predicate object Alflz\ -5
Bob is interested in The Mona Lisa "\ : &
Bob is a friend of Alice \ B ‘;;/'/'
The Mona Lisa was created by Leonardo Da Vinci . @
Bob is a Person e 4
La Joconde a W. is about e e L X e N
Bob is born on 14 July 1990 / =

Person 14 July 1990
La Joconde a Washington



Knowledge Graphs

Name Entities = Relations = Types Facts
Freebase 40M 35K 26.5K 637M
DBpedia (en) 4.6M 1.4K 735 580M
YAGO3 17M 77 488K  150M
Wikidata 15.6M 1.7K 23.2K  66M
NELL 2M 425 285 433K
Google KG 570M 35K 1.5K 18B
Knowledge Vault 45M 4.5K 1.1K  271M
Yahoo! KG 3.4M 800 250 1.39B

e Manual Construction - curated, collaborative
e Automated Construction - semi-structured, unstructured

Right: Linked Open Data cloud - over 1200 interlinked KGs
encoding more than 200M facts about more than 50M entities.

Spans a variety of domains - Geography, Government, Life
Sciences, Linguistics, Media, Publications, Cross-domain..
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Knowledge Graphs Construction

Knowledge Graph construction methods can be classified in:

e Manual — curated (e.g. via experts), collaborative (e.g. via volunteers)

e Automated — semi-structured (e.g. from infoboxes), unstructured (e.g. from text)
Coverage is an issue:

® Freebase (40M entities) - 71% of persons without a birthplace, 75% without a
nationality, even worse for other relation types [Dong et al. 2014]

e DBpedia (20M entities) - 61% of persons without a birthplace, 58% of scientists
missing why they are popular [KrompaB et al. 2015]

Relational Learning can help us overcoming these issues.



Relational Learning in Knowledge Graphs

e Dyadic Multi-Relational Data [Nickel et al. 2015, Getoor et al. 2007]

e Many possible relational learning tasks:

Link Prediction — Identify missing relationships between entities
Collective Classification — Classify entities based on their relationships
Link-Based Clustering — Cluster entities based on their relationships
Entity Resolution — Entity mapping/deduplication

o O O O

Relational structure is a rich source of information.
In general, the i.i.d. assumption does not hold in this context.



Statistical Relational Learning

Task — model the existence of each triple x,,, = (5,p,0) € EX Z X & as
binary random variables Y,,, € {0,1} indicating whether Xy, is in the KG:

1 if €Y L
Yspo = { Hspo entries in Y € {0,1}IEXIZIxI&]
0 otherwise

Every realisation of Y denotes a possible world - modelling P (7) allows
predicting triples based on the state of the entire Knowledge Graph.

Scalability is important - e.g. on Freebase (40M entities), the number of variables
to represent can be quite large: | & X % X &| > 10"



Types of Statistical Relational Learning Models

Depending on our assumptions on P (Y) , we end up with three model classes:
* Latent Feature Models: variables Ysp, € {0.1} are conditionally independent
given the latent features ® associated with subject, predicate, and object:

VX, , EEXAEXE,x;#x:y; 1Ly | O

e Observable Feature Models: related to Latent Feature Models, but ® are now
graph-based features, such as paths linking the subject and the object.

® Graphical Models: variables y,,, € {0,1} are not assumed to be conditionally
independent — each Yspo can depend on any of the other random variables in Y .



Conditional Independence Assumption

Assuming all Y, variables are conditionally independent allows modelling their
existence via a scoring function f (s,p,o | ®) representing the likelihood that a triple
is in the KG, conditioned on the parameters @ :

-

B P <ysp0 | @) if v, = 1
pYie)=]T11]1-
sc&pekocs | 1 — P (yspo | G)) otherwise

L

with P (v, 1©) = o (f(s.p.0 1 ©))

Scoring Function - depending on the type of features used by f( | @) we have
two families of models - Observable and Latent Feature Models.



Observable Feature Models - Uni-Relational Similarities

Uni-Relational Similarity Measures: based on homophily — similar entities are
likely to be related — and neighbourhood similarity.

e Local: derive similarity between entities from their local neighbourhood
(e.g. Common Neighbours, Adamic-Adar Index [Adamic et al. 2003], Preferential Attachment [Barabasi et al. 1999], ..)

e Global: derive similarity between entities using the whole graph
(e.g. Katz Index [Katz, 1953], Leicht-Holme-Newman Index [Leicht et al. 2006], PageRank [Brin et al. 199g], ..)

® Quasi-Local: trade-off between computational complexity and predictive accuracy
(e.g. Local Katz Index [Liben-Nowell et al. 2007], Local Random Walks [Liu et al. 2010], ..)



Observable Feature Models - Rule Mining and ILP

Rule Mining and Inductive Logic Programming methods extract rules via
mining methods, and use them to infer new links.

e Logic Programming (deductive): from facts and rules, infer new facts (First-Order Logic)

¢ Inductive Logic Programming (ILP): from correlated facts, infer new rules
(e.g. Progol Muggleton, 1993], Aleph [Srinivasan, 1999], DL-Learner [Lehmann, 2009], FOIL [Quinlan, 1990], ..)

® Rule Mining: AMIE [Galarraga et al. 2015] iS orders of magnitude faster than traditional ILP
methods, and consistent with the Open World Assumption in Knowledge Graphs:
e Partial Completeness Assumption
® Efficient search space exploration via Mining Operators



Observable Feature Models - Path Ranking Algorithm

Path Ranking Algorithm (PRA) uses length-bounded random walks as features
between entity pairs for predicting a target relation [Lao et al. 2010].

Homer A PRA model scores a subject-object pair by a
linear function of their path features:

Ape P O peremtlt o
O/ \O f(s,p,0) = ZP(S—>0 | ][)XQﬂ,p

grandParentOf
mlIl,
livesIn livesIn™! .
where I1 is the set of all length-bounded

relation paths, and @ are parameters estimated
via L1,L2-regularised logistic regression.

Springfield

Some extensions: Subgraph Features [Gardner et al. 2015], Multi-Task [wang et al. 2016]



Observable Feature Models are Interpretable

Rules extracted by AMIE+ [Galarraga et al. 2015] from the YAGO3-10 dataset [Dettmers et al. 2018]

Body = Head Confidence

hasNeighbor(X, Y) = hasNeighbor(Y, X) 0.99

isMarriedTo(X,Y) = isMarriedTo(Y, X) 0.96

hasNeighbor(X, Z) A hasNeighbor(Z,Y) = hasNeighbor(X,Y) 0.88
isAffiliatedTo(X,Y) = playsFor(Y, X) 0.87

playsFor(X,Y) = isAffiliatedTo(Y, X) 0.75

dealsWith(X,Z) AdealsWith(Z,Y) = dealsWith(X,Y) 0.73
isConnectedTo(X, Y) = isConnectedTo(Y, X) 0.66

dealsWith(X,Z) A imports(Z,Y) = imports(X,Y) 0.61

influences(Z,X) A isInterestedIn(Z,Y) = isInterestedIn(X,Y) 0.53



Latent Feature Models

Variables Yspo are conditionally independent given a set of latent features and
parameters @ . Latent means that are not directly observed in the data, and thus
need to be estimated.

QE%

~

€

068)

Relationships between entities s and o can be inferred
from the interactions of their latent features e, e,:
e.e

k
s OERa

f(Sapa 0) :fp(es’ eo) j;? : ka Rk - R

The latent features inferred by these models can be
very hard to interpret.




Latent Feature Models - Scoring Functions

Relationships between entities are determined by interactions between latent
features — this yields different choices for the scoring function f, : R xR*— R :

RESCAL [Nickel et al. 2011] e, Woe, W, € RP*
NTN [Socher et al. 2013] u, f (esW,[}‘--‘” +V, z + bp) W, e R4V e R4 b u € Rk
TransE [Bordes et al. 2013] - | e +r,—¢, s r, € R¥
DistMult [Yang et al. 2014] (e,.r,.e,) r, € R
HolE [Nickel et al. 2016] r (3‘7—1 [FTe,J © F/r‘[eo]]) r, € R¥
ComplEx [Nickel et al. 2016] Re ((es, r, éo)) r, e Ct

ConvE [Dettmers et al. 2017] f (Vec <f ([e_s; l'_p] *m)) W) e, r, € [Rk, W e Rexk
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Latent Feature Models - Learning

Another core differente among models is the loss function minimised for fitting the
latent parameters @ to the data — let f,,, =f (xspo | @) and p,, = a( Spo) ;

Z | y f. ’ Tensor Factorisation

| — isation,

Quadratic Loss e spo  Jspo RESCAL (ALS)

e._g. .
el less 2 2 Zlr.x) S max {0’7 +f ﬁu} SE, NTN, TransE, HolE

X, €D, x €D_

Cross-Entropy Loss Z [y log (px) + (1 = y)log (1 —Px)l ComplEx
(x)ED

ConvE, ComplEx-N3
Multiclass Loss Z = (pspo,l) + Z Z(p spo> Y §p0) + Z = (pSP5’ySP5) [Dettmers et al. 2017,
Xpo€D 4 5e& 0EE Lacroix et al. 2018]




Latent Feature Models - Predictive Accuracy

Evaluation Metrics — Area Under the Precision-Recall Curve (AUC-PR), Mean
Reciprocal Rank (MRR), Hits@k. In MRR and Hits @k, for each test triple:

- Modify its subject with all the entities in the Knowledge Graph,

« Score all the triple variants, and compute the rank of the original test triple,

* Repeat for the object. I [ (rank, < 10} |

rank; <

MRR:—Z . HITS@k = ’
| 7| < rank; | T |
From [Lacroix et al. ICML 2018]

Model WNI18 WNI18RR FB15K FB15K-237 YAGO3-10
MRR H@I0 MRR H@I0 MRR H@I10 MRR H@10 MRR H@10
CP-FRO 095 095 046 048 0.86 091 034 051 054 068
CP-N3 095 096 047 054 0.86 091 036 054 057 0.71

ComplEx-FRO 0.95 096 047 054 0.86 0.9] 035 053 057 0.71
ComplEx-N3 0,95 096 0.48 0.57 0.86 0.9] 0.37 0.56 0.58 0.71

Reciprocal




Predicates

Latent Feature Models - Interpreting the Embeddings

Learned relation embeddings — using ComplEx with a pairwise margin-based loss
— for WordNet (left), DBpedia, and YAGO (right) inervini et ai. ECML 2017]

Real Part Imaginary Part
)Y/oL=Tun)Y/ 0 I NO] 3.0 -3.1/2:6-2.7 3.2 2.9 kW4-3.0-3.0
[\Yoleln\Ins IO 3.1 -3.1§216=2.7]-3.4 -2:85 W4 2.9 3.0
synset domain topic of Fell2 3.2-2.4-3.05K:-2.9-2.8 2.6
member of domain topic FelEY 2.8ENA2.9 29-2.6
member of domain usage -1.4-0.1PEWFIEN] 1.8PX]-0.6-1.3 associated musical arist ENACIZARNARY: Rl 0.7 0.1 0.2 -1.5 1.5
synset domain usage of -1.2-0.1-2.3%ke} 75| kEN-1.8525 0.7 1.4 associated band ENARNACPAKRNAREN 0.7 0.0 0.2 -1.5 1.5
instance hypernym -1 .1 16 3.0-2626% .1
instance hyponym -1.0528¢) 1.5 PRl 24 SaRelZiel 26 1.1 [P Real Part Imaginary Part
SR 24 3.2 2.7 gl 3.0F24eg-2.6 2.9 gl NEVOd 36 26 26 27 -31|25 30 28 26
has part P2 sgeiAvicl-1.5850 275 0.7 Z2iei0) 1.9
member h0|onym 1_9 2.9 26 27-24 AIIEYEC e 3.8 =206 2.6 2160 -3.2 274 3.3 3.0 "26
member meronym |2 Rl 2 1.9 -2.92.3-2.5-2.8 2.5 hasNeighbor R 25 29 35 22 KX
synset domain region of EK1-0.3EREEK] 1.9 -0.9 2.0 .-1.2 1.0
member of domain region [K]-0.3ERAR120 1.0 2422 13 -1.1 isMarriedTo EREECRRIR . 0.0 0.0

verb group EEIRRIREJBEX; 0.0-0.10.0 0.0 0.0 isConnectedTo -0.7 [l 21 0.3 0.3
derivationally related form 0.0 0.0-0.00.0 0.0

Real Part Imaginary Part
musical arist 1.9 ERIERY-1.7 -1.0 0.4 -0.8 FTIEN,

musical band 1.8 [ERIPRE-1.8 -1.o RN 3.1 36

Predicates

Predicates

0.0 -0.0 0.0 0.0

0.1 -0.0 0.1 -0.0




Predicates

Latent Feature Models -

Interpreting the Embeddings

Learned relation embeddings — using ComplEx with a pairwise margin-based loss
— for WordNet (left), DBpedia, and YAGO (right) inervini et ai. ECML 2017]

Real Part Imaginary Part

)Y/oL=Tun)Y/ 0 I NO] 3.0 -3.1/2:6-2.7 3.2 2.9 kW4-3.0-3.0

hyponym 1.0 feiSeiil 25 22 7 88iN42.9 3.0

synset domain topic of Fell2 3.2-2.4-3.05K:-2.9-2.8 2.6
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member of domain usage -1.4-0.1 28Rz 7iyd Belo) 1.8 #4:1-0.6-1.3
synset domain usage of -1.2-0. 1 0 714

instance hypernym

instance hyponym -1.0872¢] 1.5 22 . .
part -2.4 3.2 2.7 BiKs] 3.0}-2.450K:1-2.6 2.9 y¢)
IEEReE] §=215 3.2 12! 3.0|2.4 [1}4 2.8 -3.0!

synset domain region of
member of domain region
verb groug

derivationally related forng, BEJERZARPEF I 0.0 0.0 -0.0 0.0 0.0

Predicates

Predicates

Real Part Imaginary Part

associated musical arist ENASZ2RFAS Si) 0.7 0.1 0.2 -1.5 1.5
associated band ENAENA <2 RENARNN 0.7 0.0 0.2 -15 1.5

Real Part
JJEVEIZell 3.6 26 26 27 -31]125 3.0 28 26

Imaginary Part

Ea\GlIEICOMNeN 3.8 [-26 26 26 -32|27 33 3.0 26

hasNeighbor 0.9 725 SZREECE ~ 2 0.0
isMarriedTo EEEECRS .0.0 0.0 -0.0 -0.0 0.0 0.0

isConnectedTo -0.7 Feien 25 0.3 0.3 -0.1 -0.0 0.1 -0.0



Latent Feature Models - Post Hoc Interpretability

Generate an explanation model by training Bayesian Networks or Association Rules
on the output of a Latent Feature Model. [carmona et al. 2015, Peake et al. KDD 2018, Gusmao et al. 2018]

RECOMMENDATION MODEL EXPLANATION MODEL
wedto wedio
=3 ) generotes 28 generotes Output:
Inpot. tran Model. Qvient, W b, Yop N association nibe
Urer-Remrating =+ Matrix f actoritation ——— Useritem rating —— Association Rules - recommendations per
matrix, R (Slack-box| precictions matris, K (white- box) wier and explanations
L Serw Cond I (3
fikered
A B ¥ ] ! fitered
A 2 b 4 9
Dtput; S | 62 108 |08 | Outpet.
Top N matrix factorisation Association nbes for
recommendations per matrix factorisation
uer preda<tom

User # ecorrmendaion User A ecormmendoton Daplaraton |

i r ) ' fm=A |

A




Combining Observable and Latent Feature Models

o Additive Relational Effects (ARE) (Nickei et ai. NeurPs 2014 — combines Observable
and Latent Features in a single linear model:
ARE _
Spo WLFM,p®LFM SO + WOBS p®PRA SO
e Knowledge Vault [pong et a1 koD 2014) — combines the prediction of Observable and

Latent Feature Models via stacking:

— f OFM (LFM
spo FUSION \J spo >Jspo

® Adversarial Sets vinervini et al. UAI 2017) — incorporate observable features, in the
form of First-Order Logic Rules R, in Latent Feature Models:

SCA(E)



Neuro-Symbolic Reasoning

Neural and rule-based models have complementary strengths and weaknesses:

Neural Models Rule-Based Models
e Can generalise from high-dimensional, e Can learn from small data
noisy, ambiguous inputs (e.g. sensory) @ Issues with high-dimensional, noisy,
® Not interpretable ambiguous inputs (e.g. images)
e Hard to incorporate knowledge e Easy to interpret, provide explanations
® Propositional fixation vccarthy, 198s]

Neuro-Symbolic Reasoning systems can combine the strengths of rule-based and
neural architectures.



Forward Chaining — JILP (Differentiable ILP) (evans et al sair 2018

Legend
computed
value inputs parameters

differentiable non-differentiable
i function

Start with a language definition and a set of

background axioms

Generate a set of clauses — Datalog rules

Given axioms and clauses, infer some conclusions
Calculate the loss between the reached conclusions
and the desired ones

The system is end-to-end differentiable: we can
back-propagate the error to the clause weights, Cv;m::;n

representing our belief that rules should be in our
program.

‘ generate ’

@ @ program template




Backward Chaining — Differentiable Proving

. [Rocktaschel et al. 2017,
Knowledge Base: grandPalf (abe, bart) Minervini et al. 2018]

fatherOf(abe, homer) .-
parentOf(homer,bart)  fatherOf(abe, homer)

grandFather0f(X.Y) < [EC] IR CHRLC] ﬁaﬁdFagjlirOfg’bY)t subgoal:
abe ar

father0f(X,Z), proof score S, father0f(X/abe, Z)
parent0f(Z,Y). parent0f (homer, bart) parent0f(Z, Y/bart)

Idea — use Prolog’s - -j ._

backward chaining algorithm, proof score S,

ar: % of father0f(X/abe, Z)

embeddings

simply matching symbols. - ‘

subgoal: father0f(X/abe, Z/homer) father0f(X/abe, Z/bart) subgoal:

parent0f(Z/homer, Y/bart) - I:.: -j - parent0f(Z/bart, Y/bart)
parent0f(Z/homer, Y/bart) parent0f(Z/bart, Y/bart)




Differentiable
gr

Proving — Rule Learning

andPal0f(abe,bart)

Knowledge Base:

father(Of(abe, homer)

parent0f(homer, bart)
0,(X,Y) &
0,(X,Z),
0:(2,Y).

proof score S,

0,,0,,0, € R¥

Idea — learn rule embeddings via
backpropagation, and decode by
looking at existing relation
embeddings.

fa

subgoal:
parent0f(Z/homer, Y/bart)

parent0f(Z/homer, Y/b

parent0f(homer, bart)

father0f(X/abe, Z/homer)

CRE LT

father(Of(abe, homer)

BT | O (I

grandFather0f(X,Y)

-j X/abe Y/bart

subgoal:
father0f(X/abe, Z)

parent0f(Z, Y/bart)

proof score S,

ther0f(X/abe, Z)
BN -
father0f(X/abe, Z/bart)

parent0f(Z/bart, Y/bart)

subgoal:
parent0f(Z/bart, Y/bart)
art)




Differentiable Proving — Training

Train the model parameters — i.e. the entity and predicate embeddings, and the
embeddings appearing in the rules — by learning to prove facts in the Knowledge
Graph using all the remaining facts: x56)=- ¥ 10g [mpeKB\F(F,d)] Y log[l-nipfBE, )

FinK F~corrupt(F)
Corpus | Metric Model : Examples of induced rules and their confidence
: ComplEx NTP NTPA |

SIAUCPR 9937404 90834154 100,00+ 0.0 | 0.90 1ocatedIn{X.Y) - locatedIn( X, 7), locatedIn{” Y)
Countries S2 | AUCPR  STO5 428 ST40£ 11T 93.04% 04 | 0.63locatedIn(X.Y) - neighbor0f(X.7), locatedIn(Z,Y)
S3 | AUCPR 4844463 BJ668L176 TT.26L170 | 0.321ocatedIndX.Y) :
‘ neighborOf(X,7), neighbor0f(Z, W), locatedIn(W,Y).

' MRR 0.81 0.60 0.50 l 0.98 term18(X,Y) - terms(Y X)
Kinshi HITS@1 0.70 0.48 0.76 | 0.97 term1B(X,Y) :- term1B(Y X)
P HITS@3 0.89 0.70 0.82 | 085 terma(X,Y) - tersd(Y,X)
| HITS@10 0.98 0.78 0.59 | 0.73 term12(X,Y) - term10(X, Z), term12(Z, Y).
MRR 0.75 0.75 0.74 | 0.65dlockpoatticnindex(X,Y) - blockpositionindex(Y X).
Nations ’ HITS@| 0.62 0.62 0.59 | 0.46 expeldiplomats(X,Y) - negativebedavior(X,Y)
r HITS@3 0.84 0.86 0.89 | 0.38 negativecoms(X.Y) :~ commonblocO(X,Y).
C HITS@10 0.99 0.99 0.99 | 0.38 intergovorgs3(X,Y) :- intergovorgs(Y X).
' MRR 0.89 088 0.93 i (.88 interacts_with(X.Y) :-
UMLS HITS@1 0.82 082 0.87 | interacts_with(X 7), interacts_with(Z Y)
c HITS@3 0.96 0.92 0.98 | 0.77 1sa(X.Y) - 1sa(X.7Z), 1sa(Z,Y).
HITS@10 1.00 097 1.00 | 0.71 derivative_of(X.,Y) :

5 derivative_of(X.,/) derivative_of(/.Y).




Explainable Neural Link Prediction

Query  Score 5. Prools / Explanations
part_of(X.Y):~ has_part(Y.X)

095 , 2 TN
part_of(CONGO.N.03, AFRICA.X.01) has_part(-\IRI_C.\..S.()!,(‘usu)..\.(ﬂ) s
0787 part_of(X,Y) - instance_hyponyn(Y, X)
instance_hyponym(AFRICAN_COUNTRY.N.O], CONGO.N.03)
0.987 hyponymi X, Y) - hypernym{Y,.X)

hyponys(EXTINGUISH VO3, prcourL. v,03) hypernym{DLCOUFLE V.05, EXTINGUISH. V.04)
0920  hypernym{SNUFF_OUT.V.OL  EXTINGUISH.V.04)

part _of(FITUITARY. N O, BDIENCEFHALON N.O1) 0995 has_part (DIENCEPHALON N0, PITUITARY.N.O1)

WNIS

has_part{X.Y) :-part_of(Y.X)

; o
has_part(TEXAS.N.OL, 00USSANOZ) Q961 .0 o f(ODESSA.N.02, TEXAS.N.01)

nyponym(SKELUTAL _MUSCLILARTICULAR_MUSCLE) 0987 hypernym{ ARTICULAR _MUSCLE, SKELETAL _MUSCLE)

deriv_related_form{X,Y) - hypernym{Y, X)

deriv_related_form{REWRITYH, REWRITING) 0809 hypernym(REVISE, REWRITE)

0.962 also_seel{X.Y) ~also_see(Y,.X)
also_see(FAITHFUL A DL TRUEA.O1)
0.590 also_sea(CONSTANT. A O FAITHIUL.A O1)

0.962 also_see(VIRTUOUS A0, GOOD.A.O3)
002 also_seo(RIGHTEOUS. A.OL, VIRTUOUS. A.OL)

instance _hypernym{CHAFLIN, MILM_MAKER) = 681'2 instance _hypernym{CHAFLIN, COMEDIAN)
D

also_sec(TRUE A O FAITHFUL A.O1)

WNISRR

also_see(GOOoD A O VIRTUOUS.AO1)




Neuro-Symbolic Integration — Recent Advances

® Recursive Reasoning Networks [Hohenecker et al. 2018) — given a OWL RL ontology,
uses a differentiable model to update the entity and predicate representations.

® Deep ProbLog manhaeve et al. NeurlPs 2018 — extends the ProblLog probabilistic logic
programming language with neural predicates that can be evaluated on e.qg.
sensory data (images, speech).

® | ogic Tensor Networks [serafini et al. 2016, 20171 — fully ground First Order Logic rules.

e AutoEncoder-like Architectures [campero et al. 2018) — use end-to-end differentiable
reasoning in the decoder of an autoencoder-like architecture to learn the
minimal set of facts and rules that govern your domain via backprop.
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Obstacle ldentification Certification (Trust) - Transportation

Challenge: Public transportation is getting more and more
self-driving vehicles. Even if trains are getting more and
more autonomous, the human stays in the loop for critical
decision, for instance in case of obstacles. In case of
obstacles trains are required to provide recommendation of
action i.e., go on or go back to station. In such a case the
human is required to validate the recommendation through
an explanation exposed by the train or machine.

Al Technology: Integration of Al related technologies i.e.,
Machine Learning (Deep Learning / CNNs), and semantic
segmentation.

XAl Technology: Deep learning and Epistemic uncertainty
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Explainable On-Time Performance - Transportation

KLM / Transavia Flight Delay Prediction Challenge: Globally 323,454 flights are delayed every year.
Airline-caused delays totaled 20.2 million minutes last year,
generating huge cost for the company. Existing in-house
technigue reaches 53% accuracy for predicting flight delay,
does not provide any time estimation (in minutes as
opposed to True/False) and is unable to capture the
underlying reasons (explanation).

PLANE INFO ARRIVAL TURNAROUND DEPARTURE

Status / Awcraft Fight ETA  Status Delay Code Gate Slot  Progress Miestones fight [TA Suatws Delay Code

°
3
i

lIl

Al Technology: Integration of Al related technologies i.e.,
Machine Learning (Deep Learning / Recurrent neural
Network), Reasoning (through semantics-augmented case-
based reasoning) and Natural Language Processing for
building a robust model which can (1) predict flight delays in
minutes, (2) explain delays by comparing with historical
cases.

XAl Technology: Knowledge graph embedded Sequence
Learning using LSTMs

000000 O0CO0O0
<

Jiaoyan Chen, Freddy Lécué, Jeff Z. Pan, lan Horrocks, Huajun Chen: Knowledge-Based Transfer
Learning Explanation. KR 2018: 349-358

Nicholas McCarthy, Mohammad Karzand, Freddy Lecue: Amsterdam to Dublin Eventually Delayed?
LSTM and Transfer Learning for Predicting Delays of Low Cost Airlines: AAAI 2019
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Explainable Risk Management - Finance

Portfolo Overview Jhe Sevth
All Contracts (123) Contract Lifecycie
®) Negathve FAC Estimate View all Contracts »
>5% o) 4] o
W '. 4% [+] [>] ) )
3
) o
>N . »2% [+] 00
3 0 o.
o - o
% °
&0 0o :
L) o
0% 1000
Coetract St Coneract End

Jiewen Wu, Freddy Lécué, Christophe Guéret, Jer Hayes, Sara van de Moosdijk, Gemma Gallagher,
Peter McCanney, Eugene Eichelberger: Personalizing Actions in Context for Risk Management Using

Semantic Web Technologies. International Semantic Web Conference (2) 2017: 367-383

Copyright © 2017 Accenture. All rights reserved.

Challenge: Accenture is managing every year more than
80,000 opportunities and 35,000 contracts with an
expected revenue of $34.1 billion. Revenue expectation
does not meet estimation due to the complexity and risks
of critical contracts. This is, in part, due to the (1) large
volume of projects to assess and control, and (2) the
existing non-systematic assessment process.

Al Technology: Integration of Al technologies i.e., Machine
Learning, Reasoning, Natural Language Processing for
building a robust model which can (1) predict revenue
loss, (2) recommend corrective actions, and (3) explain
why such actions might have a positive impact.

XAl Technology: Knowledge graph embedded Random
Forrest
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Explainable anomaly detection — Finance (Compllance)

A¥S Accernure IMetigent Finasce System accenture
% E s Oververn of Austin v 00w i + Canercd Parwt + "
B ¢ g ~ . i 1 Data analysis
= \ = & - _ for spatial mterpr.etatlon
- @~ of abnormalities:
f abnormal expenses
P - N——————— e Bl T U e
S s -
o AR Semantic explanation
o » _] (structured in classes:
? @ fraud, events, seasonal)
R g e e of abnormalities
Ontvcal  Spe @ote Gocke Qo Gune @ ctoral et 5 otr :m.r:-: i @renscnal  Orcdey @t -
"’.“’"'"" “;‘"‘"' i ;"“Z’m 2 Detailed semantic
@4. i _ A % J explanation (structured Freddy Lécué, Jiewen Wu: Explaining and predicting abnormal
in sub classes e.g. expenses at large scale using knowledge graph based
categories for events) reasoning. J. Web Sem. 44: 89-103 (2017)

Challenge: Predicting and explaining abnormally employee expenses (as high accommodation price in 1000+ cities).

Al Technology: Various techniques have been matured over the last two decades to achieve excellent results. However most methods address the
problem from a statistic and pure data-centric angle, which in turn limit any interpretation. We elaborated a web application running live with real

data from (i) travel and expenses from Accenture, (i) external data from third party such as Google Knowledge Graph, DBPedia (relational DataBase
version of Wikipedia) and social events from Eventful, for explaining abnormalities.

XAl Technology: Knowledge graph embedded Ensemble Learning
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Counterfactual Explanations for Credit Decisions

Challenge: We predict loan applications with off-the-shelf,
interchangeable black-box estimators, and we explain

° Local, pOSt-hOC, contrastive their predictions with counterfactual explanations. In

. counterfactual explanations the model itself remains a

explanatlons Of bIaCk'bOX black box; it is only through changing inputs and outputs
classifiers that an explanation is obtained.

Al Technology: Supervised learning, binary classification.

* Required minimum change in

XAl Technology: Post-hoc explanation, Local explanation,

input vector to f||p the Counterfactuals, Interactive explanations
decision of the classifier. o J .
* Interactive Contrastive — ' Ghange t
Explanations f outcome
X > Y

Can remain as black box

Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, Freddy Lécué: Interpretable Credit Application Predictions With Counterfactual Explanations.
FEAP-Al4fin workshop, NeurlPS, 2018.



Counterfactual Explanations for Credit Decisions

Sorry, your loan application has been rejected.
Cur analywis

The Lionng leatuwes
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Counterfactuals suggest where to increase (green, dashed) or decrease (red, striped) each feature.

Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, Freddy Lécué: Interpretable Credit Application Predictions With Counterfactual Explanations.
FEAP-Al4fin workshop, NeurlPS, 2018.
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Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, Freddy Lécué: Interpretable Credit Application Predictions With Counterfactual Explanations.
FEAP-Al4fin workshop, NeurlPS, 2018.



predxct Breast Cancer Survival Rate Prediction

breast cancer

poe Y i I Results Challenge: Predict is an online
Age must be between 25 and B¢ tool that helps patients and

Post o [ [r— Cu‘ves Chart Texts Icons clinicians see how different
New recording treatments for early invasive
ER status 0 Positive ~ Negative These results are for women who have already had surgery. This table brea.St lcaﬂcerf might improve

shows the percentage of women who survive at least s 10 15 years survival rates atter surgery.
HER2 Positive = Negati Unknown . .

e o : - after surgery, based on the information you have provided. Al TeC_hn0|09Y1 competing risk
| analysis

Ki-67 status 0 Positive Negative Unknown

Treatment Additional Benefit Overall Survival %

XAl Technology: Interactive
explanations, Multiple

Tumour size . Surgery onl - 72% .
(mem) e - ' - bt el i representations.
N 0 » P + Hormone therapy 0% 72%
If death from breast cancer were excluded, 82% would survive at
Detected by o Screening Symptoms Unknown
least 10 years. o
Positive nodes - 2
O . Show ranges? o Yes No
o David Spiegelhalter, Making Algorithms trustworthy, NeurIPS 2018 Keynote
Yes No Unknown

predict.nhs.uk/tool
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(Some) Software Resources

* DeepExplain: perturbation and gradient-based attribution methods for Deep Neural Networks interpretability.y
github.com/marcoancona/DeepExplain

* iNNvestigate: A toolbox to iNNvestigate neural networks' predictions. github.com/albermax/innvestigate

* SHAP: SHapley Additive exPlanations. github.com/slundberg/shap

* ELI5: A library for debugging/inspecting machine learning classifiers and explaining their predictions. github.com/TeamHG-
Memex/eli5

» Skater: Python Library for Model Interpretation/Explanations. github.com/datascienceinc/Skater

* Yellowbrick: Visual analysis and diagnostic tools to facilitate machine learning model selection.
github.com/DistrictDatalabs/yellowbrick

* Lucid: A collection of infrastructure and tools for research in neural network interpretability. github.com/tensorflow/lucid



http://github.com/marcoancona/DeepExplain
https://github.com/albermax/innvestigate
https://github.com/slundberg/shap
https://github.com/TeamHG-Memex/eli5
https://github.com/datascienceinc/Skater
https://github.com/DistrictDataLabs/yellowbrick
https://github.com/tensorflow/lucid

Conclusions



/A AVAVALSL S,
Take-Home Messages

* Explainable Al is motivated by real-world application of Al
* Not a new problem — a reformulation of past research challenges in Al

* Multi-disciplinary: multiple Al fields, HCI, social sciences (multiple
definitions)
* In Machine Learning:

* Transparent design or post-hoc explanation?
e Background knowledge matters!

* We can scale-up symbolic reasoning by coupling it with representation learning on
graphs.

* In Al (in general): many interesting / complementary approaches

AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/
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Future Challenges

* Creating awareness! Success stories!

* Foster multi-disciplinary collaborations in XAl research.
* Help shaping industry standards, legislation.

* More work on transparent design.

* Investigate symbolic and sub-symbolic reasoning.

* Evaluation:
* We need benchmark - Shall we start a task force?
 We need an XAl challenge - Anyone interested?
* Rigorous, agreed upon, human-based evaluation protocols

27 January 2019 AAAI 2019, Tutorial on Explainable Al https://xaitutorial2019.github.io/
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