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Explanation in Al

Explanation in Al aims to create a suite of techniques that produce more explainable models,

while maintaining a high level of searching, learning, planning, reasoning performance:
optimization, accuracy, precision; and enable human users to understand, appropriately trust,

and effectively manage the emerging generation of Al systems .
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e Explanation in Artificial Intelligence
Motivation

Definitions

Evaluation (with role of the human in XAl systems)
The Role of Humans

Explanations in Different Al fields

* On the Role of Knowledge Graph in Explainable Machine Learning

e XAl Industrial Applications using Knowledge Graphs on Machine Learning

e Conclusion + Q&A
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Critical Systems










Markets We Serve (Critical Systems)

Trusted Partner For A Safer World




But not Only
Critical Systems




OP-ED CONTRIBUTOR

COMPAS recidivism black bias B T i i

' DYLAN FUGETT BERNARD PARKER
Prior Offense Prior Offense
1attempted burglary 1resisting arrest ? |
without violence ’

Subsequent Offenses

3 drug possessions Subsequent Offenses

: None
LOW RISK 3 HeHRISK 10

Fugett was rated low risk after being arrested with cocaine and
marijuana. He was arrested three times on drug charges after that.




Motivation (2)

Finance:

2 Credit scoring, loan approval

2 Insurance quotes

The Big Read Artificial intelligence

Insurance: Robots learn the
business of covering risk

Artificial intelligence could revolutionise the industry but may also allow
clients to calculate if they need protection

' f in N Save

Oliver Ralph MAY 16, 2017 D 24

https://www.ft.com/content/e07cee0c-3949-11e7-821a-6027b8a20f23

FICO

CPMMUNITY

A A X

1able Machine Learning Challer

community.fico.com/s/explainable-machine-learning-challenge




Motivation (3)

Healthcare

2 Applying ML methods in medical care
is problematic.

2 Al as 3r%-party actor in physician-
patient relationship

2 Responsibility, confidentiality?

2 Learning must be done with available
data.

2 Must validate models before use.

Stanford

MEDICINE | NewsCenter

EED: 223

Researchers say use of artificial intelligence in medicine raises
ethical questions

In a perspective piece, Stanford researchers discuss the ethical implications of using
machine-learning tools in making health care decisions for patients.

Patricia Hannon ,https://med.stanford.edu/news/all-news/2018/03/researchers-say-use-of-ai-in-medicine-
raises-ethical-questions.html

Intelligible Models for HealthCare: Predicting Pneumonia
Risk and Hospital 30-day Readmission

Rich Caruana Yin Lou Johannes Gehrke
Microsoft Research LinkedIn Corporation ) Microsoft
rcaruana@microsoft.com ylou@linkedin.com johannes@microsoft.com
Paul Koch Marc Sturm Noémie Elhadad
Microsoft Research NewYork-Presbyterian Hospital Columbia University
paulkoch@microsoft.com mas9161@nyp.org  noemie.elhadad@columbia.edu

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, Noemie Elhadad: Intelligible Models
for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission. KDD 2015: 1721-1730




XAl in a
Nutshell




Today

* Why did you do that?

=WE” -8 _
EHEDE. This is an * Why not something else?
smil VBN Learning obstacle on ! « When do you succeed?
=s==g Process rail train * When do you fail?
ME<sT120r * When can | trust you?
bERESsEe « How do | correct an error?
Training Learned Output User with
Data Function a Task
Tomorrow
* | understand why
. . Obstacle on « | understand why not
New obbe fbé rail train * | know when you'll succeed
Learning l}“ ““\ * Ob_St"‘Ct'o“ * | know when you'll fail
Process f080 A7 27 |covering full * | know when to trust you
ALEEFEEE fwidth « | know why you erred
Training EXxplainable Explanation User with
Data Model Interface a Task

Source: hitps://WWw.cc.gatech.edu/~alanwags/DLAIZ016/(Gunning]%20NCAI-16%20D LA 20W 5.paT



https://www.cc.gatech.edu/~alanwags/DLAI2016/(Gunning)%2520IJCAI-16%2520DLAI%2520WS.pdf

An Example of an end-to-end XAl System

» H: Why? H: (Hmm. Seems like it might H: What happens if the
! C: See below: be just recognizing anemone background
- texture!) Which training anemones are f
examples are most influential removed? E.g., Q
to the prediction?
| C: These ones:
ML Classifier ' C: I still predict
‘ Green regions argue FISH. because
for FISH, while RED of these green
C: I predict FISH pushes towards DOG. ‘

superpixels:

There's more green.

- Humans may have follow-up questions

- Explanations cannot answer all users’ concerns

Weld, D., and Gagan Bansal. "The challenge of crafting
intelligible intelligence." Communications of ACM (2018).




How to Explain? Accuracy vs. Explanability

Learning S Interpretability
Explainability
A >
Neural Net
GAN CNN
* Challenges: . Ensemble Non-Linear
* Supervised RNN Method functions
* Unsupervised learning
XGB
e A h: Random Decision
pproachn: - Forest Tree
* Representation Learning © Statistical
* Stochastic selection > Model :
S Polynomial
* Output: raphical Model functions
* Correlation
* No causation
Quasi-Linear

Linear .
Model functions




XAl Objective

Supporting
Industrialization of Al
at Scale




Explainability by Design for Al Products

p
Model Debugging J

Model Visualization

Model Diagnostics W /‘
Root Cause Analytics

( Model Evaluation
Compliance Testing
(. !
L X

<
Performance monitorin . S
) L g [ |||I Monitor }- -=-
Fairness monitoring
J

t@ Deploy Model Release Mgmt

-
) Model Launch Signoff J

{5 A/B Test

Model Comparison
Cohort Analysis

-

@ Predict JEprainabIe Decisions
L AP| Support

KDD 2019 Tutorial on Explainable Al in Industry - 5https://sites.google.com/view/kdd19-explainable-ai-tutorial



XAl Definitions

Explanation vs.
Interpretability




Oxtord Dictionary ot English
explanation | skspla'nezf(a)n |

noun

a statement or account that makes something clear: the birth rate is central to any explanation of
population trends.

interpret | mn'‘tarprrt |

verb (interprets, interpreting, interpreted) /with object]

1 explain the meaning of (information or actions): the evidence is difficult to interpret.




On Role of Data
In XAl




Interpretable Data for Interpretable Models

Table of baby-name data
(baby-2010.csv)

Field
name rank gender year - hames
Jacob 1 bo 2010

l ~~‘- One row

Isabella 1 girl 2010 (4 fields)
Ethan 2 boy 2010
Sophia 2 girl 2010
Michael 3 boy 2010

] ] | ]

L] n .

: 2000 rows : :

. all told . .

Tabular




What about the
Evaluation?




Perturbation-based Evaluation for Feature Attribution-based Approaches
Perturb top-k features by attribution and observe change in prediction
e Higher the change, better the method
e Perturbation may amount to replacing the feature with a random value

e Samek et al. formalize this using a metric: Area over perturbation curve
o Plot the prediction for input with top-k features perturbed as a function of k

o Take the area over this curve

A

Prediction for Artr%ta %Vetr :
perturbed inputs perturbatio
curve

Drop in prediction
when top 40 features
are perturbed

A\

10 20 30 40 50 60 Numberof
perturbed features

KDD 2019 Tutorial on Explainable Al in Industry - 5https://sites.google.com/view/kdd19-explainable-ai-tutorial



Human (Role)-based Evaluation is Essential...
out too often based on sizel

Evaluation criteria for Explanations [miller, 2017]
* Truth & probability
e Usefulness, relevance
e Coherence with prior belief
* Generalization

Cognitive chunks = basic explanation units (for different explanation needs)
* Which basic units for explanations?
* How many?
* How to compose them?
 Uncertainty & end users?

[Doshi-Velez and Kim 2017, Poursabzi-Sangdeh 18]

Attps.//XaitutorialZ019.gith



XAl: One Objective, Many Metrics

Comprehensibility Succinctness Actionability Reusability Accuracy

How much effort How concise and What can one Could the How accurate and
for correct human compact is the action, do with the explanation be precise is the
interpretation? explanation? explanation? personalized? explanation?

Completeness

Is the explanation
complete, partial,
restricted?

Source: Accenture Point of View. Unaersfanalng Machines: Explalnable Al. Freddy Lecue, Dadong Wan






XAl: One Objective, , Many Definitions,




XAl: One Objective, , Many Definitions,

How to summarize the
reasons (motivation,
justification, understanding

for an Al system behavior,
and explain the causes of
their decisions?

Planning

Robotics




XAl: One Objective, , Many Definitions,

How to summarize the
reasons (motivation,

Dependency Feature Surrogate
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XAl: One Objective, , Many Definitions, proa

Dependency Feature Surrogate o R e
| [ # #
Plot Importance Model s el s
i Wogo || s || TN

Tor{TO<0.
ROE <

Wheaten
Terrier

¥os (SOL < 213N
TA < 3165570}

07 08 08 1

3 04
Relalive Feature Importance

(©) Semantic Segmentation  (d) Aleatoric Uncertsinty  (e) Epistemic Uncertainty

(@) Input Image: (®) Ground Truth

Uncertainty Map




XAl: One Objective, , Many Definitions, proa
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XAl: One Objective, , Many Definitions, proa
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XAl: One Objective, , Many Definitions,
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XAl: One Objective, , Many Definitions,
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XAl: One Objective, , Many Definitions,
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Overview of explanation in different Al fields (1)

* Machine Learning (except Artificial Neural Network)

Interpretable Models:
* Linear regression,

* Logistic regression,
* Decision Tree,

* GLMs,

* GAMs

* KNNs




Overview of explanation in different Al fields (1)

* Machine Learning (except Artificial Neural Network)

Interpretable Models:
* Linear regression,
* Logistic regression,
* Decision Tree,

* GLMs,

* GAMs

* KNNs

Data: titanic naive Bayes Explanation
Model: NB

Prediction: p(survived = yes|x) = 0.671

Actual class label for this instance: yes

Feature Contribution Value

Class =

Naive Bayes model

Igor Kononenko. Machine learning for medical diagnosis:

history, state of the art and perspective. Artificial Intelligence
in Medicine, 23:89-109, 2001.



Overview of explanation in different Al fields (1)

* Machine Learning (except Artificial Neural Network)

Interpretable Models:

* Linear regression,

* Logistic regression,

* Decision Tree,

.+ GAMs
* KNNs

Data: titanic naive Bayes Explanation

Model: NB
Prediction: p(survived = yes|x) = 0.671
Actual class label for this instance: yes

Feature Contribution Value
Class =
Age = adult

female

Sex =

Naive Bayes model

Igor Kononenko. Machine learning for medical diagnosis:

history, state of the art and perspective. Artificial Intelligence

357
o AverageMInFile Nt Fraction Revolving Num Rev des Num Satisfactory Trades Percent Install Trades ~Percent Trades Never Percent Trades W
Burden W Bal Delg Balar
@ Input Value Increase By () Decrease By

Counterfactual
What-if

Brent D. Mittelstadt, Chris
Russell, Sandra Wachter:
Explaining Explanations in Al.
FAT 2019: 279-288

Rory Mc Grath, Luca Costabello,
Chan Le Van, Paul Sweeney,
Farbod Kamiab, Zhao Shen,
Freddy Lécué: Interpretable Credit
Application Predictions With
Counterfactual Explanations.
CoRR abs/1811.05245 (2018)

in Medicine, 23:89-109, 2001.



Overview of explanation in different Al fields (1)

* Machine Learning (except Artificial Neural Network)

Interpretable Models:
* Linear regression,
* Logistic regression,
* Decision Tree,

* GLMs,

* GAMs

* KNNs

Data: titanic

Model: NB

Prediction: p(survived = yes|x) = 0.671
Actual class label for this instance: yes

naive Bayes Explanation

Feature Contribution Value
Class = 3rd
Age = adult
Sex = female

Naive Bayes model

Igor Kononenko. Machine learning for medical diagnosis:

history, state of the art and perspective. Artificial Intelligence

Counterfactual
What-if

Brent D. Mittelstadt, Chris
Russell, Sandra Wachter:
Explaining Explanations in Al.
FAT 2019: 279-288

Rory Mc Grath, Luca Costabello,
Chan Le Van, Paul Sweeney,
Farbod Kamiab, Zhao Shen,
Freddy Lécué: Interpretable Credit
Application Predictions With
Counterfactual Explanations.
CoRR abs/1811.05245 (2018)
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Overview of explanation in different Al fields (2)

* Machine Learning (only Artificial Neural Network)

= <ER>
% %) =RelLl(Z ~1-2,)
=1

Network f(z1,x2)
Attributions at x1 = 3,22 = 1

Integrated gradients x; = 1.5, x2 = —0.5
DeepLift z1 = 1.5, z2 = —0.5
LRP x1 =15, x2 =-0.5

g(x,, x,) = ReLU(z, - z,)
=1
x, =1 sz ?eLU(xz)

Network g(x1, z2)

Attributions at 1 = 3,z2 = 1
Integrated gradients xz; = 1.5, zo = —0.5
DeepLift Ty =2, x9 =—1
LRP 1 =2, x2 =—1

Attribution for Deep
Network (Integrated gradient-based)
Mukund Sundararajan, Ankur Taly, and Qigi Yan.

Axiomatic attribution for deep networks. In ICML, pp.
3319-3328, 2017.

Avanti Shrikumar, Peyton Greenside, Anshul Kundaje:
Learning Important Features Through Propagating
Activation Differences. ICML 2017: 3145-3153




Overview of explanation in different Al fields (2)

* Machine Learning (only Artificial Neural Network)

= <ER>
% %) =RelLl(Z ~1-2,)
=1

Network f(z1,x2)

Attributions at x1 = 3,22 = 1
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(a) Input Image (b) Ground Truth (c) Semantic Segmentation (d) Aleatoric Uncertainty (e) Epistemic Uncertainty

Uncertainty Map

Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian Deep Learning for
Computer Vision? NiPS 2017: 5580-5590
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Western Grebe Description: This is a large bird with a white neck and a black back in the water.

Class Definition: The Western Grebe is a waterbird with a yellow pointy beak, white neck and belly,
and black back.

Explanation: This is a Western Grebe because this bird has a long white neck, pointy yellow beak
and red eye.

L Albati
aysan Abaross Description: This is a large flying bird with black wings and a white belly.

Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back
x | and white belly.

Visual Explanation: This is a Laysan Albatross because this bird has a large wingspan, hooked
yellow beak, and white belly.

Laysan Albatross Description: This is a large bird with a white neck and a black back in the water.
Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back

and white belly.
Visual Explanation: This is a Laysan Albatross because this bird has a hooked yellow beak white
neck and black back.

Visual Explanation

Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele,
Trevor Darrell: Generating Visual Explanations. ECCV (4) 2016: 3-19
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Shapley Additive Explanation

Scott M. Lundberg, Su-In Lee: A Unified Approach to Interpreting Model Predictions. NIPS 2017: 4768-
4777
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Shapley Additive Explanation

Scott M. Lundberg, Su-In Lee: A Unified Approach to Interpreting Model Predictions. NIPS 2017: 4768-
4777

L-Shapley and C-Shapley (with graph structure)

Jianbo Chen, Le Song, Martin J. Wainwright, Michael I. Jordan: L-Shapley and C-
Shapley: Efficient Model Interpretation for Structured Data. ICLR 2019
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Conflicts resolution

Barry O'Sullivan, Alexandre Papadopoulos, Boi Faltings, Pearl Pu: Representative Explanations for
Over-Constrained Problems. AAAI 2007: 323-328

Robustness Computation

Hebrard, E., Hnich, B., & Walsh, T. (2004, July). Robust solutions for constraint satisfaction and
optimization. In ECAI (Vol. 16, p. 186).
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Ref FC=C .
1. (at-least 3 grape) == (at-least 2 grape) Atlst
Trans FC:EE;[;:E R( 2. (and (at-least 3 grape) (prim GOOD WINE)) Onlng
Foaco Fo—sn = (at-least 2 grape) AndL,1
Eq F c{a/B] = D{a/B} 3. (prim GOOD WINE) == (prim WINE) Prim
b __ ercER 4. (and (a.ii-least 3 grape) (prim GOOD WINE))
F (prim EE) = (prim FF) = Eprlm WINE) AndL,3
_ 5. A = (and
THING F ¢ == THING (at-least 3 grape) (prim GOOD WINE)) Told
AndR Fc=—p Fc=— (and em 6. A == (prim WINE) Eq,4,5
F¢=(and D EB) 7. (prim WINE) = (and (prim WINE)) AndEq
Andl Fc—e=r 8. A == (and (prim WINE)) Eq,7,6
F(and .c..)=& 9. A == (at-least 2 grape) Eq,5,2
Al - Fec=>p 10. A = (and (at-least 2 grape) (prim WINE)) AndR,9,8
(all p ) = (all y D)
n>m
Atk st F (at-least » p) =—> (at-least mp)
AndEq FC=(and C)
AtLs0 F (at — least 0 p) = THING
All-thing b (all p THING) = THING
Alland [land(allp C)H(allp D). )= 4 = (and (at-least 3 grape) (prim GOOD WINE))
(and (all p (and C D)) ...)

Explaining Reasoning (through Justification) e.g., Subsumption

Deborah L. McGuinness, Alexander Borgida: Explaining Subsumption in Description Logics. IJCAI (1)
1995: 816-821
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1 tampering"} 1 fire } Plalarm|=fire A tampering)
T~ ) } P(alarm|=fire A =tampering)
) P(leaving|alarm)
AL i — P(leaving|-alarm)
“‘ alarm) ( smoke} P(report|leaving)
| ) ) P(report|-leaving)
(‘leaviné disjoint([fire(yes): 0.01, fire(no) : 0.99)).
I smoke(Sm) « fire(Fi) A csmoke(Sm, Fi).
- disjoint([cesmoke(yes, yes): 0.9, cosmoke(no, yes) :
[ report #

Abduction Reasoning (in Bayesian
Network)

David Poole: Probabilistic Horn Abduction and Bayesian

Networks. Artif. Intell. 64(1): 81-129 (1993)

disjoint| [t'_,\'IIlU}.'{ (yes, no): 0.01, c_smoke(no. no) :

0.99
0.85
0.0001
0.88
0.001
0.75

0.01

0.1]).
0.99]).
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MAS INFRASTRUCTURE INDIVIDUAL AGENT INFRASTRUCTURE
MAS INTEROPERATION INTEROPERATION
Translation Services Interoperation Services Interoperation Modules
CAPABILITY TO AGENT MAPPING CAPABILITY TO AGENT MAPPING
Middle Agents Middle Agents Components
NAME TO LOCATION MAPPING NAME TO LOCATION MAPPING
ANS ANS Component
SECURITY SECURITY
Certificate Authority ~ Cryptographic Services Security Module private/public Keys
PERFORMANCE SERVICES PERFORMANCE SERVICES
MAS Monitoring Reputation Services Performance Services Modules
MULTIAGENT MANAGEMENT SERVICES MANAGEMENT SERVICES
Logging, Acivity Visualization, Launching Logging and Visualization Components
ACL INFRASTRUCTURE ACL INFRASTRUCTURE
Public Ontology Protocols Servers ACL Parser Private Ontology  Protocol Engine
COMMUNICATION INFRASTRUCTURE COMMUNICATION MODULES
Discovery Message Transfer Discovery Component Message Tranfer Module
OPERATING ENVIRONMENT
Machines, OS, Network Multicast Transport Layer: TCP/IP, Wireless, Infrared, SSL

Explanation of Agent Conflicts & Harmful
Interactions

Katia P. Sycara, Massimo Paolucci, Martin Van Velsen, Joseph A.
Giampapa: The RETSINA MAS Infrastructure. Autonomous Agents
and Multi-Agent Systems 7(1-2): 29-48 (2003)
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NAME TO LOCATION MAPPING NAME TO LOCATION MAPPING
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SECURITY SECURITY Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization. AAMAS 2018: 1203-1207
Certificate Authority ~ Cryptographic Services Security Module private/public Keys
PERFORMANCE SERVICES PERFORMANCE SERVICES
MAS Monitoring Reputation Services
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Intelligent
States
Extraction

Agent Strategy Summarization
Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization. AAMAS 2018: 1203-1207
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Explainable Agents

Joost Broekens, Maaike Harbers, Koen V. Hindriks, Karel van
den Bosch, Catholijn M. Jonker, John-Jules Ch. Meyer: Do

You Get It? User-Evaluated Explainable BDI Agents. MATES
2010: 28-39

W. Lewis Johnson: Agents that Learn to

Explain Themselves. AAAI 1994: 1257-
1263




Overview of explanation in different Al fields (8)

Fine-grained
explanations are in the
NP P PredctorP_]
‘ softmax form Of:
| .
— ] Png?lquq;,-o * textsin a real-world
Generated i _ d ata Set;
Explanation e, : @ .
S * Numerical scores

Golden
Explanation e,

Explainable NLP

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative
Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)

Hendrik Strobelt, Sebastian Hendrik Strobelt, Sebastian
Gehrmann, Hanspeter Pfister, Gehrmann, Michael Behrisch, Adam
Alexander M. Rush: LSTMVis: A Tool Perer, Hanspeter Pfister, Alexander M.
for Visual Analysis of Hidden State Rush: Seg2seq-Vis: A Visual Debugging
Dynamics in Recurrent Neural Tool for Sequence-to-Sequence
Networks. IEEE Trans. Vis. Comput. Models. IEEE Trans. Vis. Comput.

Graph. 24(1): 667-676 (2018) Graph. 25(1): 353-363 (2019)
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Fine-grained

.0000--0

explanations are in the
Prem@

softmax form of:
00009 e e textsin areal-world
Generated o d a ta S et;
Explanation e, .
' * Numerical scores

Golden
Explanation e,

——

Explainable NLP

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative
Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)

Hendrik Strobelt, Sebastian
Gehrmann, Hanspeter Pfister,
Alexander M. Rush: LSTMVis: A Tool
for Visual Analysis of Hidden State
Dynamics in Recurrent Neural
Networks. IEEE Trans. Vis. Comput.
Graph. 24(1): 667-676 (2018)

Hendrik Strobelt, Sebastian
Gehrmann, Michael Behrisch, Adam
Perer, Hanspeter Pfister, Alexander M.
Rush: Seg2seq-Vis: A Visual Debugging
Tool for Sequence-to-Sequence
Models. IEEE Trans. Vis. Comput.
Graph. 25(1): 353-363 (2019)

Example #3 of ¢

Algorithm 1

Words that Al considers important:

GOD
mean
anyone
this|
Koresh
through

Document

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge hq.verdix.com
Organization: Verdix Corp

Lines: 8

True Class: . Atheism m m Q
Algorithm 2
Predicted Words that A2 considers important: Predicted
‘ Atheism Posting . Atheism
Prediction correct: Host Prediction correct:
v “ v
by
in|
Nntp
Document
From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp
Lines: 8
LIME for NLP

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin: "Why Should | Trust You?":
Explaining the Predictions of Any Classifier. KDD 2016: 1135-1144




Overview of explanation in different Al fields (8)
Example #3 of ¢ True Class: . Atheism mm@ ‘

S = [s1.52 5]
’ ® -G Algorithm 1 Algorithm 2
|
Words that Al considers important: Predicted: Words that A2 considers important: Predicted:
00000 F| N e—g rain ed GOD ‘ Atheism Posting . Atheism
v
. H H mean Prediction correct: Host Prediction correct:
explanations are in the .
Fregicar ) anyone J ¢ J
softmax fo rm Of: this| by
OOO O O . Koresh in
}— P02 1) * textsin areal-world through N
| argmax . |
Generated : d a ta S et ’ Document Document
Explanation e, | .
_ ' ) From: pauld@verdix.com (Paul Durbin) From: pauld@verdix.com (Paul Durbin)
Btacsisi | .'-R_c!-ul-x-: N u m e rl Ca I SCO res Subject: Re: DAVID CORESH IS! GOD! Subject: Re: DAVID CORESH IS! GOD!
Golden dassified g ed Nntp-Posting-Host: sarge hq.verdix.com Nntp-Posting-Host: sarge.hq.verdix.com
Explanation e, ! 1 Organization: Verdix Corp Organization: Verdix Corp
|
! Lines: 8 Lines: 8

e e
—— LIME for NLP

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin: "Why Should | Trust You?":

. Explaining the Predictions of Any Classifier. KDD 2016: 1135-1144
Explainable NLP praining Y

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative

Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018) s

NLP Debugger . ) =1
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Explanation Type | R1 | R2 [ R3 | R4 |
Plan Patch Explanation / VAL
Model Patch Explanation
Minimally Complete Explanation
Minimally Monotonic Explanation
(Approximate) Minimally Complete Explanation

I ANANENE
ANANENEREN

| x| N[ x

ANESEELENEN

Rita Borgo, Michael Cashmore, Daniele Magazzeni: Towards Providing Explanations for Al Planner
Decisions. CoRR abs/1810.06338 (2018)

domain

Knowledge Problem
Base Interface
problem

Question/Suggestion

new model

Planner
Interface

XAl-Plan

new plan

Response/Comparison

XAl Plan

Rita Borgo, Michael Cashmore, Daniele Magazzeni: Towards Providing Explanations for Al Planner
Decisions. CoRR abs/1810.06338 (2018)
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Explanation Type | R1 | R2 [ R3 | R4 |
Plan Patch Explanation / VAL
Model Patch Explanation
Minimally Complete Explanation
Minimally Monotonic Explanation
(Approximate) Minimally Complete Explanation

I ANANENE
ANANENEREN

| x| N[ x

ANESEELENEN

Rita Borgo, Michael Cashmore, Daniele Magazzeni: Towards Providing Explanations for Al Planner
Decisions. CoRR abs/1810.06338 (2018)

domain

Knowledge Problem
Base Interface
problem

Question/Suggestion

new model

Planner
Interface

XAl-Plan

new plan

Response/Comparison

XAl Plan

Rita Borgo, Michael Cashmore, Daniele Magazzeni: Towards Providing Explanations for Al Planner
Decisions. CoRR abs/1810.06338 (2018)

Al "=~ \ Bk
g/igirl \::O"kﬁ—l
gaA 9.4 ga 9B ga
" (a) h (b) (o) ()

Human-in-the-loop Planning

Maria Fox, Derek Long, Daniele Magazzeni: Explainable Planning. CoRR
abs/1709.10256 (2017)

(Manual) Plan Comparison
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* Robotics | -

“Fn n
Abstraction, A
Level 1 Level 2 Level 3 Level 4

General
Picture

Start and finish point of
the complete route

Total distance and time
taken for the complete
route

Total distance and time
taken for the complete
route

Starting and ending land-
mark of complete route

Summary

Start and finish point for
subroute on each floor of
each building

Total distance and time
taken for subroute on
each floor of each build-
ing

Total distance and angles
for subroute on each floor
of each building

Starting and ending land-
mark for subroute on
each floor of each build-
ing

Specificity, S

Detailed
Narrative

Start and finish points of
complete route plus time
taken for each edge of
route

Angle turned at each
point plus the total dis-
tance and time taken for
each edge of route

Turn direction at each
point plus total distance
for each edge of route

All landmarks encoun-
tered on the route

Narration of Autonomous Robot Experience

Stephanie Rosenthal, Sai P Selvaraj, and Manuela Veloso. Verbalization: Narration of autonomous
robot experience. In IJCAI, pages 862—868. AAAI Press, 2016.

Daniel J Brooks et al. 2010. Towards State Summarization for Autonomous Robots..
Symposium: Dialog with Robots, Vol. 61. 62.

In AAAI Fall
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\/ *mz

. Robotics

g knu -

‘L, ) \m_r,,,,%

=

Robot: I have decided to turn left.
Human: Why did you do that?

Robot: I believe that the correct action is to turn left
BECAUSE:
I’m being asked to go forward
AND This area in front of me was 20 cm higher than me
*highlights area*™
AND the area to the left has maximum protrusions of less
than 5 cm *highlights area*
AND I'm tilted to the right by more than 5 degrees.
Here is a display of the path through the tree that lead to

Abstraction, A this decision. *displays tree*
Level 1 Level 2 Level 3 Level 4 Human: How confident are you in this decision?
E 2 | Start and finish point of | (vl distance and time | Total distance and tme | g, ho 2 ending land- Robot: The distribution of actions that reached this leaf
£ £ | the complete route taken for the complete | taken for the complete mark of complete route . . . X . 5 »
S& P route route P node is shown in this histogram. *displays histogram*
» 2 | Start and finish poiat for Total distance and time | ' oo od angles Starting and ending land- This action is predlcted to be correct 67% of the time.
z g subroute on each floor of taken for subroute on for subroute on each floor mark for subroute on H : Wh did the threshold for th in fi
T | E -~ each floor of each build- g each floor of each build- uman: ere did the threshold for the area in front come
&= = each building . of each building . ‘
i w ing ing from?
& | @ | Start and finish points of | Angle turned at each R . . . .
,l;"E complete route plus time | point plus the total dis- Tu;:t d]llﬁcig:;l ?istz?lig All landmarks encoun- Robot: Here‘ is the hlstogram of all training ex?mples that
SE taken for each edge of | tance and time taken for pomnt pus ) tered on the route reached this leaf. 80% of examples where this area was
b2 route each edge of route for each edge of route 1 1 3 “Ari
g above 20 cm predicted the appropriate action to be “drive

forward”.

Narration of Autonomous Robot Experience
From Decision Tree to human-friendly
information

Raymond Ka-Man Sheh: "Why Did You Do That?" Explainable Intelligent
Robots. AAAI Workshops 2017

Stephanie Rosenthal, Sai P Selvaraj, and Manuela Veloso. Verbalization: Narration of autonomous
robot experience. In IJCAI, pages 862—868. AAAI Press, 2016.

Daniel J Brooks et al. 2010. Towards State Summarization for Autonomous Robots.. In AAAI Fall
Symposium: Dialog with Robots, Vol. 61. 62.
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* Reasc

Probabilistic Graphical Models

Daphne Koller, Nir Friedman: Probabilistic Graphical Models - Principles and Techniques. MIT
Press 2009, ISBN 978-0-262-01319-2, pp. I-XXXV, 1-1231




On the Role of Knowledge
Graphs in Explainable Al

A Machine Learning
Perspective

On the Role of Knowledge Graph in Explainable Al - under open review at the Semantic Web Journal -
http://www.semantic-web-journal.net/content/role-knowledge-graphs-explainable-ai



http://www.semantic-web-journal.net/content/role-knowledge-graphs-explainable-ai

Knowledge Graph (1)

o Set of (subject, predicate, object — SPO) triples - subject and object are
entities, and predicate is the relationship holding between them.

e Each SPO triple denotes a fact, i.e. the existence of an actual relationship
between two entities.

Alice Leonardo Da Vinci

subject predicate object @
Bob is interested in The Mona Lisa
Bob is a friend of Alice
The Mona Lisa was created by Leonardo Da Vinci
Bob is a Person @ imerestedin
La Joconde a W. is about The Mona Lisa
Bob is born on 14 July 1990

Person 14 July 1990 . .
La Joconde a Washington

tefs]



Knowledge Graph (2)

Name Entities = Relations | Types | Facts
Freebase 40M 35K 26.5K 637M
DBpedia (en) 4.6M 1.4K 735 580M
YAGO3 17M 77 488K  150M
Wikidata 15.6M 1.7K 232K 66M
NELL 2M 425 285 433K
Google KG 570M 35K 1.5K 18B
Knowledge Vault 45M 4.5K 1.1K  271M
Yahoo! KG 3.4M 800 250 1.39B

e Manual Construction - curated, collaborative
e Automated Construction - semi-structured, unstructured

Right: Linked Open Data cloud - over 1200 interlinked KGs
encoding more than 200M facts about more than 50M entities.

Spans a variety of domains - Geography, Government, Life
Sciences, Linguistics, Media, Publications, Cross-domain..

August 28th, 2019 Tutorial on Explainable Al 3



Knowledge Graph Construction

Knowledge Graph construction methods can be classified in:

e Manual — curated (e.g. via experts), collaborative (e.g. via volunteers)

e Automated — semi-structured (e.g. from infoboxes), unstructured (e.g. from text)
Coverage is an issue:

e Freebase (40M entities) - 71% of persons without a birthplace, 75% without a
nationality, even worse for other relation types [Dong et al. 2014]

e DBpedia (20M entities) - 61% of persons without a birthplace, 58% of scientists
missing why they are popular [KrompaB et al. 2015]

Relational Learning can help us overcoming these issues.

August 28th, 2019 Tutorial on Explainable Al eJo)



Knowledge Graph in Machine Learning (1)

https://stats.stackexchange.com/questions/230581/decision

-tree-too-large-to-interpret



https://stats.stackexchange.com/questions/230581/decision-tree-too-large-to-interpret

Knowledge Graph in Machine Learning (2)

https://stats.stackexchange.com/questions/230581/decision

-tree-too-large-to-interpret



https://stats.stackexchange.com/questions/230581/decision-tree-too-large-to-interpret

Knowledge Graph in Machine Learning (3)

@ Input Layer Training Data

(unlabeled
image)
Neu_rons respond |_0W-|éve|
to simple shapes :
st Layer featur?s to
high-fevel

Neurons respond to
more complex
structures

() Hidden Layer

Neurons respond to
highly complex,
abstract concepts

@ Output Layer




Knowledge Graph in Machine Learning (4)

-----------
..............
....
"a,
"a
"
a

@ Input Layer Training Data

Input
(unlabeled
image)
Neurons respond Low-level o
to simple shapes . A
( o1 Vi X DI 1st Layer | features tg .

Neurons respond to
more complex
structures

high-level
features :
 2nd Layer

GQG

() Hidden Layer

Neurons respond to
highly complex,
abstract concepts

nth Layer

@ Output Layer




Knowledge Graph in Machine Learning (5)

Description 2: This is an train accident between two speed
merchant trains of characteristics X43-B and Y33-Cin a dry
environment

wse®

Description 3: This is a public transportation accident <=




Knowledge Graph in Machine Learning (6)

“How to explain transfer learning with
appropriate knowledge representation?

Proceedings of the Sixteenth International Conference on Principles of
Knowledge Representation and Reasoning (KR 2018)

Knowledge-Based Transfer Learning Explanation

Jiaoyan Chen
Department of Computer Science
University of Oxford, UK

Jeff Z. Pan
Department of Computer Science
University of Aberdeen, UK

Huajun Chen

Freddy Lecue
INRIA, France
Accenture Labs, Ireland

lan Horrocks
Department of Computer Science
University of Oxford, UK

College of Computer Science, Zhejiang University, China
Alibaba-Zhejian University Frontier Technology Research Center
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Unfortunately, this is of
NO use for a human
behind the system




Let’s stay back

Why this Explanation?
(meta explanation)




After Human Reasoning...

Lumbermill - .59

&M ® Browse using v

dbo:wikiPagelD
dbo:wikiPageRevisionID

det:subject

http://purl.org/linguistics/gold/hypernym

rdf:type

rdfs:comment

rdfs:label

owl:sameAs

B Formats ~ (% Faceted Browser (4 Sparql Endpoint

352327 (xsd:integer)
734430894 (xsd:integer)

dbc:Sawmills

dbc:Saws
dbc:Ancient_Roman_technology
dbc:Timber_preparation

dbc: Timber_industry
dbr:Facility

owl:Thing
dbo:ArchitecturalStructure

A sawmill or lumber mill is a facility where logs are cut into lumber. Prior to the invention of the sawmill, boards were rived (split) and
planed, or more often sawn by two men with a whipsaw, one above and another in a saw pit below. The earliest known mechanical
mill is the Hierapolis sawmill, a Roman water-powered stone mill at Hierapolis, Asia Minor dating back to the 3rd century AD. Other
water-powered mills followed and by the 11th century they were widespread in Spain and North Africa, the Middle East and Central
Asia, and in the next few centuries, spread across Europe. The circular motion of the wheel was converted to a reciprocating motion
at the saw blade. Generally, only the saw was powered, and the logs had to be loaded and moved by hand. An early improvement
was the developm (en)

Sawmill (en)

wikidata:Sawmill
dbpedia-cs:Sawmill
dbpedia-de:Sawmill

dbpedia-es:Sawmill




What is missing?




"3’ m ® Browse using v & Formats ~ (% Faceted Browser (4 Spargl Endpoint

About: Boulder

An Entity of Type : place, from Named Graph : http://dbpedia.org, within Data Space : dbpedia.

In geology, a boulder is a rock fragment with size greater than 25.6 centimetres (10.1 in) in diameter. Smaller pieces are called
cobbles and pebbles, depending on their "grain size". While a boulder may be small enough to move or roll manually, others are
extremely massive. In common usage, a boulder is too large for a person to move. Smaller boulders are usually just called rocks or
stones. The word boulder is short for boulder stone, from Middle English bulderston or Swedish bullersten. Boulder sized clasts are
found in some sedimentary rocks, such as coarse conglomerate and boulder clay.

Property Value

dbo:abstract In geology, a boulder is a rock fragment with size greater than 25.6 centimetres (10.1 in) in diameter. Smaller pieces are called
cobbles and pebbles, depending on their "grain size". While a boulder may be small enough to move or roll manually, others are
extremely massive. In common usage, a boulder is too large for a person to move. Smaller boulders are usually just called rocks or
stones. The word boulder is short for boulder stone, from Middle English bulderston or Swedish bullersten. In places covered by ice
sheets during Ice Ages, such as Scandinavia, northern North America, and Russia, glacial erratics are common. Erratics are
boulders picked up by the ice sheet during its advance, and deposited during its retreat. They are called "erratic* because they
typically are of a different rock type than the bedrock on which they are deposited. One of them is used as the pedestal of the
Bronze Horseman in Saint Petersburg, Russia. Some noted rock formations involve giant boulders exposed by erosion, such as the
Devil's Marbles in Australia's Northern Territory, the Horeke basalts in New Zealand, where an entire valley contains only boulders,
and The Baths on the island of Virgin Gorda in the British Virgin Islands. Boulder sized clasts are found in some sedimentary rocks,
such as coarse conglomerate and boulder clay. The climbing of large boulders is called bouldering. (en)

dbo:thumbnail wiki-commons:Special:FilePath/Balanced_Rock.jpg?width=300
dbo:wikiPagelD 60784 (xsd:integer)
dbo:wikiPageRevisionID 743049914 (xsd:integer)

det:subject dbc:Rock_formations

dbe:Rocks

& M ® Browse using ~ b Formats ~ (% Faceted Browser (&) Sparqgl Endpoint

About: Rail transport

An Entity of Type : software, from Named Graph : http://dbpedia.org, within Data Space : dbpedia.org

Rail transport is a means of conveyance of passengers and goods on wheeled vehicles running on rails, also known as tracks. It is
also commonly referred to as train transport. In contrast to road transport, where vehicles run on a prepared flat surface, rail
vehicles (rolling stock) are directionally guided by the tracks on which they run. Tracks usually consist of steel rails, installed on ties
(sleepers) and ballast, on which the rolling stock, usually fitted with metal wheels, moves. Other variations are also possible, such
as slab track, where the rails are fastened to a concrete foundation resting on a prepared subsurface.

Value

dbo:abstract Rail transport is a means of conveyance of passengers and goods on wheeled vehicles running on rails, also known as tracks. It is
also commonly referred to as train transport. In contrast to road transport, where vehicles run on a prepared flat surface, rail vehicles
(rolling stock) are directionally guided by the tracks on which they run. Tracks usually consist of steel rails, installed on ties (sleepers)
and ballast, on which the rolling stock, usually fitted with metal wheels, moves. Other variations are also possible, such as slab track,
where the rails are fastened to a concrete foundation resting on a prepared subsurface. Rolling stock in a rail transport system
generally encounters lower frictional resistance than road vehicles, so passenger and freight cars (carriages and wagons) can be
coupled into longer trains. The operation is carried out by a railway company, providing transport between train stations or freight
customer facilities. Power is provided by locomotives which either draw electric power from a railway electrification system or
" produce their own power, usually by diesel engines. Most tracks are accompanied by a signalling system. Railways are a safe land
Ra I | Way - . 1 1 transport system when compared to other forms of transport. Railway transport is capable of high levels of passenger and cargo
| _

utilization and energy efficiency, but is often less flexible and more capital-intensive than road transport, when lower traffic levels are
considered. The oldest, man-hauled railways date back to the 6th century BC, with Periander, one of the Seven Sages of Greece,



XAl Thales
Platform

Higher accuracy with no intensive fine-tuning
Human interpretable explanation
Running on the edge at inference time




* Hardware: High performance, scalable, generic (to different
FGPA family) & portable CNN dedicated programmable
processor implemented on an FPGA for real-time embedded
inference

Software: Knowledge graph extension of object detection
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,,d"‘-/" Boulder - .09
- -

| Railway - .11

Transitioning

This is an Obstacle: Boulder obstructing the train:
XG142-R on Rail _Track from City: Cannes to City:
Marseille at due to Landslide
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Images RCNN hyperparmeters Tasks Knowledge Graph Semantic Augmentation Hyperparameters Freddy Lécué, Jiaoyan Chen, Jeff Z. Pan,

| Huajun Chen: Augmenting Transfer
Learning with Semantic Reasoning. [JCAI
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More on XAl




(Some) Tutorials, Workshops, Challenge

Tutorial:

AAAI 2020 Tutorial On Explainable Al: From Theory to Motivation, Applications and Limitations (#2) - https://xaitutorial2019.github.io/ https://xaitutorial2020.github.io/

ICIP 2018 / EMBC 2019 Interpretable Deep Learning: Towards Understanding & Explaining Deep Neural Networks (#2) - http://interpretable-ml.org/icip2018tutorial/ - http://interpretable-
ml.org/embc2019tutorial/

ICCV 2019 Tutorial on Interpretable Machine Learning for Computer Vision (#2) - https://interpretablevision.github.io/

KDD 2019 Tutorial on Explainable Al in Industry (#1) - https://sites.google.com/view/kdd19-explainable-ai-tutorial

Workshop:

ISWC 2019 Workshop on Semantic Explainability (#1) - http://www.semantic-explainability.com/

1JCAI 2019 Workshop on Explainable Artificial Intelligence (#3) - https://sites.google.com/view/xai2019/home 55 paper submitted in 2019

1JCAI 2019 Workshop on Optimisation and Explanation in Al (#1) - https://www.doc.ic.ac.uk/~kc2813/0OXAl/

SIGIR 2019 Workshop on Explainable Recommendation and Search (#2) https://ears2019.github.io/

ICAPS 2019 Workshop on Explainable Planning (#2)- https://kcl-planning.github.io/XAIP-Workshops/ICAPS 2019 23 papers submitted in 2019 https://openreview.net/group?id=icaps-
conference.org/ICAPS/2019/Workshop/XAIP

KDD 2019 Workshop on Explainable Al for fairness, accountability, and transparency (#1) — https://xai.kdd2019.a.intuit.com

ICCV 2019 Workshop on Interpreting and Explaining Visual Artificial Intelligence Models (#1) - http://xai.unist.ac.kr/workshop/2019/

NeurlPS 2019 Workshop on Challenges and Opportunities for Al in Financial Services: the Impact of Fairness, Explainability, Accuracy, and Privacy - https://sites.google.com/view/feap-ai4fin-2018/

CD-MAKE 2019 — Workshop on Explainable Al (#2) - https://cd-make.net/special-sessions/make-explainable-ai/

AAAI 2019 / CVPR 2019 Workshop on Network Interpretability for Deep Learning (#1 and #2) - http://networkinterpretability.org/ - https://explainai.net/

IEEE FUZZ 2019 / Advances on eXplainable Artificial Intelligence (#2) - https://sites.google.com/view/xai-fuzzieee2019

International Conference on NL Generation - Interactive Natural Language Technology for Explainable Artificial Intelligence (EU H2020 NL4XAl; #1) - https://sites.google.com/view/nl4xai2019/

Challenge:

2018: FICO Explainable Machine Learning Challenge (#1) - https://community.fico.com/s/explainable-machine-learning-challenge
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(Some) Software Resources

DeepExplain: perturbation and gradient-based attribution methods for Deep Neural Networks interpretability. github.com/marcoancona/DeepExplain

iNNvestigate: A toolbox to iNNvestigate neural networks' predictions. github.com/albermax/innvestigate

SHAP: SHapley Additive exPlanations. github.com/slundberg/shap

Microsoft Explainable Boosting Machines. https://github.com/Microsoft/interpret

GANDissect: Pytorch-based tools for visualizing and understanding the neurons of a GAN. https://github.com/CSAILVision/GANDissect

ELIS: A library for debugging/inspecting machine learning classifiers and explaining their predictions. github.com/TeamHG-Memex/eli5

Skater: Python Library for Model Interpretation/Explanations. github.com/datascienceinc/Skater

Yellowbrick: Visual analysis and diagnostic tools to facilitate machine learning model selection. github.com/DistrictDatalLabs/yellowbrick

Lucid: A collection of infrastructure and tools for research in neural network interpretability. github.com/tensorflow/lucid

LIME: Agnostic Model Explainer. https://github.com/marcotcr/lime

Sklearn_explain: model individual score explanation for an already trained scikit-learn model. https://github.com/antoinecarme/sklearn_explain

Heatmapping: Prediction decomposition in terms of contributions of individual input variables

Deep Learning Investigator: Investigation of Saliency, Deconvnet, GuidedBackprop and more. https://github.com/albermax/innvestigate

Google PAIR What-if: Model comparison, counterfactual, individual similarity. https://pair-code.github.io/what-if-tool/

Google tf-explain: https://tf-explain.readthedocs.io/en/latest/

IBM Al Fairness: Set of fairness metrics for datasets and ML models, explanations for these metrics. https://github.com/IBM/aif360

Blackbox auditing: Auditing Black-box Models for Indirect Influence. https://github.com/algofairness/BlackBoxAuditing

Model describer: Basic statiscal metrics for explanation (visualisation for error, sensitivity). https://github.com/DataScienceSquad/model-describer

AXA Interpretability and Robustness: https://axa-rev-research.github.io/ (more on research resources — not much about tools)



http://github.com/marcoancona/DeepExplain
https://github.com/albermax/innvestigate
https://github.com/slundberg/shap
https://github.com/Microsoft/interpret.
https://github.com/CSAILVision/GANDissect
https://github.com/TeamHG-Memex/eli5
https://github.com/datascienceinc/Skater
https://github.com/DistrictDataLabs/yellowbrick
https://github.com/tensorflow/lucid
https://github.com/marcotcr/lime
https://github.com/antoinecarme/sklearn_explain
https://github.com/albermax/innvestigate
https://pair-code.github.io/what-if-tool/
https://tf-explain.readthedocs.io/en/latest/
https://github.com/IBM/aif360
https://github.com/algofairness/BlackBoxAuditing
https://github.com/DataScienceSquad/model-describer
https://axa-rev-research.github.io/

(Some) Initiatives: XAl in USA
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Explainable learning systems that include both an explainable model and an explanation interface

TA2: Psychological Model of Explanation

Learning
Performance

Explanation
Effectiveness

Explanation
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» User Satisfaction
Mental Model
Task Performance
Trust Assessment
Correctability

Psychological theories of explanation and develop a computational model of explanation from those theories



(Some) Initiatives: XAl in Canada
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(Some) Initiatives: XAl in EU
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Conclusion




Why do we Need XAl by the Way?

e To empower individual against undesired effects of automated decision
making

* To reveal and protect new vulnerabilities
* To implement the “right of explanation”

e To improve industrial standards for developing Al-powered products,
increasing the trust of companies and consumers

* To help people make better decisions

* To align algorithms with human values

 To preserve (and expand) human autonomy
* To scale and industrialize Al




Why do we Need Knowledge Graphs to Achieve XAI?

Because this is
not an explanation
from an intelligent

system

This is even not
interpretable, and
then not actionable

o ~n_.




Conclusion

* Explainable Al is motivated by real-world applications in Al
* Not a new problem — a reformulation of past research challenges in Al
* Knowledge graphs should be foundational for XAl

e But they are facing challenges related to their integration (data mapping)

* Many industrial applications already — crucial for Al
adoption in critical systems




Open Research Questions for the Semantic Web / Knowledge Graph Community

[Data] Machine learning experts do not buy the data — knowledge
mapping
* [Explanation] There is no agreement on what an explanation is

* [Explanation] There is not a formalism for explanations (neither
model nor output)

* [Model] There is very limited work in machine learning modules
composability — and none from a semantics perspective

[Model] There is no work on describing and representing models

* [Model] What are disentangled representations and how can its
factors be quantified and detected?

 [Human-in-the-loop] There is no work that seriously addresses the
problem of quantifying the grade of comprehensibility of an
explanation for humans
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Research and Technology Applied Al (Artificia

Wherever safety and Security are Critical, Thales ¢
build smarter solutions. Everywhere.
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Job Description

B
An Al (Artificial Intelligence) Research and Techno

developing innovative prototypes to demonstrate
intelligence. To be successful in this role, one mos
what’s new, and a strong ability to learn new tech
hand-on technical skills and be familiar with latest
will contribute as technical subject matter expert:
and its business units. In addition to the implemelP
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thinking, and team work is also critical for this role

As a Research and Technology Applied Al Scientist
paced projects.

Professional Skill Requirements

e Good foundation in mathematics, statistic

| Intelligence) Scientist

e Strong knowledge of Machine Learning foundations

e Strong development skills with Machine Learning frameworks e.g., Scikit-learn, Tensoflow,
PyTorch, Theano

e Knowledge of mainstream Deep Learning architectures (MLP, CNN, RNN, etc).
e Strong Python programming skills

e Working knowledge of Linux OS

e Eagerness to contribute in a team-oriented environment

e Demonstrated leadership abilities in school, civil or business organisations

e Ability to work creatively and analytically in a problem-solving environment

e Proven verbal and written communication skills in English (talks, presentations, publications,
etc.)

asic Qualifications
e Master’s degree in computer science, engineering or mathematics fields

e Prior experience in artificial intelligence, machine learning, natural language processing, or
advanced analytics

referred Qualifications

e Minimum 3 years of analytic experience Python with interest in artificial intelligence with
working structured and unstructured data (SQL, Cassandra, MongoDB, Hive, etc.)

e Atrack record of outstanding Al software development with Github (or similar) evidence
e Demonstrated abilities in designing large scale Al systems

in Explainable Al and

e Work experience with programming languages such as C, C++, Java, scripting languages
(Perl/Python/Ruby) or similar

e Demonstrated intered or relational learning

Hands-on experience with data visualization, analytics tools/languages
Demonstrated teamwork and collaboration in professional settings

Ability to establish credibility with clients and other team members
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