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Al Adoption: Requirements
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XAl in Al
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XAl: One Objective, Many ‘Al’s, Many Definitions, Many Approaches

How to summarize the

reasons (motivation,
justification, Artificial
understanding) for an - |ptelligence
Al system behavior, ana
explain the causes of
their decisions2

2018 All rights reserved.

Which complex features are

Machine : -
responsible of classification?

Learning

Which features are *  Which agent strategy & plan ¢
responsible of classification? *  Which player confributes moste
*  Why such a conversational flow?

Computer
Vision

Which actions are
responsible of a plan?

Which axiom is responsible of
inference (e.g., classification)?
Abduction/Diagnostic: Find the
Uncertainty as right root causes (abduction)?
Which constraints can be relaxed? an alternative
fo explanation

Search

to a third party without the prior written consent of Thale:

Which decisions, combination of
multimodal decisions lead to an
actione

Which combination :
of features is optimal2 Robotics

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in

Which entity is responsible
for classification?@
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Machine
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I Overview of explanation in different Al fields (1)
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| Machine Learning (except Artificial Neural Network)

Interpretable Models:
* Linear regression,
» Logistic regression,
« Decision Tree,

« GLMs,

« GAMs

« KNNs

Data: titanic naive Bayes Explanation

Model: NB
Prediction: p(survived = yes|x) = 0.671
Actual class label for this instance: yes
Feature Contribution Value
Class = 3rd

adult

female

Naive Bayes model

Igor Kononenko. Machine learning for medical

12 diagnosis: history, state of the art and perspective.
Artificial Intellicence in Medicine, 23:89-109, 2001.

THALES



I Overview of explanation in different Al fields (1)

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole orin

- © Thales 2018 All rights reserved

part or disclosed to a third party without the prior written consent of Thales

| Machine Learning (except Artificial Neural Network)

Interpretable Models:
* Linear regression,
» Logistic regression,
« Decision Tree,

« GLMs,

« GAMs

« KNNs

Data: titanic naive Bayes Explanation

Model: NB
Prediction: p(survived = yes|x) = 0.671
Actual class label for this instance: yes

Feature Contribution Value
Class = 3rd
Age = adult
Sex = female

Naive Bayes model

Igor Kononenko. Machine learning for medical

13 diagnosis: history, state of the art and perspective.
Artificial Intellicence in Medicine, 23:89-109, 2001.

Predicted cancer probability

P
§1 131t 2
ot

- B EieR
@52%) - Proe (16%)

: HEF &
(RN NN N NI NNNNNNEEREaEN| ? S
20 a0 60

Age

SRF volume in central-3mm at M |
IR thickness in fovea at M 1 |
R - _________________________________]|
IRF volume in parafovea at M2 |
SRF volume in parafovea-temporal at M2 |
IR thickness in fovea at M2 |
TRT thickness in fovea at M1 |
TRT thickness in fovea at M2 |
IRF volume in central-3mm at M2 |
SRF area in central-3mm at M2 |
SRF area in parafovea-temporal at M2 | —
IR thickness in parafovea-nasal at M2 |
SRF volume in fovea at M1 |
SRF volume in parafovea at M2 I
IRF area in parafovea at M2 I

0 0.1 02 03 04 05 06 07 08 09 1
Relative Feature Importance

Feature Importance
Partial Dependence Plot
Individual Conditional Expectation

Sensitivity Analysis THALES



I Overview of explanation in different Al fields (1)

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole orin

- ©Thales 2018 All rights reserved.

part or disclosed to a third party without the prior written consent of Thales

| Machine Learning (except Artificial Neural Network)

Interpretable Models:
* Linear regression,

» Logistic regression,
« Decision Tree,

« GLMs,

.|||I|[

e GAMs
« KNNs
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Igor Kononenko. Machine learning for medical

14 diagnosis: history, state of the art and perspective.
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Counierfactual
What-if

Brent D. Mittelstadt, Chris
Russell, Sandra Wachter:

Explaining Explanations in
Al. FAT 2019: 279-288

Rory Mc Grath, Luca
Costabello, Chan Le Van,
Paul Sweeney, Farbod
Kamialb, Zhao Shen, Freddy
Lécué: Interpretable Credit
Applicafion Predictions With
Counterfactual
Explanations. CoRR
abs/1811.05245 (2018)
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Overview of explanation in different Al fields (2)

f(x,, x,) = ReLU(z, -1-z,)
=1
Network f(z1, z2)

Attributions at x1 = 3,z2 = 1
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Integrated gradients z; = 1.5, z2 = —0.5
DeepLift z1 = 1.5, zo = —-0.5
LRP xr1 = 1.5, To = —-0.5

a(x,, )(2)_=1RaLU(z1 - zz)

Network g(z1, z2)
Attributions at z1 = 3,22 = 1
Integrated gradients 2z, = 1.5, zo = —0.5

DeepLift 1 =2, 20 =—1
LRP fL‘1=2, .Tz:—l
Atiribution for Deep

Network (Integraied gradient-bused)

<

ukund Sundararajan, Ankur Taly, and Qiqgi
n. Axiomatic attribution for deep
tworks. In ICML, pp. 3319-3328, 2017.
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Avanti Shrikumar, Peyton Greenside, Anshul
Kundaje: Learning Important Features
Through Propagating Activation
IDifferences. ICML 2017: 3145-3153

| Machine Learning (only Artificial Neural Network)

Attention Mechanism

D. Bahdanau, K. Cho, and Y. Bengio. Neural
machine franslation by jointly learning to align
and franslate. International Conference on
Learning Representations, 2015
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(a) Standard attention model (b) RETAIN model

Edward Choi, Mohammad Taha Bahadori, Jimeng Sun,
Joshua Kulas, Andy Schuetz, Walter F. Stewart: RETAIN: An
Interpretable Predictive Model for Healthcare using
Reverse Time Attenfion Mechanism. NIPS 2016: 3504-3512
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Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin:

Deep Learning for Case-Based Reasoning
Through Prototypes: A Neural Network That
Explains Its Predictions. AAAI 2018: 3530-3537
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Overview of explanation in different Al fields (3)
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Uncertainty Map

Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian T I I
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Overview of explanation in different Al fields (3)

Western Grebe Description: This is a large bird with a white neck and a black back in the water.

Class Definition: The Western Grebe is a waterbird with a yellow pointy beak, white neck and belly,
and black back.

Explanation: This is a Western Grebe because this bird has a long white neck, pointy yellow beak
and red eye.

Airplane
res5c unit 1243

° - Description: This is a large flying bird with black wings and a white belly.
. Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back
res5cunit 1379 \ . and white belly.

Visual Explanation: This is a Laysan Albatross because this bird has a large wingspan, hooked
- e S yellow beak, and white belly.

| Computer Vision
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res5c unit 2001 _ " " " Laysan Albatross Description: This is a large bird with a white neck and a black back in the water.

= inception_4e unit 92 Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back

1 L ° and white belly.
inception 5b uni I nterprei’q ble U n“'s Visual Explanation: This is a Laysan Albatross because this bird has a hooked yellow beak white
neck and black back.
David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, Antonio . .
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Deep Visual Representations. CVPR 2017: 3319-3327 Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue,
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Knowledge Graph for Decision Trees
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I Knowledge Graph for Deep Neural Network (1)
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I Knowledge Graph for Deep Neural Network (2)
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Knowledge Graph for Personalized XAl
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Knowledge Graph for Explaining Transfer Learning

- ©Thales 2018 All rights reserved.

Proceedings of the Sixteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2018)

Knowledge-Based Transfer Learning Explanation

B

Jiaoyan Chen

Department of Computer Science
University of Oxford, UK

Jeff Z. Pan

Department of Computer Science
University of Aberdeen, UK

Huajun Chen
College of Computer Science, Zhejiang University, China
Alibaba-Zhejian University Frontier Technology Research Center

- “How to explain transfer learning with
appropriate knowledge
representation?

Freddy Lecue
INRIA, France
Accenture Labs, Ireland

lan Horrocks

Department of Computer Science
University of Oxford, UK
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(Some) Tutorials, Workshops, Challenge

Tutorial:

I AAAI 2019 Tutorial on On Explainable Al: From Theory to Motivation, Applications and Limitations (#1) - https://xaitutorial2019.github.io/

| ICIP 2018 / EMBC 2019 Interpretable Deep Learning: Towards Understanding & Explaining Deep Neural Networks (#2) -
http://interpretable-ml.org/icip2018tutorial/ - http://interpretable-ml.org/embc201%tutorial/

- ©Thales 2018 All rights reserved.

Workshop:
1 SWE 2019 Workshop on Semantic Bxplainability (41) - hitp://www.semantic-explainability.com/

| UCAI2019 Workshop on Explainable Arfificial Intelligence (#3) - https://sites.google.com/view/xai2019/home

[JCAI 2019 Workshop on Optimisation and Explanafion in Al (#1) - https://www.doc.ic.ac.uk/~kc2813/OXAl/

ICAPS 2019 Workshop on Explainable Planning (#2)- https://kcl-planning.github.io/XAIP-Workshops/ICAPS 2019

ICCV 2019 Workshop on Interpreting and Explaining Visual Arfificial Intelligence Models (#1) - http://xai.unist.ac .kr/workshop/2019/

NeurlPS 2019 Workshop on Challenges and Opportunities for Al in Financial Services: the Impact of Fairness, Explainability, Accuracy, and
Privacy - htips://sites.google.com/view/feap-ai4fin-2018/

| CD-MAKE 2019 — Workshop on Explainable Al (#2) - https://cd-make.net/special-sessions/make-explainable-ai/

I AAAI2019 / CVPR 2019 Workshop on Network Interpretability for Deep Learning (#1 and #2) - http://networkinterpretability.org/ -
hitps://explainai.net/

Challenge:
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| 2018: FICO Explainable Machine Learning Challenge (#1) - https://community.fico.com/s/explainable-machine-learning-challenge
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https://xaitutorial2019.github.io/
http://interpretable-ml.org/icip2018tutorial/
http://interpretable-ml.org/embc2019tutorial/
http://www.semantic-explainability.com/
https://sites.google.com/view/xai2019/home
https://www.doc.ic.ac.uk/~kc2813/OXAI/
https://kcl-planning.github.io/XAIP-Workshops/ICAPS_2019
http://xai.unist.ac.kr/workshop/2019/
https://sites.google.com/view/feap-ai4fin-2018/
https://cd-make.net/special-sessions/make-explainable-ai/
http://networkinterpretability.org/
https://explainai.net/
https://community.fico.com/s/explainable-machine-learning-challenge
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DeepkExplain: perturbation and gradient-based attribution methods for Deep Neural Networks interpretability. github.com/marcoancona/DeepExplain

iNNvestigate: A foolbox fo iINNvestigate neural networks' predictions. github.com/albermax/innvestigate

SHAP: SHapley Additive exPlanations. github.com/slundberg/shap

GANDissect: Pytorch-based tools for visualizing and understanding the neurons of a GAN. https://github.com/CSAILVision/GANDissect

ELI5: A library for debugging/inspecting machine learning classifiers and explaining their predictions. github.com/TeamHG-Memex/elis

Skater: Python Library for Model Interpretation/Explanations. github.com/datascienceinc/Skater

Yellowbrick: Visual analysis and diagnostic fools fo facilitate machine learning model selection. github.com/DistrictDatalabs/yellowbrick

Lucid: A collection of infrastructure and tools for research in neural network inferpretability. github.com/tensorflow/lucid

LIME: Agnostfic Model Explainer. https://github.com/marcotcr/lime

Sklearn_explain: model individual score explanation for an already trained scikit-learn model. hitps://github.com/antoinecarme/sklearn_explain

Heatmapping: Prediction decomposition in ferms of conftributions of individual input variables

Deep Learning Investigator: Investigation of Saliency, Deconvnet, GuidedBackprop and more. https://github.com/albermax/innvestigate

Google PAIR What-if: Model comparison, counterfactual, individual similarity. hitps://pair-code.github.io/whai-if-tool/

IBM Al Fairness: Set of fairness metrics for datasets and ML models, explanations for these metrics. hitps://github.com/IBM/qif360

Blackbox audifing: Auditing Black-box Models for Indirect Influence. https://github.com/algofairness/BlackBoxAuditing

Model describer: Basic stafistical metrics for explanation (visualisation for error, sensifivity). hitps://github.com/DataScienceSquad/model-describer
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http://github.com/marcoancona/DeepExplain
https://github.com/albermax/innvestigate
https://github.com/slundberg/shap
https://github.com/CSAILVision/GANDissect
https://github.com/TeamHG-Memex/eli5
https://github.com/datascienceinc/Skater
https://github.com/DistrictDataLabs/yellowbrick
https://github.com/tensorflow/lucid
https://github.com/marcotcr/lime
https://github.com/antoinecarme/sklearn_explain
https://github.com/albermax/innvestigate
https://pair-code.github.io/what-if-tool/
https://github.com/IBM/aif360
https://github.com/algofairness/BlackBoxAuditing
https://github.com/DataScienceSquad/model-describer

I (Some) Initiatives: XAl in Canada
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| DEEL (Dependable Explainable Learning) Project 2019-2024
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Conclusion
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| Not a new problem - a reformulation of past research challenges in Al

| Explainable Al is motivated by real-world applications in Al

| Explainable Al is a strong requirement for adoption of Al in industry

| Lots of approaches for eXplainable Machine Learning... but no semantics attached

| Need more work on joint learning and reasoning systems

| In Al (in general): many interesting / complementary approaches

THALES

[&



Research and Technology Applied Al (Artificial Intelligence) Scientist

Wherever safety and Security are Critical, Thales a

build smarter solutions. Everywhere.

.
hnology leader for the Defen:
J O b O p e n I n g S)gv, the combined expertise ¢ PyTorch, Theano
aies a key player in keeping the pub
protecting the national security interests of count

nave maae

Established in 1972, Thales Canada has over 1,80C Strong Python programming skills
Toronto and Vancouver working in Defence, Avior

This is a unique opportunity to play a key role on 1
Technology (TRT) in Canada (Quebec and Montre:
applied R&T experts at five locations worldwide. 1
intelligence technologies. Our passion is imagining
cutting edge Al technologies. Not only will you joil
network, but this TRT is also co-located within Coi
Intelligence eXpertise) i.e., the new flagship progr

to work.

Job Description

An Al (Artificial Intelligence) Research and Techno
developing innovative prototypes to demonstrate
intelligence. To be successful in this role, one mos
what’s new, and a strong ability to learn new tech .
hand-on technical skills and be familiar with latest

will contribute as technical subject matter experts

and its business units. In addition to the impleme'Preferred Qualifications
individual will also be involved in the initial projec
thinking, and team work is also critical for this role

M AY 7T H 20 1 9 As a Research and Technology Applied Al Scientist working structured and unstructured data (SQL, Cassandra, MongoDB, Hive, etc.)
’

paced projects.

Professional Skill Requirements

Fred dy Lec U e * Good foundation in mathematics, statistic

Chief Al Scientist, CortAlx, Thales, Montreal - Canada

@freddylecue
https://tinyurl.com/freddylecue
Freddy.lecue.e@thalesdigital.io

e Strong knowledge of Machine Learning foundations

e Strong development skills with Machine Learning frameworks e.g., Scikit-learn, Tensoflow,

e Knowledge of mainstream Deep Learning architectures (MLP, CNN, RNN, etc).

e Working knowledge of Linux OS

e Eagerness to contribute in a team-oriented environment

e Demonstrated leadership abilities in school, civil or business organisations
e Ability to work creatively and analytically in a problem-solving environment

e Proven verbal and written communication skills in English (talks, presentations, publications,
etc.)

Basic Qualifications
e Master’s degree in computer science, engineering or mathematics fields

Prior experience in artificial intelligence, machine learning, natural language processing, or
advanced analytics

e Minimum 3 years of analytic experience Python with interest in artificial intelligence with

e Atrack record of outstanding Al software development with Github (or similar) evidence
e Demonstrated abilities in designing large scale Al systems

Explainable Al and®or relational learning

*  Work experience with programming languages such as C, C++, Java, scripting languages
(Perl/Python/Ruby) or similar

e Demonstrated intere!

Hands-on experience with data visualization, analytics tools/languages
Demonstrated teamwork and collaboration in professional settings

Ability to establish credibility with clients and other team members
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