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Description 1: This is an orange train accident < === """
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environment
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owl:Thing
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A sawmill or lumber mill is a facility where logs are cut into lumber. Prior to the invention of the sawmill, boards were rived (split) and
planed, or more often sawn by two men with a whipsaw, one above and another in a saw pit below. The earliest known mechanical
mill is the Hierapolis sawmill, a Roman water-powered stone mill at Hierapolis, Asia Minor dating back to the 3rd century AD. Other
water-powered mills followed and by the 11th century they were widespread in Spain and North Africa, the Middle East and Central
Asia, and in the next few centuries, spread across Europe. The circular motion of the wheel was converted to a reciprocating motion
at the saw blade. Generally, only the saw was powered, and the logs had to be loaded and moved by hand. An early improvement
was the developm (en)

Sawmill (en)
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About: Boulder

An Entity of Type : place, from Named Graph : http://dbpedia.org, within Data Space : dbpedia.org

n geology, a boulder is a rock fragment with size greater than 25.6 centimetres (10.1 in) in diameter. Smaller pieces are called
cobbles and pebbles, depending on tneir "grain size". While a boulder may be small enough to move or roll manually, others are

extremely massive. In common usage, a boulder is too le X aller b s are usually just called rocks
- The word b or is short for er stone, from Middle English bulde sdish bulle 1. Boulder
- i i y e e nglomerate and boulder clay.

Value

aboabstract In geology, a boulder is a rock fragment with size greater than 25.6 centimetres (10.1 in) in diameter. Smaller pieces are called
cobbles and pebbles, depending on their "grain size". While a boulder may be small enough to move or roll manually, others are
extremely massive. In common usage, a boulder is too large for a person to move. Smaller boulders are usually just called rocks or
stones. The word boulder is short for boulder stone, from Middle English bulderston or Swedish bullersten. In places covered by ice
sheets during Ice Ages, such as Scandinavia, northern North America, and Russia, glacial erratics are common. Erratics are
boulders picked up by the ice sheet during its advance, and deposited during its retreat. They are called "erratic* because they
typically are of a different rock type than the bedrock on which they are deposited. One of them is used s the pedestal of the
Bronze Horseman in Saint Petersburg, Russia. Some noted rock formations involve giant boulders exposed by erosion, such as the
Devil's Marbles in Australia's Northern Territory, the Horeke basalts in New Zealand, where an entire valley contains only bouiders,
and The Baths on the island of Virgin Gorda in the British Virgin Islands. Boulder sized clasts are found in some sedimentary rocks,

. A
-~
such as coarse conglomerate and boulder clay. The climbing of large boulders is called bouldering. (en)
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-5 About: Rail transport
o ;_ L™ An Entity of Type : software, from Named Graph : http://dbpedia.org, within Data Space : dbpedia.org

is a means of conveyance of passengers and goods on wheeled vehicles running on rails, also known as tracks. It is
only referred to N transport. In contrast to road transport, where vehicles run on a prepared flat surface, rall
rolling stock) are onally guided by the tracks on which they run. Tracks usually consist of steel rails, installed on ties
) and ballast, on which the rolling stock, usually fitted with metal wheels, moves. Other variations are also possible, such
ed to a concrete foundation resting on a prepared subsurfac

dbo:abstract - Rail transport is a means of conveyance of passengers and goods on wheeled vehicles running on rails, also known as tracks. It is
also commonly referred to as train transport. In contrast to road transport, where vehicles run on a prepared flat surface, rail vehicles
(rolling stock) are directionally guided by the tracks on which they run. Tracks usually consist of steel rails, installed on ties (sleepers)
and ballast, on which the rolling stock, usually fitted with metal wheels, moves. Other variations are also possible, such s slab track,
where the rails are fastened to a concrete foundation resting on a prepared subsurface. Rolling stock in a rail transport system
generally encounters lower frictional resistance than road vehicles, so passenger and freight cars (carriages and wagons) can be
coupled into longer trains. The operation is carried out by a railway company, providing transport between train stations or freight
customer facilities. Power is provided by locomotives which either draw electric power from a railway electrification system or
. produce their own power, usually by diesel engines. Most tracks are accompanied by a signalliing system. Railways are a safe land
R a I I W ay - 1 1 transport system when compared to other forms of transport. Railway transport is capable of high levels of passenger and cargo
o utilization and energy efficiency, but is often less flexible and more capital-intensive than road transport, when lower traffic levels are
| considered. The oldest, man-hauled railways date back to the 6th century BC, with Periander, one of the Seven Sages of Greece,
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