Explainable AI - XAI

A Focus on Narrative, Machine Learning and Knowledge Graph-based Approaches

Freddy Lecue (@freddylecue)
http://www-sop.inria.fr/members/Freddy.Lecue/

Christian Müller
https://www.dfki.de/web/ueber-uns/mitarbeiter/person/chmu01

European Summer School on Explainable AI
July 21st, 2021
Outline
Agenda

● Part I: Introduction, Motivation & Evaluation – 15 minutes
 ○ Motivation, Definitions & Properties
 ○ Evaluation Protocols & Metrics

● Part II: Explanation in AI (not only Machine Learning!) – 30 minutes
 ○ From Machine Learning to Knowledge Representation and Reasoning and Beyond

● Part III: On The Role of Knowledge Graphs in Explainable Machine Learning – 30 minutes

● Part IV: Narrative-based Explanation – 30 minutes

● Part V: XAI Tools and Coding Practices – 25 minutes

● Part VI: Applications, Lessons Learnt and Research Challenges – 20 minutes
 ○ Explaining (1) object detection, (2) obstacle detection for autonomous trains, (3) flight performance, (4) flight delay prediction, (5) risk management, (6) abnormal expenses, (7) credit decisions, (8) medical conditions + 8 more use cases in industry
AI Adoption: Requirements

- Valid AI
- Responsible AI
- Trustable AI
- Privacy-preserving AI
- Explainable AI
 - Human Interpretable AI
 - Machine Interpretable AI

What is the rational?
SR 11-7: Guidance on Model Risk Management

BOARD OF GOVERNORS
OF THE FEDERAL RESERVE SYSTEM
WASHINGTON, D.C. 20551

Part I

Introduction and Motivation
Explanation - From a Business Perspective
Business to Customer AI
Critical Systems (2)
… but not only Critical Systems (1)

COMPAS recidivism black bias

DYLAN FUGETT

Prior Offense
1 attempted burglary

Subsequent Offenses
3 drug possessions

BERNARD PARKER

Prior Offense
1 resisting arrest without violence

Subsequent Offenses
None

LOW RISK 3

Fugett was rated low risk after being arrested with cocaine and marijuana. He was arrested three times on drug charges after that.
… but not only Critical Systems (2)

Finance:
- Credit scoring, loan approval
- Insurance quotes

Insurance: Robots learn the business of covering risk

Artificial intelligence could revolutionise the industry but may also allow clients to calculate if they need protection

https://www.ft.com/content/e07cee0c-3949-11e7-821a-6027b8a20f23
Healthcare

- Applying ML methods in medical care is problematic.
- AI as 3rd-party actor in physician-patient relationship
- Responsibility, confidentiality?
- Learning must be done with available data.
 Cannot randomize cares given to patients!
- Must validate models before use.
Joy Buolamwini, Timnit Gebru: Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. FAT 2018: 77-91

https://www.theverge.com/21298762/face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias

https://techcrunch.com/2020/10/02/twitter-may-let-users-choose-how-to-crop-image-previews-after-bias-scrutiny/
Explanation - In a Nutshell
AI as a Black-box: Source of Confusion and Doubt

- Why I am getting this decision?
- How can I get a better decision?
- Can I trust our AI decisions?
- How do I answer this customer complaint?
- How do I monitor and debug this model?
- Is this the best model that can be built?
- Are these AI system decisions fair?

Explainability by Design for AI products

Humans may have follow-up questions
- Human – Machine interactions are required
- Explanations cannot answer all users’ concerns in one shot
 - Many different stakeholders
 - Many different objectives
 - Many different expertise

Evaluation - XAI: One Objective, Many Metrics

- **Comprehensibility**: How much effort for correct human interpretation?
- **Succinctness**: How concise and compact is the explanation?
- **Actionability**: What can one action, do with the explanation?
- **Reusability**: Could the explanation be personalized?
- **Accuracy**: How accurate and precise is the explanation?
- **Completeness**: Is the explanation complete, partial, restricted?

Source: Accenture Point of View. Understanding Machines: Explainable AI. Freddy Lecue, Dadong Wan
Part II

Explanation in AI (Focus Machine Learning)
XAI: One Objective, Many ‘AI’s, Many Definitions, Many Approaches
How to summarize the reasons (motivation, justification, understanding) for an AI system behavior, and explain the causes of their decisions?
Which features are responsible of classification?

How to summarize the reasons (motivation, justification, understanding) for an AI system behavior, and explain the causes of their decisions?
Which features are responsible of classification?

How to summarize the reasons (motivation, justification, understanding) for an AI system behavior, and explain the causes of their decisions?

XAI: One Objective, Many ‘AI’s, Many Definitions, Many Approaches

Artificial Intelligence

Planning

Search

Robotics

Game Theory

Computer Vision

Uncertainty Map

Saliency Map

Dependency Plot

Feature Importance

Surrogate Model

Machine Learning

Planning

UAI

KRR

MAS

NLP

Game Theory

Search

Robotics

Dependency Plot

Feature Importance

Surrogate Model

Machine Learning

Planning

UAI

KRR

MAS

NLP

Game Theory

Search

Robotics

Uncertainty Map

Saliency Map

Which complex features are responsible of classification?
Which features are responsible of classification?

How to summarize the reasons (motivation, justification, understanding) for an AI system behavior, and explain the causes of their decisions?

Which complex features are responsible of classification?

- Which agent strategy & plan?
- Which player contributes most?
- Why such a conversational flow?
Which actions are responsible of a plan?

Which features are responsible of classification?

Which complex features are responsible of classification?

How to summarize the reasons (motivation, justification, understanding) for an AI system behavior and explain the causes of their decisions?

Which agent strategy & plan?
Which player contributes most?
Why such a conversational flow?
Which features are responsible of classification?

Which actions are responsible of a plan?

Which constraints can be relaxed?

How to summarize the reasons (motivation, justification, understanding) for an AI system behavior and explain the causes of their decisions?

Which complex features are responsible of classification?

Which agent strategy & plan?

Which player contributes most?

Why such a conversational flow?

XAI: One Objective, Many ‘AI’s, Many Definitions, Many Approaches
XAI: One Objective, Many ‘AI’s, Many Definitions, Many Approaches

Which combination of features is optimal?
Which features are responsible for classification?
Which actions are responsible for a plan?
Which constraints can be relaxed?
Which complex features are responsible for classification?

How to summarize the reasons (motivation, justification, understanding) for an AI system behavior and explain the causes of their decisions?

Artificial Intelligence

Dependenc
y
Feature
Importance
Surrogate
Model
Plan Refinement
Search
Conflicts
Resolution
Game
Theory
Robotics
Shapely
Values

Strategy
Summarization

Computer
Vision

Surrogate
Model

MAS

Saliency Map

KRR

UAI

NLP

Machine Learning

Plan Refinement

Dependency
Plot

How to summarize the reasons (motivation, justification, understanding) for an AI system behavior and explain the causes of their decisions?

Plan Refinement

Which actions are responsible for a plan?

Which constraints can be relaxed?

Which agent strategy & plan?
Which player contributes most?
Why such a conversational flow?

Which complex features are responsible for classification?

Artificial Intelligence

Game Theory

Surrogate
Model

Saliency Map

Plan Refinement

Which actions are responsible for a plan?

Which constraints can be relaxed?

Which agent strategy & plan?
Which player contributes most?
Why such a conversational flow?

XAI: One Objective, Many ‘AI’s, Many Definitions, Many Approaches

Which combination of features is optimal?
Which features are responsible for classification?
Which actions are responsible for a plan?
Which constraints can be relaxed?
Which complex features are responsible for classification?

How to summarize the reasons (motivation, justification, understanding) for an AI system behavior and explain the causes of their decisions?

Artificial Intelligence

Dependenc
y
Feature
Importance
Surrogate
Model
Plan Refinement
Search
Conflicts
Resolution
Game
Theory
Robotics
Shapely
Values

Strategy
Summarization

Computer
Vision

Surrogate
Model

MAS

Saliency Map

KRR

UAI

NLP

Machine Learning

Plan Refinement

Dependency
Plot

How to summarize the reasons (motivation, justification, understanding) for an AI system behavior and explain the causes of their decisions?

Plan Refinement

Which actions are responsible for a plan?

Which constraints can be relaxed?

Which agent strategy & plan?
Which player contributes most?
Why such a conversational flow?

Which complex features are responsible for classification?

Artificial Intelligence

Game Theory

Surrogate
Model

Saliency Map

Plan Refinement

Which actions are responsible for a plan?

Which constraints can be relaxed?

Which agent strategy & plan?
Which player contributes most?
Why such a conversational flow?

XAI: One Objective, Many ‘AI’s, Many Definitions, Many Approaches

Which combination of features is optimal?
Which features are responsible for classification?
Which actions are responsible for a plan?
Which constraints can be relaxed?
Which complex features are responsible for classification?

How to summarize the reasons (motivation, justification, understanding) for an AI system behavior and explain the causes of their decisions?

Artificial Intelligence

Dependenc
y
Feature
Importance
Surrogate
Model
Plan Refinement
Search
Conflicts
Resolution
Game
Theory
Robotics
Shapely
Values

Strategy
Summarization

Computer
Vision

Surrogate
Model

MAS

Saliency Map

KRR

UAI

NLP

Machine Learning

Plan Refinement

Dependency
Plot

How to summarize the reasons (motivation, justification, understanding) for an AI system behavior and explain the causes of their decisions?

Plan Refinement

Which actions are responsible for a plan?

Which constraints can be relaxed?

Which agent strategy & plan?
Which player contributes most?
Why such a conversational flow?

Which complex features are responsible for classification?

Artificial Intelligence

Game Theory

Surrogate
Model

Saliency Map

Plan Refinement

Which actions are responsible for a plan?

Which constraints can be relaxed?

Which agent strategy & plan?
Which player contributes most?
Why such a conversational flow?

XAI: One Objective, Many ‘AI’s, Many Definitions, Many Approaches

Which combination of features is optimal?
Which features are responsible for classification?
Which actions are responsible for a plan?
Which constraints can be relaxed?
Which complex features are responsible for classification?

How to summarize the reasons (motivation, justification, understanding) for an AI system behavior and explain the causes of their decisions?

Artificial Intelligence

Dependenc
y
Feature
Importance
Surrogate
Model
Plan Refinement
Search
Conflicts
Resolution
Game
Theory
Robotics
Shapely
Values

Strategy
Summarization

Computer
Vision

Surrogate
Model

MAS

Saliency Map

KRR

UAI

NLP

Machine Learning

Plan Refinement

Dependency
Plot

How to summarize the reasons (motivation, justification, understanding) for an AI system behavior and explain the causes of their decisions?

Plan Refinement

Which actions are responsible for a plan?

Which constraints can be relaxed?

Which agent strategy & plan?
Which player contributes most?
Why such a conversational flow?

Which complex features are responsible for classification?
XAI: One Objective, Many ‘AI’s, Many Definitions, Many Approaches

- Which features are responsible of classification?
- Which actions are responsible of a plan?
- Which decisions, combination of multimodal decisions lead to an action?
- Which combination of features is optimal?
- Which constraints can be relaxed?
- Which complex features are responsible of classification?

- Artificial Intelligence
- Strategy Summarization
- Plan Refinement
- Search
- Conflicts Resolution
- Machine Learning
- Dependency Plot
- Feature Importance
- Surrogate Model
- Planning
- MAS
- KRR
- UAI
- NLP
- Game Theory
- Robotics
- Shapely Values
- Narrative-based
- Computer Vision
- Uncertainty Map
- Surrogate Model
- XAI: One Objective, Many ‘AI’s, Many Definitions, Many Approaches

- How to summarize the reasons (motivation, justification, understanding) for an AI system behavior and explain the causes of their decisions?
Which combination of features is optimal?

Which features are responsible of classification?

Which actions are responsible of a plan?

Which constraints can be relaxed?

Which decisions, combination of multimodal decisions lead to an action?

Which agent strategy & plan?

Which player contributes most?

Why such a conversational flow?

How to summarize the reasons (motivation, justification, understanding) for an AI system behavior, and explain the causes of their decisions?
Which complex features are responsible of classification?

Which actions are responsible of a plan?

Which entity is responsible for classification?

Which combination of features is optimal?

Which constraints can be relaxed?

Machine Learning

Which features are responsible of classification?

Plan Refinement

Which agent strategy & plan?

Which player contributes most?

Why such a conversational flow?

Computer Vision

Abduction

Uncertainty Map

Which axiom is responsible of inference (e.g., classification)?

Abduction/Diagnostic: Find the right root causes (abduction)?

Search

Which constraints can be relaxed?

How to summarize the reasons (motivation, justification, understanding) for an AI system behavior and explain the causes of their decisions?

UAI

Which decisions, combination of multimodal decisions lead to an action?

NLP

Which entity is responsible for classification?

Game Theory

Which combination of features is optimal?

Robotics

Narrative-based

Dependency Plot

Feature Importance

Surrogate Model

Plan Refinement

Conflicts Resolution

Artificial Intelligence

Strategy Summarization

KRR

Conflict

Dependency Plot

KRR

Abduction

Uncertainty Map

UAI

Which combination of features is optimal?

Shapely Values

Narrative-based

Machine Learning based

XAI: One Objective, Many ‘AI’s, Many Definitions, Many Approaches
Uncertainty as an alternative to explanation

Which complex features are responsible of classification?

Which actions are responsible of a plan?

Which entity is responsible for classification?

Which combination of features is optimal?

Which constraints can be relaxed?

Which decisions, combination of multimodal decisions lead to an action?

Which agent strategy & plan?

Which player contributes most?

Why such a conversational flow?

Which axiom is responsible of inference (e.g., classification)?

Abduction/Diagnostic: Find the right root causes (abduction)?

How to summarize the reasons (motivation, justification, understanding) for an AI system behavior and explain the causes of their decisions?

Uncertainty as an alternative to explanation

Machine Learning based Narrative-based

Robotics

Game Theory

Search

Plan Refinement

Surrogate Model

Feature Importance

Dependency Plot

Computer Vision

Uncertainty Map

Abduction

KRR

UAI

Diagnosis

Why such a conversational flow?

Which player contributes most?

UAI

Narrative-based

Robotics

Game Theory

Which combination of features is optimal?

Which constraints can be relaxed?

Which actions are responsible of a plan?

Which features are responsible of classification?
Overview of Explanation in Machine Learning (1)

- Many tools already available from early-days Machine Learning

Interpretable Models:
 - Decision Trees

Is the person fit?

Age < 30?
- Yes
 - Eats a lot of pizzas?
 - Yes
 - Unfit
 - No
 - Fitz
 - No
 - Exercises in the morning?
 - Yes
 - Fit
 - No
 - Unfit

Overview of Explanation in Machine Learning (1)

- Many tools already available from early-days Machine Learning

Interpretable Models:
- Decision Trees, Lists

If Past-Respiratory-Illness = Yes and Smoker = Yes and Age ≥ 50, then Lung Cancer
Else if Allergies = Yes and Past-Respiratory-Illness = Yes, then Asthma
Else if Family-Risk-Respiratory = Yes, then Asthma
Else if Family-Risk-Depression = Yes, then Depression
Else if Gender = Female and Short-Breath-Symptoms = Yes, then Asthma
Else if BMI ≥ 0.2 and Age ≥ 60, then Diabetes
Else if Frequent-Headaches = Yes and Dizziness = Yes, then Depression
Else if Frequency-Doctor-Visits ≥ 0.3, then Diabetes
Else if Disposition-Tiredness = Yes, then Depression
Else if Chest-Pain = Yes and Nausea and Yes, then Diabetes
Else Diabetes
Overview of Explanation in Machine Learning (1)

- Many tools already available from early-days Machine Learning

Interpretable Models:
- Decision Trees, Lists and Sets and rules

```
If Allergies = Yes and Smoker = Yes and Irregular-Heartbeat = Yes, then Asthma
If Allergies = Yes and Past-Respiratory-Illness = Yes and Avg-BODY-Temperature ≥ 0.1, then Asthma
If Smoker = Yes and BMI ≥ 0.2 and Age ≥ 60, then Diabetes
If Family-Risk-Diabetes = Yes and BMI ≥ 0.4 = Frequency-Infections ≥ 0.2, then Diabetes
If Frequency-Doctor-Visits ≥ 0.4 and Childhood-Obesity = Yes and Past-Respiratory-Illness = Yes, then Diabetes
If Family-Risk-Depression = Yes and Past-Depression = Yes and Gender = Female, then Depression
If BMI ≥ 0.3 and Insurance-Coverage = None and Avg-Blood-Pressure ≥ 0.2, then Depression
If Past-Respiratory-Illness = Yes and Age ≥ 50 and Smoker = Yes, then Lung Cancer
If Family-Risk-LungCancer = Yes and Allergies = Yes and Avg-Blood-Pressure ≥ 0.3, then Lung Cancer
If Disposition-Tiredness = Yes and Past-Anemia = Yes and BMI ≥ 0.3 and Rapid-Weight-Loss = Yes, then Leukemia
If Family-Risk-Leukemia = Yes and Past-Blood-Clotting = Yes and Frequency-Doctor-Visits ≥ 0.3, then Leukemia
If Disposition-Tiredness = Yes and Irregular-Heartbeat = Yes and Short-Breath-Symptoms = Yes and Abdomen-Pains = Yes, then Myelofibrosis
```
Overview of Explanation in Machine Learning (1)

- Many tools already available from early-days Machine Learning

Interpretable Models:
- Decision Trees, Lists and Sets and rules
- GAMs,
- GLMs,

<table>
<thead>
<tr>
<th>Model</th>
<th>Form</th>
<th>Intelligibility</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Model</td>
<td>$y = \beta_0 + \beta_1 x_1 + ... + \beta_n x_n$</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Generalized Linear Model</td>
<td>$g(y) = \beta_0 + \beta_1 x_1 + ... + \beta_n x_n$</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Additive Model</td>
<td>$y = f_1(x_1) + ... + f_n(x_n)$</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Generalized Additive Model</td>
<td>$g(y) = f_1(x_1) + ... + f_n(x_n)$</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Full Complexity Model</td>
<td>$y = f(x_1, ..., x_n)$</td>
<td>+</td>
<td>+++</td>
</tr>
</tbody>
</table>

Intelligible Models for Classification and Regression. Lou, Caruana and Gehrke KDD 2012

Accurate Intelligible Models with Pairwise Interactions. Lou, Caruana, Gehrke and Hooker. KDD 2013
Overview of Explanation in Machine Learning (1)

- Many tools already available from early-days Machine Learning

Interpretable Models:
- Decision Trees, Lists and Sets and rules
- GAMs,
- GLMs,
- Linear regression,
- Logistic regression,
- KNNs

Naive Bayes model

Overview of Explanation in Machine Learning (1)

- Many tools already available from early-days Machine Learning

Interpretable Models:
- Decision Trees, Lists and Sets and rules
- GAMs,
- GLMs,
- Linear regression,
- Logistic regression,
- KNNs

Counterfactual

What-if

Brent D. Mittelstadt, Chris Russell, Sandra Wachter:
Explaining Explanations in AI.
FAT 2019: 279-288

Rory McGrath, Luca Costabello,
Chan Le Van, Paul Sweeney,
Farbod Kamiab, Zhao Shen,
Freddy Lécué: Interpretable Credit Application Predictions With Counterfactual Explanations.
CoRR abs/1811.05245 (2018)

Naive Bayes model

Igor Kononenko. Machine learning for medical diagnosis:

https://pair-code.github.io/what-if-tool/
Overview of Explanation in Machine Learning (1)

- Many tools already available from early-days Machine Learning

Interpretable Models:
- Decision Trees, Lists and Sets and rules
- GAMs,
- GLMs,
- Linear regression,
- Logistic regression,
- KNNs

Interpretable Models:
- Decision Trees, Lists and Sets and rules
- GAMs,
- GLMs,
- Linear regression,
- Logistic regression,
- KNNs

Data: titanic
Model: NB
Prediction: p(survived = yes|x) = 0.671
Actual class label for this instance: yes

<table>
<thead>
<tr>
<th>Feature</th>
<th>Contribution</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td></td>
<td>3rd</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td>adult</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td>female</td>
</tr>
</tbody>
</table>

Naive Bayes model

https://pair-code.github.io/what-if-tool/

- Feature Importance
- Partial Dependence Plot
- Individual Conditional Expectation
- Sensitivity Analysis
Overview of Explanation in Machine Learning (2)

- Focus: Artificial Neural Network

Network \(f(x_1, x_2) \)

- **Attributions at** \(x_1 = 3, x_2 = 1 \)
- **Integrated gradients**
 - \(x_1 = 1.5, x_2 = -0.5 \)
 - DeepLift
 - \(x_1 = 1.5, x_2 = -0.5 \)
 - LRP
 - \(x_1 = 1, x_2 = -0.5 \)

Network \(g(x_1, x_2) \)

- **Attributions at** \(x_1 = 3, x_2 = 1 \)
- **Integrated gradients**
 - \(x_1 = 1.5, x_2 = -0.5 \)
 - DeepLift
 - \(x_1 = 2, x_2 = -1 \)
 - LRP
 - \(x_1 = 2, x_2 = -1 \)

Attribution for Deep Network (Integrated gradient-based)

Example-based / Prototype

Surogate Model

Attention Mechanism

Integrated gradient-based

Example-based / Prototype

Surogate Model

Overview of Explanation in Machine Learning (3)

Focus: Artificial Neural Network

Uncertainty Map
Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NIPS 2017: 5580-5590

Saliency Map / Features Attribution

Visual Explanation
Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele, Trevor Darrell: Generating Visual Explanations. ECCV (4) 2016: 3-19

Interpretable Units

Visual Explanation

Saliency Map / Features Attribution

Overview of Explanation in Machine Learning (4)

- Focus: Artificial Neural Network

Explainng Uncertainty - Beyond Interpretation of Prediction

Part III

On The Role of Knowledge Graphs in Explainable Machine Learning
How Does it Work in Practice?
State of the Art
Machine Learning
Applied to Critical Systems
Object (Obstacle) Detection Task
Object (Obstacle) Detection Task State-of-the-art ML Result

Lumbermill - .59
Object (Obstacle) Detection Task State-of-the-art ML Result

- Lumbermill: 0.59
- Boulder: 0.09
- Railway: 0.11
State of the Art
XAI
Applied to Critical Systems
Object (Obstacle) Detection Task
State-of-the-art XAI Result

Lumbermill - .59
Object (Obstacle) Detection Task
State-of-the-art XAI Result

Lumbermill - .59
Object (Obstacle) Detection Task
State-of-the-art XAI Result
Unfortunately, this is of NO use for a human behind the system
Let’s stay back

Why this Explanation?
(meta explanation)
After Human Reasoning...

<table>
<thead>
<tr>
<th>dbr:pageId</th>
<th>352327 (xsd:integer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbr:pageRevisionId</td>
<td>734430894 (xsd:integer)</td>
</tr>
<tr>
<td>dbo:subject</td>
<td>dbo:Sawmills</td>
</tr>
<tr>
<td></td>
<td>dbo:Saws</td>
</tr>
<tr>
<td></td>
<td>dbo:Ancient_Roman_technology</td>
</tr>
<tr>
<td></td>
<td>dbo:Timber_preparation</td>
</tr>
<tr>
<td></td>
<td>dbo:Timber_industry</td>
</tr>
<tr>
<td>rdf:type</td>
<td>owl:Thing</td>
</tr>
<tr>
<td></td>
<td>dbo:ArchitecturalStructure</td>
</tr>
<tr>
<td>rdf:comment</td>
<td>A sawmill or lumber mill is a facility where logs are cut into lumber. Prior to the invention of the sawmill, boards were rived (split) and planed, or more often sawn by two men with a whipsaw, one above and another in a saw pit below. The earliest known mechanical mill is the Hierapolis sawmill, a Roman water-powered stone mill at Hierapolis, Asia Minor dating back to the 3rd century AD. Other water-powered mills followed and by the 11th century they were widespread in Spain and North Africa, the Middle East and Central Asia, and in the next few centuries, spread across Europe. The circular motion of the wheel was converted to a reciprocating motion at the saw blade. Generally, only the saw was powered, and the logs had to be loaded and moved by hand. An early improvement was the developm (en)</td>
</tr>
<tr>
<td>rdf:label</td>
<td>Sawmill (en)</td>
</tr>
<tr>
<td>owl:sameAs</td>
<td>wikidata:Sawmill</td>
</tr>
<tr>
<td></td>
<td>dbpedia-co:Sawmill</td>
</tr>
<tr>
<td></td>
<td>dbpedia-de:Sawmill</td>
</tr>
<tr>
<td></td>
<td>dbpedia-es:Sawmill</td>
</tr>
</tbody>
</table>
What is missing?
In geology, a boulder is a rock fragment with size greater than 25.6 centimetres (10.1 in) in diameter. Smaller pieces are called cobbles and pebbles, depending on their "grain size". While a boulder may be small enough to move by roll or roll manually, others are extremely massive. In common usage, a boulder is too large for a person to move. Smaller boulders are usually just called rocks or stones. The word "boulder" is short for boulder stone, from Middle English bouldeson or Swedish bollsten. Boulder sized clasts are found in some sedimentary rocks, such as coarse conglomerate and boulder clay.

Rail transport is a means of conveyance of passengers and goods on wheeled vehicles running on rails, also known as tracks. It is also commonly referred to as train transport. In contrast to road transport, where vehicles run on a prepared flat surface, rail vehicles (rolling stock) are directionally guided by the tracks on which they run. Trains usually consist of steel rails, installed on ties (sleepers) and ballast, on which the rolling stock, usually fitted with metal wheels, moves. Other variations are also possible, such as slab track, where the rails are fastened to a concrete foundation resting on a prepared subbase. Rolling stock in a rail transport system generally encounters lower frictional resistance than road vehicles, so passenger and freight cars (trailers and wagons) can be coupled into longer trains. The operation is carried out by a railway company, providing transport between train stations or freight customer facilities. Power is provided by locomotives which either draw electric power from a railway electrification system or produce their own power, usually by diesel engines. Most tracks are accompanied by a signaling system. Railways are a safe land transport system when compared to other forms of transport. Railway transport is capable of high levels of passenger and cargo utilization and energy efficiency, but it is often less flexible and more capital-intensive than road transport, when lower traffic levels are considered. The oldest, manually operated railways date back to the 8th century BC, with Peru, one of the Seven Wonders of the World, being the oldest. Rail transport is a major driver in the development of the modern world economy.
- Hardware: High performance, scalable, generic (to different FPGA family) & portable CNN dedicated programmable processor implemented on an FPGA for real-time embedded inference

 businessmen:

Knowledge graph extension of object detection

This is an **Obstacle: Boulder** obstructing the train: XG142-R on **Rail_Track** from City: Cannes to City: Marseille at **Location: Tunnel VIX** due to **Landslide**
XAI Thales Platform

• Higher accuracy with no intensive fine-tuning
• Human interpretable explanation
• Running on the edge at inference time
Tunnel - .74
Boulder - .81
Railway - .90
Landslide
Obstacle
Rail Track
Train obstructing on Boulder
Train operating on Boulder
Tunnel obstructing Landslide
Knowledge Graph in Machine Learning - An Implementation

Let’s go

even

Beyond
Augmenting (input) features with more semantics such as knowledge graph embeddings / entities

https://stats.stackexchange.com/questions/230581/decision-tree-too-large-to-interpret
Knowledge Graph in Machine Learning (2)

Augmenting machine learning models with more semantics such as knowledge graphs entities

https://stats.stackexchange.com/questions/230581/decision-tree-too-large-to-interpret
Neurons respond to simple shapes
Neurons respond to more complex structures
Neurons respond to highly complex, abstract concepts

1st Layer
Low-level features to high-level features

2nd Layer

n-th Layer

Augmenting (intermediate) features with more semantics such as knowledge graph embeddings / entities

Knowledge Graph in Machine Learning (3)
Knowledge Graph in Machine Learning (4)

Open question: What is the impact of semantic representation on units in Neural Networks?

Jesse Mu, Jacob Andreas: Compositional Explanations of Neurons. NeurIPS 2020
Training Data

Neurons respond to simple shapes

Neurons respond to more complex structures

Neurons respond to highly complex, abstract concepts

1st Layer

2nd Layer

nth Layer

Input (unlabeled image)

Low-level features to high-level features

Augmenting (input, intermediate) features – output relationship with more semantics to capture causal relationship

Knowledge Graph in Machine Learning (5)
Knowledge Graph in Machine Learning (6)

Description 1: This is an orange train accident

Description 2: This is a train accident between two speed merchant trains of characteristics X43-B and Y33-C in a dry environment

Description 3: This is a public transportation accident

Augmenting models with semantics to support personalized explanation
"How to explain transfer learning with appropriate knowledge representation?"

Augmenting input features and domains with semantics to support interpretable transfer learning

Jiaoyan Chen, Freddy Lécué, Jeff Z. Pan, Ian Horrocks, Huajun Chen:
Knowledge-Based Transfer Learning Explanation. KR 2018: 349-358
“How to explain concept drift in Machine Learning?

Augmenting input features and domains with semantics to interpret concept drift in Machine Learning.

Knowledge Graph in Machine Learning (9)

• Towards more semantic interpretation

ConceptSHAP

Chih-Kuan Yeh, Been Kim, Sercan Ömer Arik, Chun-Liang Li, Tomas Pfister, Pradeep Ravikumar: On Completeness-aware Concept-Based Explanations in Deep Neural Networks. NeurIPS 2020

ACE

Circuits in CNNs

https://distill.pub/2020/circuits/zoom-in/

Compositional Explanations

Jesse Mu, Jacob Andreas: Compositional Explanations of Neurons. NeurIPS 2020

Figure 1: Given a set of inputs (a) and scalar neuron activations (b) converted into binary masks (c), we generate an explanation via beam search, starting with an inventory of primitive concepts (d), then incrementally building up more complex logical forms (e). We attempt to maximize the IoU score of an explanation (f); depicted is the IoU of \(M_{483}(x) \) and (water OR river) AND NOT blue.
Part IV

Narrative-based Explanation
Motivation

- If the explanations are presented using natural languages, it is important that they are accurate, useful, and easy to comprehend.
- Ensuring this requires addressing challenges in Natural Language Generation
- Figure 1: example of a human-written explanation of the likelihood of water or gas being close to a proposed oil well [Reiter 2019]

It is also unlikely that a water or gas contact is present very close to the well. During the DST test, the well produced only minor amounts of water. No changes in the water content or in the GOR of the fluid were observed. However, interpretation of the pressure data indicates pressure barriers approximately 65 and 250m away from the well [...] It is therefore a possibility of a gas cap above the oil. On the other hand, the presence of a gas cap seems unlikely due to the fact that the oil itself is undersaturated with respect to gas (bubble point pressure = 273 bar, reservoir pressure = 327.7 bar)

Figure 1: Example of a complex explanation
Analyzing the Report

● It is written for a purpose (helping the company decide whether to drill a well), and needs to evaluated with this purpose in mind.

● For example, the presence of a small amount of water would not impact the drilling decision, and hence the explanation is not “wrong” if a small amount of water is present.

● It is written for an audience, in this case specialist engineers and geologists, by using specialist terminology which is appropriate for this group, and also by using vague expressions (e.g., “minor amount”) whose meaning is understood by this audience.

● It has a narrative structure, where facts are linked with causal, argumentative, or other discourse relations. It is not just a list of observations.

● It explicitly communicates uncertainty, using phrases such as “possibility” and “unlikely”.
A Challenge for Natural Language Generation

- A core principle of NLG is that generated texts have a communicative goal.
- They have a purpose such as helping users make decisions (perhaps the most common goal), encouraging users to change their behavior, or entertaining users.
- Evaluations of NLG systems are based on how well they achieve these goals, as well as the accuracy and fluency of generated texts.
- Typically, we either directly measure success in achieving the goal or we ask human subjects how effective they think the texts will be at achieving the goal.
Explanations of AI Systems

- Helping developers debug their AI systems.
 - This is not a common goal in NLG, but is one of the most common goals in Explainable AI.
 - The popular LIME model (Ribeiro et al., 2016), for example, is largely presented as a way of helping ML developers choose between models, and also improve models via feature engineering.

- Helping users detect mistakes in AI reasoning (scrutability).
 - This is especially important when the human user has access to additional information which is not available to the AI system, which may contradict the AI recommendation. For example, a medical AI system which only looks at the medical record cannot visually observe the patient; such observations may reveal problems and symptoms which the AI is not aware of.

- Building trust in AI recommendations.
 - In medical and engineering contexts, AI systems usually make recommendations to doctors and engineers, and if these professionals accept the recommendations, they are liable (both legally and morally) if anything goes wrong. Hence systems which are not trusted will not be used.
Evaluation Challenge

- As with NLG in general, we can evaluate explanations at different levels of rigor.
- The most popular evaluation strategy in NLG is to show generated texts to human subjects and ask them to rate and comment on the texts in various ways.
- Evaluation Challenge: Can we get reliable estimates of scrutabilty, trust (etc) by simply asking users to read explanations and estimate the asked for characteristics? What experimental design (subjects, questions, etc) gives the best results? Do we need to first check explanations for accuracy before doing the above?
- Other challenges include creating good experimental designs for task-based evaluation to assess whether explanations improve decision making because of increased scrutability
Appropriate Explanations for Audience

- A fundamental principle of NLG is that texts are produced for users, and hence should use appropriate content, terminology, etc for the intended audience.

- For example, the BABYTALK (Reiter 2007) systems generated very different summaries from the same data for doctors, nurses, and parents.

- Explanations should also present information in appropriate ways for their audience, using features, terminology, and content that make sense to the user.

- Reiter (2019) reports that they showed a system which classified leaves to a domain expert who struggled to understand some explanations because the features used in the explanation were not the ones that he normally used to classify leaves.

- If explanations are intended to support end users by increasing scrutability or trust, they need to be aligned with the way those users communicate and think about the problem.

Vague Language Challenge

- People naturally think in qualitative terms, so explanations will be easier to understand if they use vague terms such as “minor amount” (in Figure 1) when possible.

- What algorithms and models can we use to guide the usage of vague language in explanations, and in particular to avoid cases where the vague language is interpreted by the user in an unexpected way which decreases his understanding of the situation?

- Other challenges in this space:
 - At the content level, it would really help if we could prioritise messages which are based on features and concepts which are familiar to the user.
 - And at the lexical level, we should try to select terminology and phrasing which make sense to the user.
Narrative Structure

- People are better at understanding symbolic reasoning presented as a narrative than they are at understanding a list of numbers and probabilities.

- “John smokes, so he is at risk of lung cancer” is easier for us to process than “the model says that John has a 6% chance of developing lung cancer within the next six years because he is a white male, has been smoking a pack a day for 50 years, is 67 years old, does not have a family history of lung cancer, is a high school graduate [etc]”.

- But the latter of course is the way most computer algorithms and models work, including the one used to calculate John’s cancer risk\(^1\).

- Doctors have been reluctant to use regression models for diagnosis tasks, even if objectively the models worked well, because the type of reasoning used in these models (holistically integrating evidence from a large number of features) is not one they are cognitively comfortable with.

(1) https://shouldiscreen.com/English/lung-cancer-risk-calculator
Narrative Structure (2)

- The above applies to information communicated linguistically.
- In contexts that do not involve verbal communication, people are in fact very good at some types of reasoning which involve holistically integrating many features, such as face recognition.
- We can easily recognize people we know, even in very noisy visual contexts, but we find it very hard to describe them in words in a way which lets other people identify them.
- In any case, linguistic communication is most effective when it is structured as a narrative.
- That is, not just a list of observations, but rather a selected set of key messages which are linked together by causal, argumentative, or other discourse relations.
Narrative Structure (3)

- For example, the most **accurate** way of explaining a smoking risk prediction based on regression or Bayesian models is to simply list the input data and the models result.

 “John is a white male. John has been smoking a pack a day for 50 years. John is 67 years old. John does not have a family history of lung cancer. John is a high school graduate. John has a 6% chance of developing lung cancer within the next 6 years.”
But people will probably understand this explanation better if we add a narrative structure do it, perhaps by identifying elements which increase or decrease risks, and also focusing on a small number of key data elements.

“John has been smoking a pack a day for 50 years, so he may develop lung cancer even though he does not have a family history of lung cancer.”
Narrative Challenge

- How can we present the reasoning done by a numerical non-symbolic model, especially one which holistically combines many data elements (e.g., regression and Bayesian models) as a narrative, with key messages linked by causal or argumentative relations?
Communicating Uncertainty and Data Quality

- People like to think in terms of black and white, yes or no. We are notoriously bad at dealing with probabilities.

- One challenge which has received a lot of attention is communicating risk. It is still a struggle to get people to understand what a 13% risk (for example) really means. Which is a shame, because effective communication of risk in an explanation could really increase scrutability and trust.

- Another factor which is important but has received less attention than risk is communicating data quality issues.

- If we train an AI system on a data set, then biases in the data may be reflected in the system’s output.

- For example, if we train a model for predicting lung cancer risks purely on data from Americans, then that model may be substantially less accurate if it is used on people from very different cultures.

- For instance, few Americans grow up malnourished or in hyperpolluted environments; hence a cancer prediction model developed on Americans may not accurately estimate risks for residents of Delhi (one of the most polluted cities in the world) who has been malnourished most of her lives.

- Any explanation produced in such circumstances should highlight training bias and any other factors which reduce accuracy.
Similarly, models (regardless of how they are built) may produce inaccurate results if the input data is incomplete or incorrect.

For example, suppose someone does not know whether he has a family history of lung cancer (perhaps he is adopted, and has no contact with his birth parents).

A lot of AI models are designed to be robust in such cases and still produce an answer; however, their accuracy and reliability may be diminished.

In such cases, explanations which are scrutable and trustworthy need to highlight this fact, so the user can take this reduced accuracy into consideration when deciding what to do.

Data quality can impact many data-to-text applications, not just explanations.
Communicating Data Quality Challenge

- How can we communicate to users that the accuracy of an AI system is impacted either by the nature of its training data, or by incomplete or incorrect input data?

- Of course, communicating uncertainty in the sense of probabilities and risks is also a challenge for both NLG in general and explanations specifically!
Summary of Challenges

- **Evaluation:** Develop “cheap but reliable” ways of estimating scrutability, trust, etc.
- **Vague Language:** Develop good models for the use of vague language in explanations.
- **Narrative:** Develop algorithms for creating narrative explanations.
- **Data Quality:** Develop techniques to let users know how results are influenced by data issues.
Local Interpretable Model-agnostic Explanations (LIME)

- LIME’s goal is to identify an interpretable model over the interpretable representation that is locally faithful to the classifier.

- Even though an interpretable model may not be able to approximate the black box model globally, approximating it in the vicinity of an individual instance may be feasible.
Figure 1. Toy example to present intuition for LIME. The black-box model’s complex decision function f (unknown to LIME) is represented by the blue/pink background. The bright bold red cross is the instance being explained. LIME samples instances, gets predictions using f, and weighs them by the proximity to the instance being explained (represented here by size). The dashed line is the explanation that is locally (but not globally) faithful.
Explainable AI in the Larger Context of Trustworthy AI

https://miro.com/app/board/o9J_l5o9fMY=/
Part V

XAI Tools, Coding Practices, Conclusion, and Research Challenges
In this post, we will study how LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et. al. 2016) generates explanations for image classification tasks. The basic idea is to understand why a machine learning model (deep neural network) predicts that an instance (image) belongs to a certain class (labrador in this case). For an introductory guide about how LIME works, I recommend you to check my previous blog post Interpretable Machine Learning with LIME. Also, the following YouTube video explains this notebook step by step.

http://t.ly/c3yz
Lucid: A Quick Tutorial

This tutorial quickly introduces Lucid, a network for visualizing neural networks. Lucid is a kind of spiritual successor to DeepDream, but provides flexible abstractions so that it can be used for a wide range of interpretability research.

Note: The easiest way to use this tutorial is [as a colab notebook](https://github.com/tensorflow/lucid/), which allows you to dive in with no setup. We recommend you enable a free GPU by going:

- **Runtime → Change runtime type → Hardware Accelerator: GPU**

Thanks for trying Lucid!

http://t.ly/QqxZ

Links:
- [TensorFlow Lucid](https://github.com/tensorflow/lucid/)
- [Distill pub](https://distill.pub/2020/circuits/zoom-in/)
- [OpenAI Microscope](https://microscope.openai.com/models)
XAI GAN Dissection on Image – Network Dissection

http://t.ly/x4IF
XAI Example-based on Image | Text | EGC – ExMatchina (NeurIPS 2020)

Text
http://t.ly/PNE3

Image
http://t.ly/Jw6L

ECG
http://t.ly/EvYG
XAI Integrated Gradient on Graph - Facebook Captum

https://medium.com/pytorch/introduction-to-captum-a-model-interpretablity-library-for-pytorch-d2365922d8afa

https://captum.ai/

http://t.ly/qMzm

https://github.com/nesl/Explainability-Study

<table>
<thead>
<tr>
<th>Explanation Method</th>
<th>Image Study</th>
<th>Text Study</th>
<th>Audio Study</th>
<th>ECG Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIME</td>
<td>47.7 ± 4.5%</td>
<td>70.4 ± 3.6%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anchor</td>
<td>38.9 ± 4.3%</td>
<td>25.8 ± 3.5%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SHAP</td>
<td>33.7 ± 4.3%</td>
<td>59.9 ± 3.8%</td>
<td>34.7 ± 4.8%</td>
<td>32.8 ± 3.3%</td>
</tr>
<tr>
<td>Saliency Maps</td>
<td>39.4 ± 4.3%</td>
<td>-</td>
<td>46.1 ± 5.1%</td>
<td>40.4 ± 3.5%</td>
</tr>
<tr>
<td>GradCAM++</td>
<td>50.8 ± 4.5%</td>
<td>-</td>
<td>48.1 ± 5.3%</td>
<td>42.0 ± 3.5%</td>
</tr>
<tr>
<td>Explanation by Examples</td>
<td>89.6 ± 2.6%</td>
<td>43.7 ± 3.9%</td>
<td>70.9 ± 4.7%</td>
<td>84.8 ± 2.5%</td>
</tr>
</tbody>
</table>

http://t.ly/5nab
Part VI

XAI Applications and Lessons Learnt
Challenge: Object detection is usually performed from a large portfolio of Artificial Neural Networks (ANNs) architectures trained on large amount of labelled data. Explaining object detections is rather difficult due to the high complexity of the most accurate ANNs.

AI Technology: Integration of AI related technologies i.e., Machine Learning (Deep Learning / CNNs), and knowledge graphs / linked open data.

XAI Technology: Knowledge graphs and Artificial Neural Networks

Fig. 2. Left image: results from baseline Faster RCNN: Paddle: 50% confidence, Person: 66%, Man: 46%. Right image: results from the semantic augmentation: Paddle: 74% confidence, Person: 66%, Man: 56%, Boat: 58% with explanation: Person, Paddle, Water as part of the context in the image and knowledge graph of concept Boat. (color print).
Thales XAI Platform

Industry Agnostic

Context

- Explanation in Machine Learning systems has been identified to be the one asset to have for large scale deployment of Artificial Intelligence (AI) in critical systems.

- Explanations could be example-based (who is similar), features-based (what is driving decision), or even counterfactual (what-if scenario) to potentially action on an AI system; they could be represented in many different ways e.g., textual, graphical, visual.

Goal

- All representations serve different means, purpose and operators. We designed the first-of-its-kind XAI platform for critical systems i.e., the Thales Explainable AI Platform which aims at serving explanations through various forms.

Approach: Model-Agnostic

- [AI:ML] Grad-Cam, Shapley, Counter-factual, Knowledge graph.

Video: https://drive.google.com/file/d/1zoKidieGH5zaahOn8ekXXBo74BEeZvc/-view
Debugging Artificial Neural Networks – Industry Agnostic

Challenge: Designing Artificial Neural Network architectures requires lots of experimentation (i.e., training phases) and parameters tuning (optimization strategy, learning rate, number of layers…) to reach optimal and robust machine learning models.

AI Technology: Artificial Neural Network

XAI Technology: Artificial Neural Network, 3D Modeling and Simulation Platform For AI

Video: https://drive.google.com/file/d/1ZTwndNzC9bN9ouP9cjjuXcyzZ3QYIcgU/view
Challenge: Public transportation is getting more and more self-driving vehicles. Even if trains are getting more and more autonomous, the human stays in the loop for critical decision, for instance in case of obstacles. In case of obstacles trains are required to provide recommendation of action i.e., go on or go back to station. In such a case the human is required to validate the recommendation through an explanation exposed by the train or machine.

AI Technology: Integration of AI related technologies i.e., Machine Learning (Deep Learning / CNNs), and semantic segmentation.

XAI Technology: Deep learning and Epistemic uncertainty
Challenge: Predicting and explaining aircraft engine performance

AI Technology: Artificial Neural Networks

XAI Technology: Shapely Values

Explaining Flight Performance – Transportation
Challenge: Globally 323,454 flights are delayed every year. Airline-caused delays totaled 20.2 million minutes last year, generating huge cost for the company. Existing in-house technique reaches 53% accuracy for predicting flight delay, does not provide any time estimation (in minutes as opposed to True/False) and is unable to capture the underlying reasons (explanation).

AI Technology: Integration of AI related technologies i.e., Machine Learning (Deep Learning / Recurrent neural Network), Reasoning (through semantics-augmented case-based reasoning) and Natural Language Processing for building a robust model which can (1) predict flight delays in minutes, (2) explain delays by comparing with historical cases.

XAI Technology: Knowledge graph embedded Sequence Learning using LSTMs
Challenge: Accenture is managing every year more than 80,000 opportunities and 35,000 contracts with an expected revenue of $34.1 billion. Revenue expectation does not meet estimation due to the complexity and risks of critical contracts. This is, in part, due to the (1) large volume of projects to assess and control, and (2) the existing non-systematic assessment process.

AI Technology: Integration of AI technologies i.e., Machine Learning, Reasoning, Natural Language Processing for building a robust model which can (1) predict revenue loss, (2) recommend corrective actions, and (3) explain why such actions might have a positive impact.

XAI Technology: Knowledge graph embedded Random Forrest

Challenge: Predicting and explaining abnormally employee expenses (as high accommodation price in 1000+ cities).

AI Technology: Various techniques have been matured over the last two decades to achieve excellent results. However most methods address the problem from a statistic and pure data-centric angle, which in turn limit any interpretation. We elaborated a web application running live with real data from (i) travel and expenses from Accenture, (ii) external data from third party such as Google Knowledge Graph, DBPedia (relational DataBase version of Wikipedia) and social events from Eventful, for explaining abnormalities.

Counterfactual Explanations for Credit Decisions – Finance

Challenge: Explaining medical condition relapse in the context of oncology.

AI Technology: Relational learning

XAI Technology: Knowledge graphs and Artificial Neural Networks

Knowledge graph parts explaining medical condition relapse
More on XAI
Some Tutorials, Workshops, Challenges

Tutorial:
- AAAI 2021 eXplainable Recommender Systems (#1) - http://www.int.unibz.it/~rconfalonieri/aaai21/
- AAAI 2021 From Explainability to Model Quality and Back Again (#1)
- ICCV 2019 Tutorial on Interpretable Machine Learning for Computer Vision (#2) - https://interpretablevision.github.io/
- IJCAI 2020 Workshop on Explainable Artificial Intelligence (#4) - https://sites.google.com/view/xai2020/home
- SIGIR 2020 Workshop on Explainable Recommendation and Search (#3) - https://ears2020.github.io
- CD-MAKE 2021 – Workshop on Explainable AI (#4) - https://cd-make.net/make-explainable/
- IEEE FUZZ 2019 / Advances on eXplainable Artificial Intelligence (#2) - https://sites.google.com/view/xai-fuzz2019
- International Conference on NL Generation - Interactive Natural Language Technology for Explainable Artificial Intelligence (EU H2020 NL4XAI; #1) - https://sites.google.com/view/nl4xai2019

Workshop:
- BlackboxNLP 2020: Analyzing and interpreting neural networks for NLP (#3) - https://blackboxnlp.github.io/
- IEEE VIS Workshop on Visualization for AI Explainability 2020 (#3) - https://visxai.io/
- IJCAI 2020 Workshop on Explainable Artificial Intelligence (#4) - https://sites.google.com/view/xai2020/homes
- 55 paper submitted in 2019
- AAAI 2021 Workshop on Explainable Artificial Intelligence (#5 – follow-up of IJCAI serie) - https://sites.google.com/view/xai2021workshop/
- IJCAI 2019 Workshop on Optimisation and Explanation in AI (#1) - https://www.doc.ic.ac.uk/~kc2813/OXAI/
- SIGIR 2020 Workshop on Explainable Recommendation and Search (#3) - https://ears2020.github.io
- CD-MAKE 2021 – Workshop on Explainable AI (#4) - https://cd-make.net/make-explainable/
- IEEE FUZZ 2019 / Advances on eXplainable Artificial Intelligence (#2) - https://sites.google.com/view/xai-fuzz2019
- International Conference on NL Generation - Interactive Natural Language Technology for Explainable Artificial Intelligence (EU H2020 NL4XAI; #1) - https://sites.google.com/view/nl4xai2019

Conference
- 2021 ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT) (#4) - https://facftconference.org/

Challenge:
(Some) Software Resources

- Facebook Fairseq: https://github.com/pytorch/fairseq (to capture attention weights per input token… and much more)
- XAI Empirical studies: https://paperswithcode.com/paper/how-can-i-explain-this-to-you-an-emprical
- Facebook Captum - https://github.com/pytorch/captum
- IBM-MIT shared-interest https://github.com/aboggust/shared-interest
- Google-CMU Post-training Concept-based Explanation: https://github.com/chihkuanyeh/concept_exp
- Google-Stanford Automatic Concept-based Explanations: https://github.com/amiratag/ACE
- Google Testing with Concept Activation Vectors https://github.com/tensorflow/tcav
- iNNvestigate: A toolbox to iNNvestigate neural networks’ predictions. github.com/albermax/innvestigate
- SHAP: SHapley Additive exPlanations. github.com/slundberg/shap
- Microsoft Explainable Boosting Machines. https://github.com/Microsoft/interpret
- GANDissect: Pytorch-based tools for visualizing and understanding the neurons of a GAN. https://github.com/CSAILVision/GANDissect
- ELI5: A library for debugging/inspecting machine learning classifiers and explaining their predictions. github.com/TeamHG-Memex/eli5
- Skater: Python Library for Model Interpretation/Explanations. github.com/datascienceinc/Skater
- Yellowbrick: Visual analysis and diagnostic tools to facilitate machine learning model selection. github.com/DistrictDataLabs/yellowbrick
- Lucid: A collection of infrastructure and tools for research in neural network interpretabiligithub.com/tensorflow/lucid
- Sklearn_explain: model individual score explanation for an already trained scikit-learn model. https://github.com/antoinecarme/sklearn_explain
- Heatmapping: Prediction decomposition in terms of contributions of individual input variables
- Deep Learning Investigator: Investigation of Saliency, Deconvnet, GuidedBackprop and more. https://github.com/albermax/investigate
- Google PAIR What-if: Model comparison, counterfactual, individual similarity. https://pair-code.github.io/what-if-tool/
- IBM AI Fairness: Set of fairness metrics for datasets and ML models, explanations for these metrics. https://github.com/IBM/aif360
- Blackbox auditing: Auditing Black-box Models for Indirect Influence. https://github.com/algofairness/BlackBoxAuditing
- AXA Interpretability and Robustness: https://axa-rev-research.github.io/ (more on research resources – not much about tools)
(Some) Initiatives: XAI in USA

Challenge Problem Areas

Data Analytics
- Multimedia Data

Autonomy
- ArduPilot & SITL Simulation

TA 1: Explainable Learners
- Teams that provide prototype systems with both components:
 - Explainable Model
 - Explanation Interface

TA 2: Psychological Model of Explanation
- Psychological theories of explanation and develop a computational model of explanation from those theories

Evaluator

Evaluation Framework

Learning Performance

Explanation Effectiveness

Explanation Measures
- User Satisfaction
- Mental Model
- Task Performance
- Trust Assessment
- Correctability

TA1: Explainable Learners

- Explainable learning systems that include both an explainable model and an explanation interface

TA2: Psychological Model of Explanation

- Psychological theories of explanation and develop a computational model of explanation from those theories
(Some) Initiatives: XAI in Canada

- DEEL (Dependable Explainable Learning) Project 2019-2024
 - Research institutions
 - CRIAQ
 - IVADO
 - CRSNG NSERC
 - Industrial partners
 - Bell Helicopter
 - BOMBARDIER
 - CAF
 - THALES
 - Academic partners
 - Science and technology to develop new methods towards Trustable and Explainable AI

System Robustness
- To biased data
- Of algorithm
- To change
- To attacks

Certificability
- Structural warranties
- Risk auto evaluation
- External audit

Explicability & Interpretability

Privacy by design
- Differential privacy
- Homomorphic coding
- Collaborative learning
- To attacks
(Some) Initiatives: XAI in EU
Conclusion
Why do we need XAI by the way?

- **To empower** individual against undesired effects of automated decision making
- **To reveal** and protect new vulnerabilities
- **To implement** the “right of explanation”
- **To improve** industrial standards for developing AI-powered products, increasing the trust of companies and consumers
- **To help** people make better decisions
- **To align** algorithms with human values
- **To preserve** (and expand) human autonomy
- **To scale and industrialize** AI
Conclusion

- Explainable AI is motivated by real-world applications in AI – Needs of Actionable XAI
- Not a new problem – a reformulation of past research challenges in AI
- Multi-disciplinary: multiple AI fields, HCI, social sciences <- Role of Semantics
- In AI (in general): many interesting / complementary approaches
- Many industrial applications already – crucial for AI adoption in critical systems
- Need “Explainability by Design” when building AI products
Open Research Questions

- There is no agreement on what an explanation is
- There is not a formalism for explanations
- There is no work that seriously addresses the problem of quantifying the grade of comprehensibility of an explanation for humans
- Is it possible to join local explanations to build a globally interpretable model?
- What happens when black box make decision in presence of latent features?
- What if there is a cost for querying a black box?
- How to balance between explanations & model secrecy?
Future Challenges

- Creating awareness! Success stories!
- Foster multi-disciplinary collaborations in XAI research.
- Help shaping industry standards, legislation.
- More work on transparent design.
- Investigate symbolic and sub-symbolic reasoning.
- XAI as a methodology for debugging ML systems

Evaluation:
- *We need benchmark* - Shall we start a task force?
- *We need an XAI challenge* - Anyone interested?
- *Rigorous, agreed upon, human-based* evaluation protocols
Thanks! Questions?

- Feedback most welcome :-)
 - freddy.lecue@inria.fr (@freddylecue)

- Slides: https://tinyurl.com/9ahdbtm4

- Extended version (youtube link): https://www.youtube.com/watch?v=uFF1Ul1oM88

- To try Thales XAI Platform, please send an email to freddy.lecue@thalesgroup.com