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Abstract

Global business travel spend topped record-breaking $1.2 Trillion USD in 2015, and will reach $1.6 Trillion by 2020 according to
the Global Business Travel Association, the world’s premier business travel and meetings trade organization. Existing expenses
systems are designed for reporting expenses, their type and amount over pre-defined views such as time period, service or employee
group. However such systems do not aim at systematically detecting abnormal expenses, and more importantly explaining their
causes. Therefore deriving any actionable insight for optimising spending and saving from their analysis is time-consuming,
cumbersome and often impossible. Towards this challenge we present AIFS, a system designed for expenses business owner and
auditors. Our system is manipulating and combining semantic web and machine learning technologies for (i) identifying, (ii)
explaining and (iii) predicting abnormal expenses claim by employees of large organisations. Our prototype of semantics-aware
employee expenses analytics and reasoning, experimented with 191, 346 unique Accenture employees in 2015, has demonstrated
scalability and accuracy for the tasks of explaining and predicting abnormal expenses.
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1. Introduction

Time and expense is the term used by the finance
department of most large organisations to capture the
“process of recording and tracking hours worked and
expenses as they relate to projects”. $546 Billion world-
wide has been estimated to be lost in 2015 because of
the lack of spend optimisation in the process of manag-
ing expenses at organisation level [1].

Such non optimization is characterized by (i) absence
of context capture, which strongly restricts the inter-
pretation of high-value expenses, (ii) rudimentary ap-
proaches to catch any level of employees’ frauds, which
result in over $1 billion lost each year to fraudulent

expense reimbursement1, (iii) ad-hoc auditing of em-
ployee’s expenses, which results in unflagged abnormal
spending, (iv) rigid and static expenses policy which
does not fit all expenses and limits it efficiency to well-
know expense types, (v) inappropriate tools for expens-
ing and capturing causes of abnormal expenses. All lim-
itations are due to the manual design of predefined rules
and policies for patterns that are supposed to command
all expenses data.

AIFS2,3 (Artificial Intelligence Finance System), as
a system which integrates exogenous data from hetero-

1https://www.accountingtoday.com/opinion/expense-report-fraud-
will-cost-companies-1-billion

2Video (.mp4 format) available: https://goo.gl/K8UcI2
3Live system: http://54.194.213.178:8111/ExplanatoryReasoning/demo.jsp
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geneous structured and unstructured data, aims at (i)
identifying, (ii) explaining and (iii) predicting abnor-
mal expenses. We illustrate our approach using ac-
commodation expenses but our approach also covers
transportation (i.e., taxi), flight and entertainment (i.e.,
meals) expenses. All previous abnormal expense types
are denoted as abnormalities. Most existing modern
expenses management systems such as Concur Tech-
nologies4 or Chromeriver5 provide tools for basic con-
trol and reporting using various internal systems such
as employees’ expenses, time or credit card status. Oth-
ers such as Expensify6 expose views by geography, ca-
reer level, service group for manually pinpointing ab-
normal expenses but do not deliver insight to identify
and interpret abnormal expenses i.e., expenses which
are unexpected in a given context. Basic in-depth but
semantics-less state-of-the-art analytics are employed,
limiting any interpretation, explanation or prediction of
abnormal patterns. Therefore, context-aware computing
together with reusability of the underlying data is quite
limited.

AIFS, designed as a semantic web-based application
for (i) interpreting expenses and their context, and (ii)
deriving innovative and easy-to-explore insights, tack-
les these limitations by seamlessly and smoothly inte-
grating and augmenting the following in an intelligent
user interface:

(i) in-depth analysis of any-time employee’s ex-
penses, which supports semantic comparison of
expenses,

(ii) explanation [2], which aims at connecting abnor-
mal expense to its causes through explanations,

(iii) tentative expenses forecasting using recent theo-
retical research work in contextual predictive rea-
soning [3].

The system has been matured and is now used on
a daily basis by business owner together with audi-
tors to understand abnormal expenses, their context,
their causes, and take appropriate actions depending
on the insight derived from our system. From a busi-
ness perspective, the explanation of abnormal expenses
is used to prevent them in a near future and identify
new expenses policy on-the-fly, mainly by interpreting
their underlying context. The case of Accenture has

Sample of the system: (1) prediction functionality not exposed, (2)
only subset of data exposed due to Accenture restriction.

4https://www.concur.com/
5https://www.chromeriver.com/
6https://www.expensify.com/

demonstrated a potential reduction of 7.8% of the over-
all travel expenses amount by enforcing learnt contex-
tualized rules for future travel related expense items.
Although expenses management still requires classic
mechanisms of delegation, authorisation and reviews,
our system has shown to cut the overhead of some very
manual tasks from the auditors such as “requesting ab-
normal expenses justification from employees” or “re-
questing expenses contexts from employees”, which is
very difficult for an individual as context might not be
completely known.

The novelty of AIFS lies in the ability of the system
to ingest highly heterogeneous data (cf. Table 1) and
perform various types of inferences i.e., analysis, ex-
planation and prediction. These inferences are all elab-
orated through a combination of various types of rea-
soning i.e., (i) semantic Description Logic (DL) EL++-
based reasoning i.e., distributed ontology classification-
based subsumption [4], (ii) rules-based i.e., semantic
pattern association [3] and (iii) machine learning based
i.e, consistent knowledge discovery from temporal and
semantic representation [5].

AIFS completely relies on the W3C semantic Web
stack e.g., OWL 2 (Web Ontology Language) and RDF
(Resource Description Framework7) for representing
semantics of information and delivering inference out-
comes. Currently applied using data from Accenture
employees’ expenses, AIFS can scale to any other com-
pany, which exposes expense data.

This paper is organized as follows: The next section
comments on related work and position the existing sys-
tems, technologies and research work with respect to
identified challenges. Section 3 presents the travel ex-
penses context in Accenture. Section 4 sketches in-use
scenarios for AIFS together with associated research
challenges and our approach. Section 5 describes the
main technologies behind AIFS. Section 6 reports ex-
perimental results regarding its scalability and accuracy.
Finally we draw some conclusions and talks about fu-
ture directions in Section 7.

2. Related Work

We appraise the existing approaches to explain any
(past or future) temporal abnormalities and classify
them according to the following three dimensions: (1)
the extent to which an approach support interpretation
and explanation; (2) the accuracy of the approach; (3)
the level of industry maturity of the approach. The anal-
ysis is driven towards our finance application.

7Semantic web standard: http://www.w3.org/RDF/
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The chart in Figure 1 positions the reviewed ap-
proaches in relation to these three dimensions. These
dimensions will be used to structure the remainder of
this section.
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Figure 1: Classification of Approaches. 3 Dimensional Metric: (i)
their support of interpretation and explanation, (ii) their accuracy, and
(3) level of industry maturity.

2.1. Interpretation / Explanation Dimension

In most of data mining [6] and machine learning [7]
applications, patterns are learnt from data for detecting
anomalies or deriving prediction. In particular the fol-
lowing tasks are performed: (i) correlating current and
past data (e.g., levels of abnormal expenses), (ii) iden-
tifying patterns using different distance metrics [8], and
(iii) selecting “rules” that are used for identifying ab-
normalities predicting future conditions. More sophis-
ticated approaches e.g., [9] investigated sequential pat-
tern mining for capturing the time-based evolution of
patterns, which is relevant to our application, specially
for comparing expenses across time and context.

These approaches are designed for isolated data
where context has no impact. Therefore they rarely
utilize exogenous sources of information for adjust-
ing and explaining estimated anomaly detection or pre-
diction. Towards this issue some approaches such as
[10, 11] go further by augmenting existing models with
cross-correlation across multiple data sources by learn-
ing contextual rules. They largely improve the accuracy
of the model but do not support any interpretation of the
results. Recent works in the area of explanatory reason-
ing [2, 5, 12], combining machine learning and reason-
ing, have emerged to address the old problem of inter-
pretation [13], also known as abductive reasoning [14].
Promising results have been released but limitations re-
lated to their scalability, ease-of-use, and maturity made
existing approaches not mature and robust enough for

end-user driven explanation [15] and real-world indus-
trial application deployment.

From a more applied perspective the existing and
most mature industry-ready systems such as Concur3

(noted [Con] in Figure 1), Expensify5 (noted [Exp] in
Figure 1) or Chromeriver4 (noted [Chr] in Figure 1) are
the most scalable system but do not capture insight from
the integration of heterogenous and exogenous open
data sources. Therefore context-aware anomaly detec-
tion, explanation or prediction cannot be supported in
their current release.

2.2. Accuracy Dimension

Industrial systems in the area of expenses manage-
ment such as Concur3, Chromeriver4, Expensify5 are
the most accurate but the least innovative, specially
when evaluating functionalities of interpretation and ex-
planation. Data mining and machine learning models
[8, 16] have various degrees of accuracy. The approach
of [9] has shown to have better accuracy but more lim-
ited scalability. In addition most of the models have
demonstrated limited robustness to sudden changes over
time [17], also known as concept drift in temporal data
(which is crucial in our context of expenses and tempo-
ral evolution of their context).

From an interpretation and explanation perspective,
existing logics-driven frameworks have clearly shown
limitations specially when combining and correlating
large amount of semantics-driven data. The authors of
[2], extending models of [13, 14], analyses the seman-
tic correlation of data using Description Logic to de-
rive explanation of abnormal patterns. Although the
approach tackles the challenge of identifying potential
causation among semantic representation of data, accu-
racy remains an open problem. Recent work [5, 12] ex-
tended the framework by automatically determining dy-
namic rules. Our work follows the same principles for
supporting compilation of any-time abnormal expenses
and its explanations.

2.3. Industry Maturity Dimension

There are expenses management systems, as stan-
dalone applications, which support advanced control
and reporting of expenses. They usually provide elabo-
rated tools for (i) basic data management e.g., Concur3,
which is storing, organizing or joining large amount
of data from various internal systems e.g., employ-
ees’ expenses, time, credit card status or travel book-
ing system, (ii) summarising expenses at various lev-
els e.g., Expensify5 which is providing views by ge-
ography, career level, service group, (iii) detecting top
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spenders e.g., Chromeriver4, which is identifying the
top spenders on various domains e.g., expense type,
timespan.

However they do not expose systems for smoothly
analyzing, easily exploring and interpreting global ex-
penses on various combinations of contexts e.g., spatial,
temporal, event-based. Indeed they also all fail in using
and interpreting underlying semantics of data, making
anomaly detection and prediction not as accurate and
consistent as it could be, specially when underlying data
is characterized by texts. Recent research works driven
by AppZen8 (noted [App] in Figure 1) have integrated
external data, but mainly for (i) fraud detection and (ii)
disambiguation of text-based expenses such as name of
amenities where expenses occur. ExpenseTrack9 (noted
[Tra] in Figure 1) is bringing new innovation in the area
of expenses management by handling better data inges-
tion pipelines. However they still limit the capture of
insight from internal company data, which is reducing
the complexity of the problem and limiting the interpre-
tation of abnormal expenses.

Other approaches, capturing the semantics of data to
interpret abnormalities such as [2, 5, 12, 13, 14], have
either not been applied in our finance domain, or not
been considered for large scale deployment in industry.

Most of data-intensive approaches [8, 16, 9, 10],
which learn patterns and models from raw data, have
demonstrated excellent research contributions. How-
ever their transfer to industrial applications have shown
some limitations due to the (i) robustness of the solu-
tions, (ii) open challenges such as concept drift in tem-
poral data [17].

2.4. The Need for a Holistic Approach

Review of existing approaches to explain any (past
or future) temporal abnormalities reveals that no ap-
proach has specifically addressed the problem of accu-
rate abnormal expenses detection, interpretation / ex-
planation and prediction using semantic representation
of information in an industrial context. Indeed main ap-
proaches focus on either (i) large scale systems for ba-
sic expenses control and reporting or (ii) advanced tech-
niques for learning and interpreting models for very tar-
geted application domains, either with limited accuracy
or constrained scalability. This motivates our innovative
model that addresses the problem of predicting and ex-
plaining abnormal expenses by fusing machine learning
and reasoning techniques.

8https://www.appzen.com/
9http://www.expensetracks.com/

Regarding this issue, we follow [5] and suggest the
use of semantic representation of data to automatically
determining dynamic rules using exogenous expenses
context. Such rules provide insight for explanation or
more accurate prediction. Our approach also extends
recent works in diagnosis reasoning [2] by supporting
compilation of any-time abnormal expenses and its ex-
planations (Figures 5-8). Last but not least we present
a unique system that combines and unifies technologies
from machine learning and reasoning communities to
address real-world challenges from business owners and
auditors of the finance department of a top 500 fortune
company, comprising more than 375, 000 employees.

3. Context: Travel Expenses

Table 1 reports all data sources processed by AIFS in
the Travel Expenses in Accenture scenario with respect
to their format, and size. They report various types of
information coming from static or dynamic sources, ex-
posed as open or private data and described along het-
erogeneous formats.

The expenses data is used for capturing travel ex-
penses of 191, 346 unique Accenture employees. Ex-
penses types range from accommodation, flight, taxi,
public transportation meals and entertainment. They
are captured on biweekly basis with a minimum, mean
and maximum number of respectively 0, 43.38 and 201
items per employee per period. Overall 1, 335, 691, 105
travel related items have been expensed in 2015. The
expenses data set is considered as our source of anoma-
lies (cf. Anomaly in Table 1). We aim at extracting
“abnormal” expenses among all expenses.

Example 1. (Expense Item)
A (simplified and partially anonymized) expense item is
given below as a tabular entry.

ExpenseId FromDate ToDate ExpenseType TotalAmt
2323423 2015-08-03 2015-08-05 Hotel 550

Country City CareerLvl Currency PeopleKey
United States Austin 6 dollar 216532

This expense item, identified with ID 2323423 cap-
tures an accommodation expense of USD 550 in Austin,
USA between August 3rd and 5th, 2015. The expense has
been occurred by an employee with identifier: 216532.

Analyzing, explaining and predicting abnormal ex-
penses consists in interpreting, contextualizing and cor-
relating its content with the following two exogenous
data sources (cf. Potential Explanation in Table 1): (1)
social media events which characterize events of various
type e.g., music, sport, politics, family, with an average
of 187 events per day and city, all updated on a daily

4



/ Procedia Computer Science 00 (2017) 1–20 5

Source Data Description Format Historic Size per Data
Type Source (Year) day (GBytes) Provider

190,000+ unique Min., max. number .93 (complete)Anomaly travellers in 500+ of respectively 2,521 CSV 2015 .41 (aggregated) Private
cities recorded and 24,800

for 2015 expenses per citya

Planned events with JSON format Approx. 94
Social media events small attendance Accessed through 2011 events per Eventbrite
e.g., music event, Eventbrite APIsa day (.49 GBytes)

Potential political event Planned events with XML format Approx. 198
large attendance Accessed through 2011 events per Eventful

Explanation Eventful APIsb day (.39 GBytes)
Media Events reported JSON format Approx. 198

news event in the media Accessed through 2015 events per EventRegistry
worldwide EventRegistry APIsc day (.76 GBytes)

Structured facts Approx. 33,000+
DBpedia extracted from RDFd - resources Wikipedia

wikipedia in use (.23 GBytes)
Structured data Approx. 189,000+ FreebaseSemantics Wikidata from Wikimedia RDFe - resources Google inc.projects in use (.63 GBytes)
Structured is-A 25 resources Accenture

Accenture Categories taxonomy of RDFf - in use inc.event categories (.001 GBytes)

Spatial World Map (listing of OSM XML Open
type, GPS coordinate) - 666 GBytes StreetMapg

a https://www.eventbrite.com/api
b http://api.eventful.com
c http://eventregistry.org/ (restricted access with limited calls) - http://beta.eventregistry.org (less restricted )
d http://wiki.dbpedia.org/Datasets
e https://www.wikidata.org/wiki/Wikidata:Database download
f http://54.194.213.178:8111/ExplanatoryReasoning/ontology/categories.n3
g ftp://ftp.spline.de/pub/openstreetmap/

Table 1: (Raw) Data Sources for Travel Expenses in Accenture Scenario.

basis. (2) Media news events which captures real-time
news articles published by over 100, 000 news publish-
ers globally, with an average of 981 news articles per
day and city (with population higher than 1, 000, 000).

Figure 2 captures events (cf. sources of potential ex-
planations in Table 1) on September 19th, 2016 in Eu-
rope and east coast of north America. The heat-map
type representation, exploiting the ESRI SHAPE file of
the world, gives an overall view on the intensity of num-
ber of events during this day.

1	

2	

2	

Figure 2: Events and their Occurrence on September 19th, 2016. 1©:
Particular events occurring in Pittsburgh and New-York. 2©: Heat-map
on intensity of number of events in Europe and east coast of North
America. (color print).

4. AIFS Scenario, Challenges and Approach

The AIFS system is illustrated through a list of sce-
narios, where each highlights actions that any expenses
business owner or auditor is required to perform on a
daily basis. Such scenarios and their underlying actions,
have been identified by our users groups as non sup-
ported by state-of-the-art systems in place. In-use in-
dustrial solution from Concur Technologies, which ex-
poses travel and expense management services to busi-
nesses, is limited to the use of internal employee ex-
penses for its reporting and analysis. Therefore existing
systems fails in supporting these scenarios because of
the unsupported: (i) not-so-easy tasks of data integra-
tion, (ii) automated abnormal pattern detection, and (iii)
underlying contextual semantic reasoning across exoge-
nous and heterogenous data.

The use of semantic web technologies in all our sce-
narios is transparent to end-users. However such tech-
nologies are strongly required to (i) encode semantic
information through query-able knowledge bases, (ii)
compile and deliver contextual analysis, explanation
and prediction form such heterogenous data sets. All
user interactions (UI) are achieved through simple UI
paradigms e.g., spatial and temporal selection for ini-
tialization (respectively 1©, 2© and 3© in Figure 4) where
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dates interval together with region, country and city
can be directly selected from the control panel e.g.,
01/01/2015 - 31/12/2015 and Austin city in 2©. All re-
sults, delivered by analysis, explanation and prediction,
are dynamically exported as parallel, spider, pie, graph-
based and time-series charts.

For each scenario, we sketch its (i) description, (ii)
motivation, (iii) state-of-the-art approach, (iv) challenge
- emphasised by our expenses business owner and audi-
tors group, with (v) the AIFS approach from a technical
and UI perspective, its (vi) scalability, (vii) limitation.

4.1. Spatio-Temporal Analysis of Expenses
•Description and Motivation: Expense business owner
and auditors are interested in any-time expense types,
ideally grouped by level of abnormality in order to visu-
ally extract problematic expenses together with its con-
text at any time and space.
• State-of-the-art Approaches: Existing systems are
mainly focusing on reporting (i..e, compiling informa-
tion using pre-defined views) and do not expose any
context for dynamic analysis of expenses over time.
Therefore the detection of abnormal expenses is rudi-
mentary e.g., via basic selection of highest expenses.
• Challenge: Any expense is incurred in a given context
e.g., for different profiles of employee, with various lev-
els of business justification, or in a specific city profile.
Thus it is crucial to capture the context of all expenses to
determine the groups of abnormality in expenses. Rules
for detecting abnormal expenses cannot be static, and
need to be learnt and updated over context and time.
• Approach (Technical): AIFS relies on the seman-
tic integration of heterogenous and exogenous raw data
such as events, employee expenses and their profile
(among others). This is particularly important to de-
tect the context of expenses together with their degree
of abnormality. All content of data sources is semanti-
cally described by aligning their metadata with vocabu-
laries in Table 1 cf. Semantics source type. Algorithm
1, illustrated with Figure 3, aims at detecting whether an
expense x is abnormal given all expenses X and their as-
sociated context with dimension d e.g., travel trip, busi-
ness justification, city destination or travel duration.

We denote by T the terminology used for semantic
representation. The approach mainly consists of: (i)
retrieving all similar expenses to x (lines 5 - 7 - 1© in
Figure 3) where S imT (x, xi) is a matching function in
[0, 1] capturing subsumption-based semantic similarity
between x and xi w.r.t T [18], (ii) learning rules from
similar expenses through association mining of seman-
tic descriptions [3] (lines 9-11 - 2© in Figure 3) for in-
ferring correlation and rules between expenses and city

Algorithm 1: Context-aware Anomaly Detection
1 Input: (i) Terminology T for representing eXpenses,

(ii) all eXpenses X in a d representation space
of T , (iii) an employee eXpense x, (iv) Min.
threshold of semantic similarity mt between
expenses, (v) Min. threshold of decision rule
support ms, confidence mc.

2 Result: Boolean if x is Abnormal w.r.t. X and T .
3 begin
4 X̃← x; % Init. of items semantically similar to x.
5 % Expenses with semantic similarity with x. 1©
6 foreach xi ∈ X of the form (x1

i , · · · , x
d
i ) do

7 if S imT (x, xi) > mt then X̃← X̃ ∪ xi;

8 R ← ∅; % Initialization of relevant rules in X̃.
9 % Rules of dimension d′ < d in T w.r.t X̃. 2©

10 foreach rule ρ ∈ T |d
′

X̃
with ∀d′ < d do

11 if support(ρ) > ms ∧ con f idence(ρ) > mc
then R ← R ∪ {ρ};

12 Tx ← T ; % Init. of semantic context of x w.r.t T .
13 % Semantic context for expense x, noted Tx. 3©
14 foreach ρ ∈ R of the form G� h do
15 if h(x) in semantically consistent with T ∪ {x}

then Tx ← T ∪ {x} ∪ {h(x)};
16 % Abnormal expense x w.r.t Tx. 4©
17 if Tx |= Abnormal(x) then return true;
18 return false;

context, (iii) retrieving relevant semantic context for
comparison with x (lines 13-15 - 3© in Figure 3), and
(iv) firing all rules which derive abnormality (lines 16 -
17 - 4© in Figure 3). 50 features describing expense, city,
employee profile, social and media news events have
been captured and are considered to learn rules (lines
9-11 - 2© in Figure 3). Rules are selected depending on
minimal threshold of support and confidence. An ini-
tial sample set of 106, 809 North America and Europe
travel related expense items (spreading across 167 dif-
ferent days of 2015) have been labeled regarding the ab-
normality level. This phase has been conducted by audit
experts over a period of 89 days.

(knowledge) generation

4○ Anomaly

detection

Expenses

Expenses X

2○: Learning Rules

X̃ ⊆ X

SimT (x, x4) > mt

1○ Identifying expenses

Rules ρ ∈ T |d′
X̃

semantically similar with x
3○: Semantic Context

support(ρ) > ms

confidence(ρ) > mc

ρ ∈ T |d′
X̃

xxn

x3

x2

x
x4

Terminology Tx

Figure 3: Schematic Flow Diagram of the 4-Steps Context-Aware
Anomaly Detection Approach in Algorithm 1.
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All rules are filtered based on their occurrence (i.e.,
support) and confidence in line 11. Rules are encoded
using the implementation of DL EL++ rules [19] in [5].

Our system could, for example, learn, adapt and trig-
ger Description Logic rules [3] for anomaly detection
e.g., (1-7): “the accommodation related expense x is
abnormally high if its amount is higher than 90% (4)
of expenses from manager e (5) traveling to cities c with
a population higher than 1 million (6), with events ev of
type music and movie (7)”.

HighAbnormalExpense(x)← (1)
expensed(e, x) ∧ inCity(x, c) ∧ events(c, {d}, ev) ∧ (2)
(Expense u ∃type.Accommodation u date.{d} (3)
∃amount.(∃ higherThan.90% Context Expense))(x) ∧ (4)

(Employee u ∃career.Manager)(e) ∧ (5)
(City u (∃p size.(∃moreThan.1Million)))(c) ∧ (6)
(Event u ∃category.({Music,Movie}))(ev) (7)

This rule connects employee profile, expense de-
scription, social events and city characteristics, which
demonstrates how context is ”glued” to internal data.
Contrary to state-of-the-art approaches, rules are based
on contextual information.

Example 2. (Context-aware Anomaly Detection)
Suppose expense x in Example 1 to be compared with
all other expenses (lines 5 - 7 - 1© in Figure 3), and in
particular expense x′ defined as:

ExpenseId FromDate ToDate ExpenseType TotalAmt
6124356 2015-08-06 2015-08-08 Hotel 630

Country City CareerLvl Currency PeopleKey
United States San Jose 5 dollar 653211

Both Austin and San Jose are cities where the num-
ber of conferences is higher than 6 during week 32 of
year 2015. Suppose x′ is representative of abnormal
weekly expenses data for employees with a career level
less than 6 in cities with a number of conferences higher
than 6. Therefore the example expense item x in Ex-
ample 1, will be classified by Algorithm 1 as “highly
abnormal”. Indeed the previous context of x′ ensure
to capture salient Description Logics rule (8) with high
confidence and support (lines 9-11 - 2© in Figure 3).

HighAbnormalExpense(x)←
expensed(e, x) ∧ inCity(x, c) ∧
(Expense u ∃type.Accommodation u ∃inWeek.{w}

u ∃amount.(∃ moreThan.90% Cont. Exp.))(x) ∧
(Employee u ∃careerLvl. ≤6)(e) ∧
events(c, {w}, nbCon f ) ∧ nbCon f ≥ 6 (8)

Suppose that (8) is the unique learnt rule in the sys-
tem. Since ABox assertion HighAbnormalExpense(x)

does not contradict with the initial background knowl-
edge and no any other rules is conflicting with
(8) (through inconsistency checking) then the derived
knowledge from (8) is consistent and validated (lines
13-15 - 3© in Figure 3).

A particular note regarding this rule is that it consid-
ers the number of conferences during a week to be im-
pactful on abnormal expenses in that period.
• Approach (UI) (Figure 4): The component 5© in Fig-
ure 4 embeds the results of the exploration phase in a
parallel chart, where the status (cf. colored abnormality
levels using green, yellow, orange, red, and lack color-
ing) of each employee expense together with its amount,
duration, date, day of year, type, people key (or id), and
career level are reported. All types of expenses at city
level 4© e.g., Austin in Figure 4, can be also displayed
to understand the context of the analysis i.e., number
of employees travelling to Austin in 2015, their average
number of business trips in this city, duration, amount
and abnormality level. The table, reported as 6©, gives a
detailed view, where a selection of a row highlights the
corresponding elements in the parallel chart. The pie
chart 7© establishes the proportion of expenses status in
the boundary box 3©.
• Scalability: The models are computed off-line with 1
year of data, which ensures scalability. However it is
more problematic for a model with more than 3 years
of data due to the exponential complexity of computing
semantic rules.
• Limitation: Rules are continuously learnt given the
temporal nature of expenses and their context. 22%
of rules have changed between a model with 6 and 12
months of expense data. By considering a model with
2 years of data, the proportion of false positive (normal
expenses flagged as abnormal) is 8.6% and false neg-
ative is 9.7%. This could be improved by identifying
the best values of the hyper-parameters of the algorithm
(i.e., support, confidence of rules, threshold of semantic
similarity) through cross-validation. Another compli-
mentary approach would consist in considering a larger
set with daily aggregates of expenses.

4.2. Explanation of Abnormal Employee Expenses

• Description: How to identify the nature and cause of
abnormal employee expense? How to capture explana-
tions on a spatial and (historical) temporal basis?
• Motivation: Above questions cannot be answered
by existing state-of-the-art business travel and expense
management software solution, but are really important
for (i) business owner to establish new policy and (ii)
auditors to not only better target expenses but also to

7
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Figure 4: Interface of AIFS. 0©: Name of the system, 1©. 2©: Temporal context (subject to user selection). 3©: Spatial (Map Area) context (subject
to user selection). 4©: Expenses overview context for the spatio-temporal analysis. 5©: Individual expense status and profile i.e., type, amount,
duration, date, employee id, and career level (segments are select-able). 6©: Detailed version of expenses (records are select-able with automated
update on the parallel chart). 7©: Spatio-temporal proportion of expenses status. 8©: Tab-based selection of analytics and reasoning: explanation
and prediction. 9©: Selection of an abnormal expense to be explained in further step in Figure 5. (color print).

minimize communication with employees by pinpoint-
ing causes of abnormal expenses.
• State-of-the-art Approaches: No system provides ex-
planation of abnormal expenses. In the best case sce-
nario, anomalies are triggered by (manually defined)
rules, and such rules are reported back to decisions mak-
ers as “explanation”. Rules are encoded using in-house
data from employees’ expenses, which limit any evi-
dence of exogenous explanation.
• Challenge: Such questions remain open because (i)
historical expenses, (ii) their contexts through relevant
data sets (e.g., minor / major city events, temporal: sea-
sons, spatial: city data), and (ii) their correlation (e.g.,
large music festival events correlated with high price of
accommodation in large cities) and potential causation
with / to abnormal expenses have not be fully integrated
and interpreted, even considered.
• Approach (Technical) (Figure 6): AIFS exploits the
semantics of both historical abnormal expenses, their
context and sources of potential explanations.

It compiles off-line a sample of abnormal expenses

and their explanation (i.e., a 12% sample has been an-
notated by domain experts - it covers 8, 324 abnormal
expense items of the initial sample set of 106, 809 North
America and Europe travel related expense items) into
a deterministic finite state machine. The state machine
is augmented with respect to the semantic-augmented
context (e.g., events, temporal: seasons, spatial: city
data) where each abnormal expense x is connected to
(i) its semantic context, c (ii) explanation e. The ex-
planation of new abnormal expenses is performed by
analyzing the state machine to retrieve similar contexts
i.e., expenses type, spatial such as cities and events for
travel related expenses, temporal. The similarity is es-
timated by comparing semantic descriptions of the con-
text through matchmaking functions introduced by [18]
and [20]. Explanations of a new abnormal expense
are then retrieved from similar expenses and contexts.
Therefore, the closer are the contexts the more common
explanations are shared.

The semantic representation of explanations is ex-
ploited to return two levels of description. Suppose an

8
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Figure 5: AIFS - (Business) Explanation Component. 1©: Spatial (Map Area) context (subject to user selection) for spatial interpretation of abnor-
mal expenses. 2©: Tab-based selection of reasoning: explanation and prediction. 3©: Level-1 Explanation structured in 5 classes of explanation with
contributing factors in [0, 100]. 4©: Level-2 Explanation, identifying specification of Level-1 explanation. 5©: Illustration of the top contributing
explanation and its specification for anomaly 93741309. (color print).
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Figure 6: Semantic Explanation Approach Overview. 1©: Compila-
tion of (sample of) abnormal expenses and their explanation. 2©: Fi-
nite State Machine based representation of sample expenses and their
context. 3©: Semantics-based comparison, evaluation of explanation.

abnormal expense related to accommodation in Austin.
Level-1 is capturing the main type e.g., external event
while Level-2 representing a more specific explana-
tion e.g., festival music event. Each level has a pre-
determined number of class, capturing different po-
tential types of causes. All classes, validated by our
user group, represent various facets of explanation, ex-
tracted from the semantic analysis. Level-1 type is pre-
determined e.g., all social media and news events have
been considered as either social dynamics (for nb. of
employee attending #employee ≤ 5) or business dy-
namics (for #employee > 5). Social dynamics events
capture external and general events occurring in a city
e.g., sport or music events while business dynamics are

related to internal events of the employee’s company.
Such groups delimit social events from business events,
which are then used for categorising explanation of tar-
geted abnormal expenses. Finally the finite state ma-
chine is augmented with special edges connecting ab-
normal expenses to any similar context and potential ex-
planation. Such edges embed a conditional probability
of explaining x with e given context c.

Example 3. (Explanation of Abnormal Expenses)
Events captured from external data sources have shown
that, during the week of August 5th, 2015, there have
been many events in the city of Austin, for example,
there were 30 conferences, 2 concerts, and many minor
events. Not all events are explanation of the abnormal
expense in Example 2. Following approach illustrated
in Figure 6 only events, with (semantically) similarities
of past events causing abnormal expenses in (seman-
tically) similar cities, are shortlisted and evaluated as
contributing events. Level-1 and Level-2 explanations
are extracted from the semantic types (e.g., social dy-
namics) and sub-types (e.g., music) of the events short-
listed.

• Approach (Business UI): Figure 5 captures the expla-
nations component of AIFS. This functionality is acti-
vated when an abnormal expense has been selected from
the data analysis part of AIFS cf. red-highlighted row /

9



/ Procedia Computer Science 00 (2017) 1–20 10

abnormal expense 9© in Figure 4. In addition to a spatial
representation of expenses (zoomed-in version of 3© in
Figure 4 cf. 1© in Figure 5), AIFS exposes two levels of
explanation, noted respectively Level-1 and Level-2.

Level-1 ( 3© in blue), represented as bar charts, breaks
down explanations in 5 categories: (i) behavioural
which captures individual fraud by analysing recurring
abnormal expenses patterns (cf. anomaly row in Table
1), (ii) social dynamics which identifies external events
as main causes by analyzing the impact of events on ex-
penses (cf. potential explanation row in Table 1), (iii)
business dynamics which catches internal event to the
employee’s company by capturing recurrence of em-
ployees’ expenses in a given city and date (cf. anomaly
row in Table 1), (iv) spatial which emphasizes city ca-
pacity as core contributing factor by analysing the se-
mantic representation of city e.g., number of accommo-
dation types, rooms, population density (cf. semantics
row in Table 1), (v) temporal which defines seasonal
causes. Each of these five categories is scored in [0, 100]
(with min: 0 and max: 100), as a potential contributing
factor of the abnormality. The sum of all contributing
factors is 100. In the example of Figure 5, behavioural,
business dynamics and city capacity are all 2 while time
is 5 and social dynamics is 89.

Level-2 ( 4© in green), represented as pie charts, pro-
vides a more specific and detailed version of each of the
Level-1 type e.g., type of events for external events, or
city services and density for city capacity. 5© explicits
that travel expense 93741309 is abnormal and caused
by external events in the city. In particular 89% of simi-
lar abnormal expenses (and context) has been caused by
similar type of external events. Level-2 details that the
contributing factor of the festive music event in Austin
on October 2-11, 2015 is 94%. All results in Figure
5 can be interpreted by business owners and auditors
for root cause analysis and better understand how ex-
penses are impacted by individual behaviour or external
sources such as city events for accommodation prices.
• Approach (Technical UI) (Figure 7): In addition to a
business UI, designed for business owner and auditors,
we augmented the system with a technical UI. This ad-
ditional interface has been requested to be available for
exploitation by Accenture analysts, who are reporting
to business owner and who are responsible for prepar-
ing reports and recommended actions to be undertaken.
This interface is particularly important as it provides
them rational and evidence of the reasoning. The ana-
lysts aim at extracting the rational by selecting abnormal
expenses in the main UI, which automatically flagged
nodes of the knowledge graph 7© in red in Figure 7. By
clicking on those nodes, they obtained new nodes that

are blinking. Such nodes are derived by the system to
be (i) explanations of the anomalies, (ii) their context,
and (iii) similar historical contexts - where the explana-
tions have been retrieved from1,2,10.
• Scalability: The evaluation and computation of ex-
planation strongly relies on classification of data aug-
mented with semantics in Table 1. Classification, or the
computation of subsumption hierarchies for classes and
properties of the semantic representations, is required to
quickly determine semantic matching (or similarity) of
contexts (e.g., events, expense or city profile). Its scala-
bility is ensured through a distributed classification [21]
of individual contexts. All rules, which are required for
classification, are distributed across various nodes based
on their types. Fast processing and search is also en-
sures through temporal indexes of all anomalies (i.e.,
abnormal expenses and contexts).
• Limitation: The current implementation is limited to
OWL EL11 as semantic encoding of expenses and their
context for the computation of semantic similarity. The
OWL 2 EL profile is designed as a subset of OWL 2 that
is suitable in our context since ontology classification
can be decided in polynomial time, hence scalable. The
computation performance would have been strongly al-
tered when considering much more expressive seman-
tics such as OWL 2 Full or DL (cf. Section 6 for experi-
mentation). The five classes of explanation remain static
but semantic clustering could be investigated further to
present dynamic classes, especially if new sources of
potential explanation are to be considered. The on-the-
fly integration of new data sources with our semantic
model in Table 1 might be challenging due to non-trivial
alignment of vocabularies.

4.3. Abnormal Expenses Prediction

• Description: Prediction, or the problem of estimat-
ing future observations given some historical informa-
tion such as spending and expenses, is an important in-
ference task required by the spend optimization, finance
process and operation teams. It is crucial for planning
expenses budget ahead, but also for avoiding unneces-
sary spending.
• Motivation: This process determines the state of fu-
ture expenses, which will support the spend optimiza-
tion team during the process of expenses approval e.g.,
by approving, raising alerts, recommending alternatives
or dismissing.

10http://54.194.213.178:8111/IF-KnowledgeGraph-Mid-Moderate
(optimal version in Firefox, Safari - visual representation not encoded
in RDF/OWL for optimal memory management in web browser).

11http://www.w3.org/TR/owl2-profiles/
10
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Figure 7: AIFS - (Technical) Explanation Component. 1©: Spatial (Map Area) context of abnormal expenses (extract of Figure 4). 2©: Individual
expense status and profile i.e., type, amount, duration, date, employee id, and career level (extract of Figure 4). 3©: Abnormal expense to be
explained (extract of Figure 4). 4©: Source of data considered for abnormality detection and explanation. 5©: Level-1 and -2 explanation for
anomaly in 3© (extract of Figure 5). 6©: Instance-based representation of Level-1 and -2 explanation (name of the instance that explains the
abnormality is given). 7©: Graph-based representation of expenses, their type and associated semantics (rational of explanation, through blinking
nodes is given by selecting abnormal expense in the graph, denoted in red). 8©: Confidence score of Level-1 and -2 explanation.(color print).

• State-of-the-art Approaches: Most of the existing
systems provide limited forecast, usually based on pre-
vious spending from last quarter / year, break down per
service group. They are simple rules for estimation.
Mainly internal data is used for establishing some indi-
cators, which has been shown to be inaccurate in com-
mercial settings cf. cost of forecasting versus cost of in-
accuracy for a medium-range forecast in Harvard Busi-
ness Review [22].

• Challenge: Predictive analytics spans many research
fields, from Statistics, Signal Processing to Database
and Artificial Intelligence. All existing predictive an-
alytics approaches e.g., [23, 24] have been mainly de-
signed for discovering correlation from data which is
(i) numeric and (ii) very siloed i.e., context-free. Thus
they rarely utilize exogenous sources of information for
adjusting estimated prediction in a systemic way. City
size, season, or number of events, and employee pro-
file are examples of external factors that strongly im-
pact travel expenses. All approaches do not aim at using
extensive contextual data, specially when data is charac-
terized by texts or various types of semantics (e.g., event
categories). Therefore existing approaches and models
do not fully exploit semantics of data, and reach to sub-

optimal accuracy of prediction as demonstrated in our
experimental results (Section 6).
• Approach (Technical) (Algorithm 2): AIFS shows
that the integration of heterogenous and exogenous data
is a way forward to improve accuracy and consistency of
abnormal expenses prediction. Algorithm 2 sketches the
approach of predicting (temporal) abnOrmal expenses
On

m at point of time j ∈ [m, n] using (temporal)Potential
contextual data such as events Pn

m, all using semantic
representations. The approach mainly consists of:

(i) auto-correlation of data on a time basis (lines 5, 6)
for retrieving all similar past events;

(ii) semantic association rules mining (lines 7-9) for
inferring correlation and rules between past events
and abnormal expenses over time e.g., rule (1-7)
extended with temporal dimension t such that x, t
and ev, t are substitute variables of x and ev;

(iii) validation of prediction results in On
m( j) by ana-

lyzing its semantic consistency i.e., checking no
conflict of knowledge. An average accommoda-
tion price for more than 20% of nights in a large
multiple-day event such as a music festival is an
example of conflicting knowledge.

All prediction rules are extracted through association
11
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Figure 8: AIFS - Prediction Component. 1©: Spatial (Map Area) context (subject to user selection) for spatial interpretation of abnormal expenses.
2©: Tab-based selection of reasoning: explanation and prediction. 3©: Historical (purple color) and forecast (blue color) average expenses amount
in USD per employee / day. 4©: Category and type of events occurring during the day selected in part 3©. 5©: Explanation (also defined as context
in Algorithm 2) of abnormal forecast expense. (color print).

mining of semantic descriptions (across temporal data).
Then they are filtered based on their occurrence (i.e.,
support) and confidence in line 9. The rule (1), extended
with temporal dimension, is one example of such se-
mantic rules. Similarly to rules learnt in Algorithm 1
their inference and consistency validation is achieved at
semantic level. Their semantics is then associated with
knowledge from other sources e.g., city context, type of
events to infer weighted recurring rules over time. Con-
trary to Algorithm 1, all consistent rules persist in the
background knowledge (line 12).
• Approach (UI) (Figure 8): Figure 8 illustrates how
predictions are handled in AIFS. The future status of
expenses and their respective amount ( 3© in blue) are
captured. Historical expenses are captured from April
2015 to June 3rd 2016 ( 3© in purple) and forecast ( 3© in
blue) up to 6 months ahead. June 10th captures an aver-
age expense amount of USD 335.34 in Paris while the
average is close to USD 191. 4© emphasizes the context,
and in particular the types of event that occur on any past
of future day selected in 3©. In our example respectively
45% and 41% are music and miscellaneous events. The
information is then interpreted following Algorithm 2,
in order to derive explanation of such prediction ( 5© in
red). While music is the most representative type of
events occurring in Paris on June 10th, our system man-
ages to capture: 2016 UEFA European Championship
opening game as main contributing factor of high price

of accommodation.
• Scalability: Similarly to the explanation compo-
nent, the scalability of predictive reasoning is highly
coupled with the polynomial-time characteristics of
subsumption-based reasoning in OWL 2 EL. Subsump-
tion and classification are achieved to derive the consis-
tency of prediction in line 12 of Algorithm 2. Scalability
was not an issue in our context, but could be with more
employee and external data. The latter can be the case
with (i) larger companies and (ii) more contextual infor-
mation such as detailed description of expense type.

Example 4. (Context-aware Anomaly Prediction)
We show how Algorithm 2 applies in the context of the
aforementioned example expense and rules. First, from
the rules mined for the context of the example, e.g., in
Austin during some week with 30 conferences, the algo-
rithm compares and collects all similar rules from dif-
ferent context, e.g., in Austin during a different week,
illustrated below.

AbnormalExpense(x)←
inCity(x, c) ∧
(Expense u ∃type.Accommodation u ∃inWeek.{w}

u ∃amount.(∃ moreThan.90% Cont. Exp.))(x) ∧
events(c, {w}, nbConcerts) ∧ nbConcerts ≥ 5 (9)

By Algorithm 2, the rule (9), together with rules pre-
12
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Algorithm 2: Context-aware Anomaly Prediction
1 Input: (i) Temporal anOmaly data On

m (from time m
to n) to be predicted (e.g., abnormal expense),
(ii) Temporal Potential contextual data Pn

m
(e.g., event), (iii) Point of prediction time
j ∈ [m, n], (iv) Min. threshold of prediction
rule support ms, confidence mc.

2 Result: On
m( j): Anomaly predicted at point of time j.

3 begin
4 R ← ∅; % Initialization of prediction rules set.
5 % Auto-correlation of contextual information.
6 P̃n

m ← all similar contexts of Pn
m( j) in [m, n];

7 % Semantic association rules between P̃n
m, On

m.
8 foreach rule ρ ∈ P̃n

m(k) × On
m(k), ∀k ∈ [m, n] do

9 if support(ρ) > ms ∧ con f idence(ρ) > mc
then R ← R ∪ {ρ};

10 % Semantic evaluation of rule ρ ∈ R at time j.
11 foreach ρ ∈ R of the form G� h do
12 if h in semantically consistent with On

m( j)
then Apply rule ρ at point of time j of On

m;
13 return On

m( j);

viously derived, will be used for predicting abnormal
expenses in some new temporal dataset.

• Limitation: The integration of new data, as context,
needs a careful analysis of historical data in order to
identify the most appropriate knowledge to be corre-
lated with. The automated integration of relevant data
is an open problem, and it has been addressed by semi-
automatically injecting pre-determined data sources for
correlation and prediction. Our approach has strong de-
pendencies with the selection of (i) context, (ii) config-
uration of Algorithm 2 e.g., min. threshold, support,
confidence, which all impact precision.

5. AIFS Technologies

This section sketches the main technologies behind
AIFS and focuses on its innovative reasoning parts, and
the web-based application.

5.1. Semantic Representation

The model we consider to represent semantics of data
(abnormal expenses and potential explanation in Table
1) is provided by an ontology, encoded in OWL 2 EL.
The selection of the W3C standard OWL 2 EL profile
has been guided by (i) the expressivity which was re-
quired to model semantics of data in Table 1, (ii) the
scalability of the underlying basic reasoning mecha-
nisms we needed (cf. scalability challenges of expla-
nation and prediction) e.g., subsumption in OWL 2 EL

is in PTIME [25]. Semantic technologies were used
to compare and evaluate different context e.g., events
(and their properties: venue, category, size, types / sub-
types), city information (high / moderate / low popula-
tion, density; good / moderate / bad level of accommo-
dation). More importantly they were required for (auto-
matically) learning, applying rules at reasoning time for
analysis, explanation and prediction components. All
interfaces of AIFS produce and consume semantic rep-
resentation of data. All interactions of AIFS are possi-
ble because of the semantic engine, which runs behind
the scene. For instance, explanation and prediction are
only possible if the underlying data is described with
semantics.

5.2. Semantic Enrichment
All raw data in Table 1 is served as temporal

OWL 2 EL ontologies (i.e., temporal representation of
semantic-encoded data) [3] by extending Jena TDB12

with temporal representation of entities. The DBpe-
dia and wikidata vocabularies have been used for cross-
referencing entities, and established a complete knowl-
edge graph to cover our domain. Different mapping
strategies are used depending on the data format. For
instance XSLT for XML, custom OWL 2 EL mapping
for CSV and JSON have been used. All the temporal
EL ontologies have the same static background knowl-
edge to capture time (W3C Time Ontology13) and space
(W3C Geo Ontology14) but differ only in some domain-
related vocabularies e.g., abnormality level, employees’
characteristics, event type and city information. We
used an OWL2 EL compatible variant of the OWL Time
(W3C Time Ontology15) as our approach does not need
the full SHOIN(D) expressivity of the W3C version.
For instance, we do not need the ProperInterval in OWL
Time, and temporal reasoning is mainly achieved to de-
tect anteriority and posteriority of temporal statements
and axioms. These ontologies have been mainly used
for enriching raw data (and its context), facilitating its
integration, comparison and matching over time.

5.3. Knowledge Extraction
The main challenges were (i) heterogenous data for-

mat, (ii) difficulty to re-use existing vocabularies for
data description. We addressed them by using semantic
representation and defining our own vocabularies for in-
tegration (example16). They have been linked with core

12http://jena.apache.org/documentation/tdb/index.html
13http://www.w3.org/TR/owl-time/
14http://www.w3.org/2003/01/geo/
15http://www.w3.org/TR/owl-time/
16http://54.194.213.178:8111/ExplanatoryReasoning/ontology/categories.n3

13



/ Procedia Computer Science 00 (2017) 1–20 14

entities of DBpedia, wikidata for extracting knowledge
i.e., context of abnormalities.

5.4. Distributed Semantic Reasoning

The matching-based computation of context similar-
ity, which is crucial in explanation and prediction com-
ponents of AIFS, is ensured by semantic classification
of temporal ontologies. Such classification is achieved
by distributing all the standard completion OWL 2 EL
rules [26] across various nodes based on their types.
Each node is dedicated to at most one type of axioms
and runs its appropriate rules. OWL2 EL compatible
variants of all ontologies which are beyond EL++, for
instance W3C Time ontology, have been elaborated to
ensure that semantic classification can be achieved fol-
lowing [21].

5.5. Lightweight Temporal Semantic Reasoning

Temporal evolution of knowledge is represented as
ontology OWL2 EL streams [3] i.e., dynamic and evo-
lutive version of ontologies [27]. Data (ABox), its in-
ferred statements (entailments) are evolving over time
while its schema (TBox) remains unchanged. We use
DL EL++ formalization in the following for illustration
purpose.

Example 5. (DL EL++ Ontology Stream)
Figure 9 illustrates 3 partial EL++ streams Pn

0, Qn
0

and Rn
0, related to events, expenses and their location

through snapshots at point of time i ∈ {0, 1, 2} (i.e., a
view on window [0, 3]). In our example n is any integer
greater than 2 and time i ∈ {0, 1, 2} can be seen as 3
consecutive days of a year. Their dynamic knowledge is
captured by evolutive ABox axioms e.g., (10) captures
e1 as “a social poetry event occurring in r2” at time 0
of Pn

0.

Pn
0(0) : (S ocialEvent u ∃type.Poetry)(e1) (10)
Qn

0(0) : (Expense u ∃type.Accommodation u ∃cost.Low)(a) (11)
Rn

0(0) : expenseInCity(a,Dublin) (12)

Pn
0(1) : (S ocialEvent u ∃type.Movie)(e2) (13)
Qn

0(1) : (Expense u ∃type.Accommodation u ∃cost.Low)(a) (14)
Rn

0(1) : expenseInCity(a,Dublin) (15)

Pn
0(2) : (S ocialEvent u ∃type.Concert)(e3) (16)
Qn

0(2) : (Expense u ∃type.Accommodation u ∃cost.High)(a) (17)
Rn

0(2) : expenseInCity(a,Dublin) (18)

Figure 9: Ontology Streams Pn
0(i), Qn

0(i) and Rn
0(i)i∈{0,1,2}.

Semantic comparison and matching of temporal on-
tology at one point of time are operated through
lightweight temporal reasoning. Such computing is

required by predictive reasoning, and explanation for
elaborating semantic context (events, employees’ pro-
file) similarity and correlation over time. In more de-
tails the temporal ontology correlation is established by
comparing the number of changes i.e., new, obsolete, in-
variant ABox axioms and entailments between various
evolution e.g., number and types of events that change
among two different temporal instances. Definition 1
provides basics, through ABox entailments, for under-
standing how knowledge is evolving over time. This is
unique to AIFS for establishing context-aware explana-
tion and prediction.

Definition 1. (ABox Entailment-based Changes)
Let Sn

0 be a stream; [α], [β] be windows in [0, n]; T
be axioms, G its ABox entailments. The changes occur-
ring from Sn

0[α] to Sn
0[β], denoted by Sn

0[β]∇Sn
0[α], are

ABox entailments in G being new (19), obsolete (20),
invariant (21).

G[α],[β]
new

.
= {g ∈ G | T ∪ Sn

0[β] |= g ∧ T ∪ Sn
0[α] 6|= g} (19)

G
[α],[β]
obs

.
= {g ∈ G | T ∪ Sn

0[β] 6|= g ∧ T ∪ Sn
0[α] |= g} (20)

G
[α],[β]
inv

.
= {g ∈ G | T ∪ Sn

0[β] |= g ∧ T ∪ Sn
0[α] |= g} (21)

The symbol |= captures logical entailment with re-
spect to terminological axioms T and some assertional
axioms from Sn

0. (19) reflects knowledge we gain by
sliding window from [α] to [β] while (20) and (21) de-
note respectively lost and stable knowledge. All dupli-
cates are supposed removed.

Example 6. (ABox Entailment-based Changes)
Table 2 illustrates changes occurring from (Q∪R)n

0[0, 1]
to (Q ∪ R)n

0[2, 2] through ABox entailements. For in-
stance “a as a high cost accommodation in window
[2, 2] of (Q ∪ R)n

0 is new with respect to knowledge in
[0, 1].

Windowed Stream (Q ∪ R)n
0[2, 2]∇ (Q ∪ R)n

0[0, 1]
Changes obsolete invariant new

expenseInCity(a,Dublin) X
(Expense u ∃type.Accommodation

X
u∃cost.Low)(a)

(Expense u ∃type.Accommodation
X

u∃cost.High)(a)

Table 2: ABox Entailment-based Changes.

5.6. Semantic Rule Association and Mining

Predictive reasoning is achieved following state-of-
the-art principles i.e., association rules mining to learn
rules for classification (in the context of abnormal ex-
penses identification and prediction). The generation of
association rules between temporal ontology is based on

14



/ Procedia Computer Science 00 (2017) 1–20 15

a semantic extension [3] of Apriori [28], aiming at sup-
porting subsumption for determining association rules.
Contrary to the initial version of Apriori which infers
associations between data instances, the association in
AIFS is achieved between their descriptions e.g., type
of events, expenses, context. Rules are encoded us-
ing DL EL++ rules, and all consequents of each rule
are validated though consistency checking (cf. line 12
in Algorithm 2). This ensures to obtain consistent and
accurate prediction results (cf. Experimental Results).
Data related to (a) expense (8 features e.g., type, season,
amount, country, city), (b) city (15 features e.g., popu-
lation, country, density, hotel rooms), (c) employee pro-
file (9 features e.g., career level, industry, years of expe-
rience), (d) social event (12 features e.g., country, city,
type, season, attendance), and (d) news event (6 features
e.g., type, country, city) are considered to capture rules.

5.7. Web-based Application
• REST Interface: All functionalities of AIFS are
exposed through REST services, providing highly
component-ization, evolve-ability via loose coupling
and hypertext.
• Web User Interface: AIFS strongly relies on HTML,
CSS, Javascript (Dojo toolkit, D3, JQuery libraries) to
produce an appealing user interface. Time-series, spi-
der, bar, pie charts together with parallel charts are ex-
amples where Dojo and D3 components were combined
with HTML and CSS.
• Deployment: Our technology stack is based on well-
established open source and commercial components
such as Apache Tomcat as the HTTP/Application Server
and (ii) state-of-the-art components such as OpenLay-
ers17 as an open source JavaScript library for displaying
dynamic map data, pssh for parallel distribution of rea-
soning, Jena TDB as RDF store (extended with tempo-
ral indexes). A B+ Trees TDB indexing structures has
been used, which turns to scale better in our context of
temporal / (minimal) dynamic updates.

6. Experimental Results

We focus on the scalability and accuracy of the re-
sults that AIFS delivers, which have been raised as the
most important metrics by our business users. In partic-
ular we highlight the explanation and predictive reason-
ing, as the most critical and resource consuming com-
ponents of AIFS. Experiments were run on a server of
16 Intel(R) Xeon(R) CPU E5-2680, 2.80GHz cores and
32GB RAM.

17http://openlayers.org/

6.1. Open Data Context

Data in Table 1, transformed in OWL/RDF (Table
3), is used to experiment AIFS. A sample version of
the OWL/RDF graph is maintained for demo purpose9.
Explanation and predictive functionalities are experi-
mented on a basis of 429 days (from April 1st 2015 to
June 3rd 2016) with temporal datasets [a], [d] and [e].
The semantic representation is OWL EL in all experi-
mentation unless specified differently cf. experimenta-
tion related to expressivity in Figures 12-11.

Temporal Raw Semantic Update Semantic
Data Update Update Size #RDF Conversion

Size (KB) (KB) Triples (ms)

[a] Expenses fortnightly ≈ 106 ≈ 108 ≈ 109 ≈ 107

[b] City - - 634 1, 189 -(average)
[c] Employee - ≈ 107 ≈ 109 ≈ 1010 ≈ 108

Profile
[d] Social daily 240.7 297 612 0.681Events
[e] News daily 8356.9 1295 7177 0.891Events

Table 3: Datasets Details (average figures). [b,c] are not temporal. [c]
is pre-encoded in RDF using DBpedia, wikidata.

All data sets [a,b,c,d,e] in Table 3 is considered
for explanation computation (Section 6.2) as they all
equally contribute for elaborating explanations. The im-
portance of data set [e] in Table 3 for the prediction task
(Section 6.3) is not as significant as for the explanation
task. Prediction accuracy only gains 4% by adding data
set [e]. Therefore we only consider the data set [a,b,c,d]
for prediction experimentation.

6.2. Explanation Experimentation (with semantic rep-
resentation of data [a,b,c,d,e] in Table 3)

• Scalability: Figure 10 presents the computation time
for explaining an abnormal expense by varying the con-
text (indirectly the underlying model) i.e., number of
historical |H| and real-time |R| atomic abnormal expense
occurring per day (approx. 1, 135). H and R are respec-
tively expenses explained, and to be explained.

The historical modelling of the semantic explanation
model (cf. finite state machine in Figure 6) is strongly
impacted by the number of historical expenses while the
real-time explanation remains constant. The modelling
part compiles all explanation results and evaluates se-
mantic similarity between H and R together with their
context (after distributed semantic classification) while
real-time explanation consists in retrieving the most rel-
evant ones. 10, 539, 891 abnormal expenses have been
detected out of 1, 335, 691, 105 items for our time pe-
riod of 429 days. The computation of the off-line expla-
nation model required approximately 286 minutes. The
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Figure 10: Scalability of Explanation Computation using 3 Different Partial Explanation Models (cf. |H| as indicator).

average computation time for retrieving a unique expla-
nation is 0.982 seconds using the complete model.
• Accuracy: Table 4 depicts the precision and recall of
returned explantion results by varying the size of the
model (|H| at 100% of the model).

Ratio of Explanation 10 20 30 40 50 60 70 80 90 100Model |H| (%)
Precision (%) 22 29 32 41 54 61 68 73 83 89

Recall (%) 14 23 29 31 41 48 53 62 71 78

Table 4: Accuracy of Explanation.

We report the ratio of up to 10 explanation results
identified and compared against those estimated by
business experts (used as ground truth). The more his-
torical data the better accuracy. Such result confirms the
importance of capturing historical context of past abnor-
mal expenses.
• Expressivity: Figure 12 reports the scalability of the
approach by varying the expressivity of the underly-
ing background ontology (which is a strong indica-
tor for evaluating subsumption-based matching of ex-
penses, contexts and explanations). We consider our
baseline model OWL EL against other with more ex-
pressivity OWL RL, OWL SROIQ(D) and less expres-
sivity RDF/S. We used a distributed version of (i) CEL
[26] for OWL EL ontologies, and (ii) TrOWL [29] for

contexts with more expressive representation.

We break down the experiment per region in the
world to evaluate the impact of the size of data. North
America NA and Europe E are the regions where oc-
cur most of the expenses, while the expenses in South
America S A and Asia A are less significant. In other
words |NA| > |E| > |S A| > |A| with |X| expenses in
region X. All elements of semantic computation are
tracked: data transformation, OWL / RDF loading in
Jena, anomaly detection and explanation reasoning. Un-
surprisingly the system is the most scalable with RDF/S
and the least with OWL SROIQ(D). Scalability is im-
pacted by the pair: data size and expressivity. More in-
terestingly the difference between OWL EL and RDF/S
is not significant in this context, and the number of
learnt rules do not change across the various models.
In all cases, the explanation part is the most time con-
suming while loading is the least.

Figure 11 reports the accuracy of the approach by
varying the above levels of expressivity. Unsurprisingly
the system is the most accurate with OWL SROIQ(D)
and the least with RDF/S. Similarly to scalability, ac-
curacy is impacted by the pair: data size and expres-
sivity. Very interestingly, although OWL EL is signif-
icantly less expressive than OWL SROIQ(D), it only
lost 4.7% of accuracy (on average) against the OWL
SROIQ(D).
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Figure 11: Impact of Semantic Expressivity on Accuracy.

• Lessons Learned: Reducing the number of histori-
cal expenses (as baseline for building the explanation
model) decreases the computation time, but also de-
creases accuracy. The more similar historical expenses
and associated context the higher the probability to
catch accurate explanation. The computational perfor-
mance of our approach is mainly impacted by the ex-
pressivity of the semantics as it impacts both semantic
classification and similarity computation. OWL EL has
been demonstrated to have the best tradeoff expressivity,
scalability and accuracy. The experimentation strongly
confirms our choice of using OWL EL as representation
model.

6.3. Prediction Experimentation (with semantic repre-
sentation of data [a,b,c,d] in Table 3)

The objective is to predict abnormal travel related ex-
penses in the next 6 months using contextual informa-
tion. The evaluation is achieved using different con-
textual information i.e., [a], [a,b], [a,c], [a,d], [a,b,c],
[a,b,d], [a,b,c,d] in Table 3, to evaluate their impacts on
scalability and accuracy.
• Scalability : Figure 13 reports the scalability of our
approach, noted AA, and compares its computation time
with a state-of-the-art approach [11] in predictive ana-
lytics.

Contrary to our approach, similarity is detected at
raw data level using (i) statistics-based data analysis and
(ii) mathematical properties of the temporal data. [11]

scales better than our approach in all contextual con-
figurations. Our approach requires some non-negligible
computation time for reasoning on top of the semantics-
enriched data. The identification of significant rules
is strongly impacted by the number of potential rules,
which grows exponentially with the number of seman-
tic representations of raw data (secondary vertical axis).
Once all rules are identified, consistent prediction is de-
livered from 1.8s to 2.9s.
• Accuracy: Figure 14 reports the prediction accuracy
of both approaches [11] and AA. The accuracy is mea-
sured by comparing predictions (level of abnormality)
with real-time expenses in respective cities (when ex-
penses are available). All results can be easily extracted
and compared from the raw and semantic data in respec-
tively [11] and our approach. The more contexts the
better the accuracy of prediction for both approaches.
However our approach reaches a better accuracy when
text-related context [b,c,d] are jointly interpreted. On
contrary [11] cannot take much benefit of their seman-
tics. Overall, our approach obtains a better accuracy,
mainly because all the rules are pruned based on the
consistency of their consequent. By enforcing their con-
sistency, we ensure that rules are selected based on the
surrounding context i.e., exogenous data. The seman-
tic enrichment of data is then for correlating, cross-
associating and then predicting abnormal expenses on
a common basis.
• Expressivity: The results related to the impact of ex-
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Figure 12: Impact of Semantic Expressivity on Scalability.

pressivity on predictive reasoning are aligned with the
ones for Figures 12-11 i.e., the more expressive the less
(more) scalable (accurate). Experimentation has shown
that size of data has a larger impact than expressivity on
accuracy of the system. The OWL EL model lost (on av-
erage) 6.9% of accuracy against the OWL SROIQ(D).
• Lessons Learned: Our experimental results empha-
size the advantage of using semantic Web technologies
for abnormal expenses prediction i.e., accuracy, but also
point out the scalability limitation, specially compared
to pure statistical approaches. In particular the more
contexts the more rules which positively (resp. nega-
tively) impacts accuracy (resp. scalability). Since state-
of-the-art approaches fail to encode text-based data,
they simply fail to interpret their semantics. On con-
trary, our approach interprets their semantics to enrich
the prediction model, ensuring more accurate predic-
tion. OWL EL has shown to have the best tradeoff of
expressivity, accuracy and scalability.

7. Conclusion

This paper presented AIFS, an innovative and inte-
grated system which has been designed for (i) seam-
lessly aggregating heterogeneous and exogenous data
and more importantly (ii) delivering integrated contex-
tual analysis, explanation and prediction of abnormal
expenses from 191, 346 unique Accenture employees,
while (iii) being scalable to any large organisations us-
ing various types contexts through semantic web tech-

nologies. AIFS delivers insight to interpret any-time ab-
normal expenses, making expenses easier to be man-
aged and supporting spend optimization. Thus AIFS
supports both business owner to establish new policy
and auditors to (i) better pinpoint causes of abnormal
expenses, and (ii) minimize communication with em-
ployees. The experiments have shown scalable, accu-
rate, consistent explanation and prediction of abnormal
expenses, which are the main benefits of the semantic
encoding and underlying reasoning.

Handling automated parameters configuration (Algo-
rithms 1, 2), data summarization, flexible data integra-
tion (cf. Limitation sections) are future domains of in-
vestigation. In addition the integration of reinforcement
learning in our explanation and prediction component
would benefit accuracy.
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