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PART	I	
Context	



Arrival of the “urban millennium” 
By 2050 over 6 billion people, two thirds of humanity, will be living in towns and cities 

Source: Smart Cities How will we manage our cities in the 21C?, Colin Harrison IBM Corporate 
Strategy Member, IBM Academy of Technology 

Indoor air pollution 
resulting from the use of 
solid fuels [by poorer 
segments of society] is a 
major killer! 
 
Claims the lives of 1.5 million people 
each year, more than half of them below 
the age of five (4000 deaths per day) 

Water problems affect 
half of humanity!!!! 
 
1.1 billion people in developing 
countries have inadequate access to 
water, and 2.6 billion lack basic 
sanitation 

1.6 billion people — 
a quarter of 
humanity — live 
without electricity! 
 
South Asia, Sub-Saharan Africa 
and East Asia have the greatest 
number of people living without 
electricity (as high as 706 million 
in South Asia) Source: 2008 UN Habitat; Smart Cities How will we manage our 

cities in the 21C?, Colin Harrison IBM Corporate Strategy 

Introduc.on	
Mo.va.on	–	Today’s	Ci.es	are	Confronted	with	Serious	Dilemmas		



ASIA N.A. & EUROPE AFRICA LATIN AMERICA 

Rapid expansion Negative growth Rural exodus increasing 
poverty Decentralization 

§  Over the next decade, Asia’s 
urban areas will grow by more 
than 100,000 people a day 
§  Growth rates are more rapid 
than the investment in 
infrastructure  
§ Benefits of new  infrastructure 
investments have not been 
distributed equally 

§  46 countries (including 
Germany, Italy, most former 
Soviet states) are expected to 
be smaller in 2050 
§  The number of shrinking 
cities has increased faster in 
the last 50 years than the 
number of expanding cities  

 

§  In 2008, more than 12M 
Africans left their rural homes 
to live in urban areas  
§  The projected increase in 
urban migration will exacerbate 
the problems of providing 
infrastructure, sanitation. 
health services, and food 

§  Large cities have 
incorporated nearby villages 
and towns – as a result, large 
urban areas developed sub-
centers whose functions 
duplicated those of the central 
city 
§  Many large cities are 
competing with their outlying 
suburbs for people, revenue, 
and employment 

Source:	Various;	IBM	MI	Analysis;	

Introduc.on	
Mo.va.on	–	Regions	have	both	Common	and	Unique	Challenges		



Introduc.on	
Mo.va.on	–	Rapidly	Growing	Interdependency	and	Complexity	

24	Hours	of	Air	Travel	

We	have	built	a	world	of	massive	complexity	and	interdependency….	

….and	along	with	progress,	we	have	brought	on	massive	risks	we	don’t	manage	well		

Global	Trade	 Global	Financial		
Markets	

Nuclear	Technology	

Pandemics	 Global	Financial	Crisis	 Nuclear	Disasters	



Source:	Various;	IBM	MI	Analysis;	

Introduc.on	

The Sustainable Eco-CityThe Well Planned City The Healthy and Safe City

The Cultural-
Convention Hub The City of Digital Innovation

Mo.va.on	–	Beyond	the	prac.cal	objec.ves,	ci.es	have	‘aspira.ons’		

The City of Commerce



Miami,	USA	

Dublin,	Ireland	

Rio,	Brazil	

• 5.5	billion	hours	of	travel	delay		
• 2.9	billion	gallons	of	wasted	fuel	in	the	USA	
• $121	billion	/	year		
• 0.7%	of	USA	GDP	
*5	over	the	past	30	years	

Bologna,	Italy	

How	to	reduce		
traffic	conges5on	?	

Introduc.on	
Mo.va.on	–	Socio-Economic	Context	



Introduc.on	
Mo.va.on	–	Limita.on	of	Exis.ng	Systems	(Example:	Traffic)	(1)	

Most	traffic		
systems		

already	support		
Basic	Analy.cs		

and	Visualiza.on!!!	

Basic	Analy5cs	from		
Bus	/	Taxi	data	



•  All	exis.ng	traffic	management	systems	are	based	on	ONE	signal	/	stream	
•  No	possible	interpreta5on	of	traffic	Anomalies	
•  No	Integra5on	of	Exogenous	Data	

No	Seman5cs	/	Context	!	

No	Explana5on		
No	Diagnosis	

Introduc.on	
Mo.va.on	–	Limita.on	of	Exis.ng	Systems	(Example:	Traffic)	(2)	



•  Sensor	data	assimila5on	
–  Data	diversity,	heterogeneity	
–  Data	accuracy,	sparsity	
–  Data	volume	

	
•  	Modelling	human	demand	

–  Understand	how	people	use	the	city	infrastructure	
–  Infer	demand	panerns	

•  	Factor	in	Uncertainty	
–  Opera.ons	and	planning	
–  Organise	and	open	data	and	knowledge,	to	engage	

ci.zens,	empower	universi.es	and	enable	business	

Introduc.on	
AI	for	ci.es:	How	can	AI	help	ci.es	transform	?	



Introduc.on	
AI	for	ci.es:	why	now?	Open	Data!	



Introduc.on	
AI	for	ci.es:	why	now?	AI	success!	

Eugene	Goostman,	a	
c o m p u t e r	
p r o g r a m m e	
pretending	 to	 be	 a	
young	 Ukra in ian	
boy,	 successful ly	
d u p e d	 e n o u g h	
humans	 to	 pass	 the	
iconic	Turing	test	

2014	

2011	

2013	

2016	



Introduc.on	
AI	for	ci.es:	why	now?	Ci.es	want	to	be	Smarter	Ci.es!	

Nowadays:	
Issues	of	Urban	Quality	such	as	housing,	economy,	culture,	social	and	environmental	condi.ons.	



Introduc.on	
AI	for	ci.es:	why	AI?	Big	Data	



Working harder is not sustainable 

Cities require innovative approaches 

Introduc.on	
AI	for	ci.es:	why	AI?	Smart	Systems	



Introduc.on	
AI	for	ci.es	in	2016	

Walkonomics	

FixMyStreet	

Schooloscope	

FloodAlerts	

BeatTheBurglar	

Where	can	I	live?	



Introduc.on	
AI	for	ci.es	in	2016	–	Our	Experience	



Data	format	and	data	access,	collec.on,	storage,	transforma.on	
Big	Data	–	The	World	of	Data	 Source:	Various;	IBM	MI	Analysis;	



Data	format	and	data	access,	collec.on,	storage,	transforma.on	
Big	Data	–	The	Speed	of	Data	 Source:	Various;	IBM	MI	Analysis;	



Data	format	and	data	access,	collec.on,	storage,	transforma.on	
Big	Data	–	4Vs	 Source:	Various;	IBM	MI	Analysis;	
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Data	Format	and	Heterogeneity	-	City	Data	!=	Open	Data	(1)	

A�Global�
Movement�Has�
Begun�to�Provide�
Transparency�and�
Democratization�

of�Data�

18November�30,�2011

Don’t�see�your�site?�
Update�via�@usdatagov

(*)	“Driving	Innova.on	with	Open	Data”,	Jeanne	Holm,	Data.gov,	
February	9th,	2012	(Presenta.on	to	Ontology	2012)	

Think�Big,�Start�Small,�Innovate
Data.gov�Quick�Facts May�2009 October�2011

Total�datasets�available 47 >400,000

Hits�to�Data.gov 0 >200�million

Apps�and�mashͲups�by�citizens�and�government 0 372�+�1113

RDF�triples�for�semantic�applications 0 6.7�billion

Dataset�downloads 0 >2.0�million

Nations�establishing�open�data�sites 0 28

States�offering�open�data�sites 0 31

Cities�in�North�America�with�open�data�sites 0 13

Open�data�contacts�in�Federal�agencies 24 396

Agencies�and�subagencies�participating 7 185

Communities 0 7

Community�challenges 0 23

November�30,�2011 11

A	lot	of	relevant	open	data	
for	city	data	analy.cs	
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Data	Format	and	Heterogeneity	-	City	Data	!=	Open	Data	(2)	
Next steps: Gov2Gov and beyond

Waste Collection

Property management

Environment

Demographics

Business & Retail
Commercial valuations 
and rates

Tourism

Transport & Access

Crime

Heritage

Mapping

Housing

WaterFault Reporting

Events

Health

Planning

Pool resources 
Share results



Data	format	and	data	access,	collec.on,	storage,	transforma.on	
Data	Format	and	Heterogeneity	-	Data	Variety	(1)		

...	In	one	city:	different	informa5on,	different	format	

Representa.on?	
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Data	Format	and	Heterogeneity	-	Data	Variety	(2)		

...	In	one	city:	a	lot	of	informa5on,	no	structure	–	go	figure!	

An example from Dublin 


Structure is 
not declared

No common
schema

No common
vocabulary

No common 
reference

No explicit 
semantics

PLUS:
•  No linking to 

authoritative sources
•  Various file formats 

(including binary)
•  Different 

representations for 
the same thing (e.g. 
easting/northing)

•  No relations 
(datasets in 
isolation)

100’s times
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Data	Format	and	Heterogeneity	-	Data	Variety	(3)		

...	In	one	applica.on	domain:	similar	informa5on,	different	format	
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Data	Format	and	Heterogeneity	-	Data	Variety	(4)	

...	In	one	applica.on	domain:	similar	format,	various	sparsity	

Bologna	City	

Dublin	City	
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Data	Engineering	–	Seman.c	data	integra.on	

Map	the	data	onto	RDF	

annotate	
ontological	
vocabulary		
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Data	Engineering	–	Data	Access	and	Transforma.on	–	General		

CAPTION:

Contact List

: Data Flow Ordering

Road Works

City Events

Calendar

CSV format
Tweets format

XML format
PDF format ANY format ANY format

User DataSensor Data
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SIMPLI−CITY Data Model
Transformation
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Data Services

Journey Times Condition
Road
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Weather Social Media
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Data	Engineering	–	Data	Access	and	Transforma.on	–	Dublin	Instance	

Text Extraction
(Apache PDFBox)

Extraction
(LanguageWare)

Basic Entity

(DB2 Spatial Extender)
Interpretation

Spatial

: State−of−the−art Tools
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Interpretation

Spatial

Web APIs
CSV format Tweets format XML format

Web Crawling

PDF formatCSV formatCSV format
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Road
Condition

Weather
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Discretization

CAPTION:
: Data Flow Ordering

TYP−ifying
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Data	Engineering	–	Data	Access	and	Transforma.on	–	Travel	Time	Mapping	

Weather Information station Journey Times station Road Weather Condition station 

Travel	.me		
between		
2	sensors	
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Knowledge	Representa.on	(KR)	

•  How knowledge can be 
represented symbolically  
•  Is	City	an	en.ty	or	a	collec.on	of	

en..es	such	as	London?	
•  Does	each	borough	belong	only	

to	one	city?	
•  Does	a	city	have	to	have	some	

borough? 
•  How knowledge can be 

manipulated in an automated 
way by reasoning programs 
•  trade-off between expressive 

power and efficiency of 
reasoning 

		

City	 Borough	

London	 Westminster	

is_a	 is_a	

belong_to	

has_borough	

Country	

belong_to	
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Knowledge	Representa.on	–	Descrip.on	Logics	(DLs)	

•  A family of decidable sub-languages of 
FOL 

•  Describe	the	domain	in	terms	of	classes/
concepts,	proper.es/roles	and	
individuals 

•  Offer constructors for class/property 
descriptions, such as  

•  C    D, C    D, ¬C, ∃R.C, ∀R.C, ≤nR.C, 
≥nR.C, A, ⊤, ⊥, {a1,a2} 

•  P- 

•  A DL KB (also known as ontology) contains  
•  class axioms: C      D 

•  property axioms: P1    P2, P3 ° P4    P5 

•  individual axioms: a: C, (a,b): P, a = b, a ≠ 
b  

		

𝐵𝑜𝑟𝑜𝑢𝑔ℎ⊑∃𝑏𝑒𝑙𝑜𝑛𝑔_𝑡𝑜.𝐶𝑖𝑡𝑦	
𝑏𝑒𝑙𝑜𝑛𝑔_𝑡𝑜∘𝑏𝑒𝑙𝑜𝑛𝑔_𝑡𝑜⊑𝑏𝑒𝑙𝑜𝑛𝑔_𝑡𝑜	
ℎ𝑎𝑠_𝑏𝑜𝑟𝑜𝑢𝑔ℎ↑− ⊑𝑏𝑒𝑙𝑜𝑛𝑔_𝑡𝑜	
𝐿𝑜𝑛𝑑𝑜𝑛:𝐶𝑖𝑡𝑦	
𝑊𝑒𝑠𝑡𝑚𝑖𝑛𝑠𝑡𝑒𝑟:𝐵𝑜𝑟𝑜𝑢𝑔ℎ	
(𝐿𝑜𝑛𝑑𝑜𝑛, 𝑊𝑒𝑠𝑡𝑚𝑖𝑛𝑠𝑡𝑒𝑟):ℎ𝑎𝑠_𝑏𝑜𝑟𝑜𝑢𝑔ℎ	
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Knowledge	Representa.on	–	Example	DL	ontologies	

An	ontology	cannot	rule	them	all	…	but	reasoning	needs	an	integrated	one!!	

Sensor	Model	

Data	Model	

Space	

Time	

Events	
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OWL	–	W3C	Standard	Web	Ontology	Language	

•  OWL comes with different sub-languages, with different expressive power 
and reasoning complexity 

•  OWL is widely adopted by KR users 

•  Reasoning tasks: schema level (classification, satisfiability and subsumption 
checkings), schema and data (consistency and instance checkings, 
realisation) 

		 N2EXPTime-	
complete	

OWL	2	EL	

OWL	2	QL	

OWL	2	RL	

OWL	DL	

OWL	2	DL	

NEXPTime-	
complete	

PTime-	complete	

NLogSpace-
complete	

SROIQ	

SHOIN	

EL++	

DL-Lite	
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OWL	2	EL			

•  A fragment of OWL 2 such that 
•  Satisfiability checking is PTime-Complete 

•  Data complexity of query answering also PTime-Complete 

•  Widely used in many bio-medical ontologies 

•  e.g. SNOMED CT, Gene Ontology 

•  Based on EL family of description logics [Baader et al. 2005] 

•  supports limited class descriptions C    D, ∃R.C, A, ⊤, ⊥ 
•  There exist well-known effective approximate reasoning 

algorithms based on EL [Ren et al. 2010] 
•  such as the ones implemented in the TrOWL reasoner.  
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Reasoning	in	EL			

Can	be	realised	by	a	consequence-based	
algorithm	

A	set	of	comple.on	rules	R,	e.g.		
If		and	,	then		
If		and		then		
If	,		and	,	then		
Etc.	

A	forward	chaining	mechanism	FCC	to	
apply	the	rules	

Star.ng	from	the	original	ontology	
Repeated	apply	the	rules	on	the	original	and	
inferred	axioms	un.l	no	more	axioms	can	be	
inferred	

Result	is	the	closure	of	the	ontology	R*(O),	
including	

Inferred	subsump.ons	between	concept	
names	
Named	types	of	individuals	
Named	rela.ons	between	individuals	

R*(O)	=	FCC(O,Ø,R)	

•  FCC(Q,S,R):	

Q	

S	

alpha	

R	

beta	
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Incremental		Reasoning	in	EL			

Adding	new	axioms	does	
not	require	complete	re-
computa.on	

R*(O+Add)	=	FCC(Add,	
R*(O),R)	

The	original	closure	R*(O)	
can	be	used	to	compute	
the	extended	closure	

Removing	small	amount	
of	original	axioms	can	also	
be	addressed	efficiently	

Delete-and-Rederive	

2%, 
13.31% 

4%, 
29.23% 

10%, 
70.99% 

20%, 
122.65% 
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Parallel	Reasoning	in	EL			

Mul.ple	rule	execu.ons	can	be	performed	at	the	same	.me	
Mul.ple	rule	executors	can	process	axioms	with	different	
context	to	avoid	locking	

Q	
S1	

alpha1	

Rule	executor	1	

beta1	

S2	

alpha2	

Rule	executor	2	

beta2	

…	S3	

alpha3	

Rule	executor	3	

beta3	

Concurrent	Classifica.on	of	EL	Ontologies,	Y.	Kazakov	et	al,	ISWC2011	



PART	II	
(Some)	AI	Techniques	

for	Ci.es	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Challenge:	

Source	of	
Anomaly	

Source	of	
Diagnosis	

Logical	correla.on	of	anomalies		
and	diagnosis	in	dynamic	sezngs	

•  Knowledge	Representa.on	and	Reasoning	
•  Machine	Learning	/	AI	Diagnosis	
•  Database:	Large	scale	data	integra.on	
•  Signal	Processing	/	Stream	Reasoning	

Core	Areas	/	Problems:	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Architecture	with	AI	Components	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Large	Scale	Data	Integra.on	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Deduc.ve	Reasoning	–	Seman.c	Matching	

Subsump.on-based		
Reasoning	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Diagnosis	Reasoning	(1)	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Diagnosis	Reasoning	(2)	 Graph-based	Representa.on		

of	Road	Network	
4,772	roads,	17,485	junc.ons,	5.792:	average	degree	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Diagnosis	Reasoning	(3)	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Diagnosis	Reasoning	(4)	 Graph-based	Representa.on		

of	Road	Network	
4,772	roads,	17,485	junc.ons,	5.792:	average	degree	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Diagnosis	Reasoning	(5)	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Diagnosis	Reasoning	(6)	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Diagnosis	Reasoning	(7)	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Diagnosis	Reasoning	(8)	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Abduc.ve	Reasoning	

Iden:fica:on	of	what	is	underspecified		in	Out_si	to	completely	sa:sfy	In_sj	in	T		

Different	Time	

Different	Loca.on	

Different	Cause	/	Event	

Different	Conges.on	

Abductive  Reasoning  
Reports How Diagnosis is Approximated  

With Semantic Matching 



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Experimenta.on:	Evalua.ng	the	impact	of	data	(size,	historic,	heterogeneity)	on	scalability		
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Lesson	Learnt:	+	data	sets	+	overhead	on	transforma.on,	loading,	and	reasoning	
Lesson	Learnt:	+	historic	data	+	overhead	on	reasoning	

*48	
*3.1	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Experimenta.on:	Evalua.ng	the	impact	of	data	(size,	historic,	heterogeneity)	on	accuracy	
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Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Experimenta.on:	Evalua.ng	the	impact	of	expressivity	on	scalability	
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OWL	/	RDF	Loading:	*1.5	
Transforma.on:	*1.1	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Experimenta.on:	Evalua.ng	the	impact	of	expressivity	on	accuracy	
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Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Experimenta.on:	Evalua.ng	the	impact	of	data	on	accuracy	

Improvement	of	coverage	/	precision	/	recall		
using	more	external	data	sources				



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Op.miza.on	techniques	to	scale	up	reasoning	(1)	

Data	

Update	

Co
ns
ist
en

t?
	

Schema	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Op.miza.on	techniques	to	scale	up	reasoning	(2)	

Schema	

Data	

Update	

Co
ns
ist
en

t?
	

Heavyweight	
Reasoning	

Sta.c	
Small	

Dynamic	(stream)	
Big	
	

Syntac.c	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Op.miza.on	techniques	to	scale	up	reasoning	(3)	

How	to	maintain	ontology	consistency	more	efficiently	in	this	context?	

Too	large	to	fit	

Exis.ng	incremental	reasoning:	maintain	an	in-memory	structure	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Op.miza.on	techniques	to	scale	up	reasoning	(4)	

Our	solu.on:	extrac.ng	a	subset	of	data	+	updates	syntac5cally	

Update	

Co
ns
ist
en

t?
	

Schema’	

Data’	

Co
ns
ist
en

t?
	

Syntac.c	Transforma.on	

If	and	only	if	

Assump.on:	
Consistency	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Op.miza.on	techniques	to	scale	up	reasoning	(5)	

Our	solu.on:	extrac.ng	a	subset	of	data	+	updates	syntac5cally	

Schema’	

Schema	simplifica5on:	to	expose	constraints	that	can	possibly	cause	interac.on	
between	instances	via	role	asser.ons.	
	
	
	
Where	transi.ve	roles	are	removed	and	all	axioms	with	universal	and	maximum	
number	restric.ons	are	simplified	on	the	RHS	
•  The	simplified	schema	and	the	original	schema	are	equi-sa.sfiable		
•  The	simplifica.on,	a	one-.me	process,	can	be	done	offline	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Op.miza.on	techniques	to	scale	up	reasoning	(6)	

Our	solu.on:	extrac.ng	a	subset	of	data	+	updates	syntac5cally	

Key	observa.on:	
	
Role	asser.ons	of	the	form	S(a,b)	may	cause	interac.on	between	instances,	thus,	they	
need	be	eliminated	as	much	as	possible	for	subset	extrac.on	

Update	 Data’	

Data	Extrac.on	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Op.miza.on	techniques	to	scale	up	reasoning	(7)	

Our	solu.on:	extrac.ng	a	subset	of	data	+	updates	syntac5cally	

For	any	S(a,b),	it	is	irrelevant	for	data	extrac.on	if,	for	every	axiom		
it	is	already	consistent	with	this	axiom,	e.g.,	two	sufficient	condi.ons:		
•  b:L2	is	in	the	data		
•  a:L1	is	in	the	data	(due	to	our	consistency	assump.on)	

Update	 Data’	

Data	Extrac.on	

Irrelevant	RAs	removed;		
remedy	CAs	added	



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Op.miza.on	techniques	to	scale	up	reasoning	–	Example		



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Op.miza.on	techniques	to	scale	up	reasoning	–	Experimenta.on		



Explaining	Traffic	Condi.ons	with	Diagnosis	Reasoning	
Op.miza.on	techniques	to	scale	up	reasoning	–	Take	Away	Notes	

The	Approach:	
	
•  Syntac.c	→	quadra.c	in	the	size	of	the	data		
•  Incremental	→	suits	large	datasets		
•  Reasoner	independent	→	easy	to	implement	

When	is	this	approach	preferred	over	Pellet	(or	similar	na5ve	incremental	
reasoning	support)?	
	
•  If	the	instance	objects	are	not	highly	correlated	via	role	asser.ons	that	

have	roles	used	by	restric.ons	in	the	schema	
•  If	the	size	of	inserts	is	large,	e.g.,	half	of	the	original	data		
•  If	the	data	+	inserts	cannot	be	fully	loaded	into	memory	



Forecas.ng	Traffic	Conges.on	with	Predic.ve	Reasoning	
Challenge:	
Predic.ve	reasoning	(as	opposed	to	analy5cs)		
in	heterogeneous	and	dynamic	sezngs	

•  Knowledge	Representa.on	and	Reasoning	
•  Machine	Learning	/	Knowledge	Discovery	
•  Database:	Large	scale	data	integra.on	
•  Signal	Processing	/	Stream	Reasoning	

Core	Areas	/	Problems:	

Traffic	Condi.on	

Road	Incident	

Weather	Condi.on	



Forecas.ng	Traffic	Conges.on	with	Predic.ve	Reasoning	
All	exis.ng	predic.on	systems	are	based	on	ONE	signal	/	stream		

Traffic	Condi5ons	
Sta.s.cal	Panern	

Similarity	
e.g.,	GAM	,	Regression	…	

No	Seman5cs	/	Context	!	

No	accurate	predic5on!	
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Predic5ve	reasoning	in		
a	seman5c		

and	stream	(data)	context	

Forecas.ng	Traffic	Conges.on	with	Predic.ve	Reasoning	
Why	KR&R	and	Seman.c	Web	Technologies	?	



Weather Information station Journey Times station Road Weather Condition station 

Forecas.ng	Traffic	Conges.on	with	Predic.ve	Reasoning	
Context	of	Dublin	City,	Ireland	



Forecas.ng	Traffic	Conges.on	with	Predic.ve	Reasoning	
Deduc.ve	Reasoning:	Ontology	Stream	as	any	sequence	of	ontologies	

Applica.on:		
Data	exposed	by	The	Internet	of	Thing	



Forecas.ng	Traffic	Conges.on	with	Predic.ve	Reasoning	
Deduc.ve	Reasoning	in	Ontology	Streams	

Ontology	Streams	

Background	Knowledge	
Rule	Engine	

Derived	Knowledge	

Always	Valid	

Valid	at	some	point	of	.me	



Forecas.ng	Traffic	Conges.on	with	Predic.ve	Reasoning	
Knowledge	Discovery	in	Ontology	Streams	–	Reasoning	on	Mul.ple	Streams	(1)	

?
Future

Date: 2013−05−06T18:10:00
StationID: IDUBLINC2

Condition: Showers
Date: 2013−05−13T19:30:00

Date: 2013−05−13T19:30:00
Condition: ?

Road: Dame Street

Severity: ?
Travel Time: ?

Date: 2013−05−06T18:10:00

Historical
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How	to	discover	knowledge	associa.on	across	ontology	streams?	
Representa5on:		
Associa5on	Rules	

Knowledge	Discovery:	
Rules	Mining	with	

Seman.c	
data	

Deduc5ve	and	Induc5ve	Reasoning	



Forecas.ng	Traffic	Conges.on	with	Predic.ve	Reasoning	
Knowledge	Discovery	in	Ontology	Streams	–	Reasoning	on	Mul.ple	Streams	(2)	
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Future

Date: 2013−05−06T18:10:00
StationID: IDUBLINC2

Condition: Showers
Date: 2013−05−13T19:30:00

Date: 2013−05−13T19:30:00
Condition: ?

Road: Dame Street

Severity: ?
Travel Time: ?

Date: 2013−05−06T18:10:00

Historical

Condition: Heavy FLow

Travel Time: 147 seconds
Severity: 0.217 km

Road: Dame Street
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Condition: Rain
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Associa.on	Rules	as	EL++	Rules:	



In-use 
System 

Forecas.ng	Traffic	Conges.on	with	Predic.ve	Reasoning	
Knowledge	Discovery	in	Ontology	Streams	–	Seman.c	Rules	Mining	(1)	

In a Nutshell 



Forecas.ng	Traffic	Conges.on	with	Predic.ve	Reasoning	
Knowledge	Discovery	in	Ontology	Streams	–	Seman.c	Rules	Mining	(2)	

Data	Mining	

By	revisi.ng	concepts	of:	
•  Support	
•  Confidence	
•  Weight	
With	no.on	of	consistent	rules	

Knowledge		
Mining	



Forecas.ng	Traffic	Conges.on	with	Predic.ve	Reasoning	
Knowledge	Discovery	in	Ontology	Streams	–	Seman.c	Rules	Mining	(3)	

Ontology	Streams	Data	Mining	
Knowledge		
Mining	By	revisi.ng	concepts	of:	

•  Support	
•  Confidence	
•  Weight	
With	no.on	of	consistent	rules	

(Confidence,	Weight)	

Rule:	



•  Knowledge	Mining	in	Ontology	Streams:	
•  Atomset	mining:	iden.fica.on	of	all	poten.al	consistent	combina.ons	
•  Rule	genera.on:	iden.fica.on	of	significa.ve	combina.on	of	atomsets	

•  Limita5ons:	
•  Exponen.al	number	of	rules	(although	seman.cs	helped)	
•  Rules	filtering	is	the	bonleneck	
•  No	cross	temporal	associa.on	(e.g.,	t+1	and	t)	

Forecas.ng	Traffic	Conges.on	with	Predic.ve	Reasoning	
Knowledge	Discovery	in	Ontology	Streams	–	Seman.c	Rules	Mining	(4)	

Data	Mining	
Knowledge		
Mining	

By	revisi.ng	concepts	of:	
•  Support	
•  Confidence	
•  Weight	
With	no.on	of	consistent	rules	



Iden.fica.on	of	similarity	among	ontology	snapshots:	
		

•  New,	obsolete,	invariant	Abox	asser.ons;		
•  Any	other	knowledge	similarity	metric	could	apply.	

Forecas.ng	Traffic	Conges.on	with	Predic.ve	Reasoning	
Knowledge	Discovery	in	Ontology	Streams	–	Stream	Auto-Correla.on	(1)	



•  Limita5ons:	
1.  The	more	historical	data	/	streams	
							(the	more	auto-correla.on	evalua.on)	
2.  The	more	expressive	data	streams	
Ø  The	less	scalable	the	approach		

Forecas.ng	Traffic	Conges.on	with	Predic.ve	Reasoning	
Knowledge	Discovery	in	Ontology	Streams	–	Stream	Auto-Correla.on	(2)	
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Exogenous Ontology Stream Access at point of time t

(Consistent) Association Rules Identification / Selection

Consistent Prediction Selection

Main Stream
to be predicted

(congestion status
of a road/link

in Dublin City)
at point of time t

: State−of−the−art Tools

: Data Stream
: Data Flow Ordering
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Limita5ons:	
•  Scalability	of	consistency	checking	on	rules	consequent		

Example	of	consistent	rule	

Forecas.ng	Traffic	Conges.on	with	Predic.ve	Reasoning	
Knowledge	Discovery	in	Ontology	Streams	–	Scalable	and	Consistent	Predic.on	



Forecas.ng	Traffic	Conges.on	with	Predic.ve	Reasoning	
Experimenta.on:	Scalability	

[A3]	Lécué	F.,	Pan	J.:	Consistent	Knowledge	Discovery	from	Evolving	Ontologies.	AAAI	2015	
[L13]	Lécué	F.,	Pan	J.:	Predic.ng	Knowledge	in	an	Ontology	Stream.	IJCAI	2013	
[S95]	Srikant	R.,	Agrawal	R.	Mining	generalized	associa.on	rules.	VLDB	1995	
[D97]	Dehaspe	L.,	Raedt	L.	D.	Mining	associa.on	rules	in	mul.ple	rela.ons.	ILP	1997	

*5	(nb	Streams)	

100%		
Knowledge	Base	



Forecas.ng	Traffic	Conges.on	with	Predic.ve	Reasoning	
Experimenta.on:	Accuracy	of	Predic.on	

[A3]	Lécué	F.,	Pan	J.:	Consistent	Knowledge	Discovery	from	Evolving	Ontologies.	AAAI	2015	
[L13]	Lécué	F.,	Pan	J.:	Predic.ng	Knowledge	in	an	Ontology	Stream.	IJCAI	2013	
[S95]	Srikant	R.,	Agrawal	R.	Mining	generalized	associa.on	rules.	VLDB	1995	
[D97]	Dehaspe	L.,	Raedt	L.	D.	Mining	associa.on	rules	in	mul.ple	rela.ons.	ILP	1997	



Distributed	reasoning	to	scale	up	deduc.ve	reasoning	
	

•  Ontologies	generated	from	sensors	can	grow	
very	large	in	a	short	span.	

•  Streaming	traffic	data	produces	several	million	
axioms	in	a	day.	

•  Output	of	deduc.ve	reasoning	process	is	
larger	than	input.	

Mo.va.on	



•  Current	in-memory	single	machine	reasoners	
cannot	scale.	

•  A	distributed	approach	to	ontology	reasoning	
is	required.	

•  Easy	to	add	more	memory	and	processing	
power	in	a	distributed	setup.		

Distributed	reasoning	to	scale	up	deduc.ve	reasoning	
	Mo.va.on	



•  Classifica.on:	For	each	class	in	the	ontology,	
find	all	its	superclasses.	

•  Comple.on	Rules	
– To	classify	an	ontology	a	set	of	comple.on	rules	
are	applied	itera.vely	on	the	axioms.	

– They	are	applied	un.l	no	new	output	is	produced.	
– S(X)	is	the	set	containing	all	the	superclasses	of	X.	
– R(r)	=	{(A,	B)}	implies	that	A	⊑	∃r.B		

Distributed	reasoning	to	scale	up	deduc.ve	reasoning	
	Preliminaries	



• R1	
	
• R2	

• R3	

• R4			
	

Distributed	reasoning	to	scale	up	deduc.ve	reasoning	
	Preliminaries	



• R5	

• R6	

• R7				
	

Distributed	reasoning	to	scale	up	deduc.ve	reasoning	
	Preliminaries	



•  Data	distribu.on	and	communica.on	
management	play	a	crucial	role.	

•  Axiom	distribu.on	
– Data	locality	
– O	=	O1	U	…	U	O7	

– Each	Oi	is	assigned	to	a	group	of	nodes.		

Distributed	reasoning	to	scale	up	deduc.ve	reasoning	
	



Data	distribu.on	

axiom to 
machine 
mapper

Axioms

M11 M12

M13

M21 M22 ....
M81 M82
M83 M84

R1 R2 R7

Distributed	reasoning	to	scale	up	deduc.ve	reasoning	
	



Targeted	communica.on	

•  Rule	Ri	is	applied	on	the	corresponding	Oi.	

•  The	output	of	one	rule	is	relevant	to	only	a	
specific	set	of	rules.	

•  Rule	processes	can	directly	send	messages	to	
the	relevant	one.	

Distributed	reasoning	to	scale	up	deduc.ve	reasoning	
	



Dynamic	load	balancing	

•  Improper	load	balancing	due	to	number	and	
type	of	axioms.	

•  Idle	nodes	help	the	busy	nodes	by	stealing	
some	work	from	them.	

•  Performance	improvement	outweighs	
communica.on	cost.	

Distributed	reasoning	to	scale	up	deduc.ve	reasoning	
	



Implementa.on	

•  DistEL,	implemented	in	Java.	
hnps://github.com/raghavam/DistEL	

•  A	key-value	store	named	Redis	is	used	to	store	
axioms.	

•  Redis	provides	set	opera.ons,	database	
sharding,	transac.ons,	server-side	scrip.ng.	

Distributed	reasoning	to	scale	up	deduc.ve	reasoning	
	



Experiments	

•  Amazon	EC2,	m3.xlarge	instances	are	used.	

•  Biomedical	ontologies	such	as	GO,	SNOMED	
CT	and	traffic	data	are	used.	1441	bursts	of	
traffic	data	was	considered.	

Distributed	reasoning	to	scale	up	deduc.ve	reasoning	
	



Experiments	

•  5GB	is	available	to	JVM.	

•  All	reasoners	invoked	through	OWL	API.	

Distributed	reasoning	to	scale	up	deduc.ve	reasoning	
	



Experiments	

	
•  Run.me	decreases	as	nodes	increase.	
•  With	64	nodes,	for	traffic	data,	each	burst	
takes	23.73	seconds.		

	

Distributed	reasoning	to	scale	up	deduc.ve	reasoning	
	



Experiments	

•  Speedup	on	SNOMED	

•  A�er	a	point,	advantages	of	distributed	
approach	is	overshadowed	by	distribu.on	
costs.	

Distributed	reasoning	to	scale	up	deduc.ve	reasoning	
	



Experiments	

•  Memory	taken	by	Redis	on	each	node	for	
Traffic	data.	

Distributed	reasoning	to	scale	up	deduc.ve	reasoning	
	



Future	work	

•  Es.mate	number	of	nodes	required	for	
op.mum	performance	for	a	given	ontology.	

•  Alternate	rule	sets	and	classifica.on	
procedure	can	be	tried	(eg.,	ELK).	

•  Distributed	approaches	to	more	expressive	
ontologies.	

Distributed	reasoning	to	scale	up	deduc.ve	reasoning	
	



PART	III	
Applica.ons	in	
Bologna,	Dublin,	

Miami,	Rio	



Miami,	USA	

STAR-CITY	(Seman.c	Traffic	Analy.cs	and	Reasoning	for	CITY)	

Input	

•  Type	of	anomaly	(bus	speed,	
ambulance	delay…)	

•  Type	of	explana.on	(city	events,	
unplanned	events,	road	works,	…)	

Output	

•  Impact	of	events	and	their	
characteris.cs	on	anomalies	

107

Seman5c	
Interpreta5on	of	

Diagnosis	

Seman5c	Reasoning:		
Diagnosis		

Seman5c	Context	

Seman5c	Search:		
Diagnosis	Explora5on	

Live	IBM	demo:	hnp://9.162.92.201:8080/simplicity/index.jsp?city=DUBLIN	
Live	WWW	demo:	hnp://dublinked.ie/sandbox/star-city/		
Video:	hnp://goo.gl/TuwNyL	



STAR-CITY	(Seman.c	Traffic	Analy.cs	and	Reasoning	for	CITY)	
Context	 •  Dublin:	(Diagnosis	of)	Traffic	conges.on	

•  Bologna:	(Diagnosis	of)	Bus	conges.on	
•  Miami:	(Diagnosis	of)	Bus	bunching	
•  Rio:	(Diagnosis	of)	Low	on-.me	performance	of	buses	

Source	of	
Anomaly	

Source	of	
Diagnosis	



STAR-CITY	(Seman.c	Traffic	Analy.cs	and	Reasoning	for	CITY)	
Data	

Vocabulary	



Miami,	USA	

STAR-CITY	(Seman.c	Traffic	Analy.cs	and	Reasoning	for	CITY)	

Input	

•  Type	of	anomaly	(bus	speed,	
ambulance	delay…)	

•  Type	of	explana.on	(city	events,	
unplanned	events,	road	works,	…)	

Output	

•  Impact	of	events	and	their	
characteris.cs	on	anomalies	

	
Input	

•  Type	of	anomaly	(bus	speed,	
ambulance	delay…)	

•  Type	of	explana.on	(city	events,	
unplanned	events,	road	works,	…)	

Output	

•  Real-.me/Historical	diagnosis	
results	

•  Evolu.on	of	diagnosis	over	.me/
space	

•  Comparison	vs.	historical	
	

Objec.ve:	Real-Time	and	Historical	Traffic	Diagnosis	(1)	
Live	demo:	hnp://9.162.92.201:8080/simplicity/index.jsp?city=DUBLIN	
Video:	hnp://goo.gl/TuwNyL	



Miami,	USA	

STAR-CITY	(Seman.c	Traffic	Analy.cs	and	Reasoning	for	CITY)	

Input	

•  Type	of	anomaly	(bus	speed,	
ambulance	delay…)	

•  Type	of	explana.on	(city	events,	
unplanned	events,	road	works,	…)	

Output	

•  Impact	of	events	and	their	
characteris.cs	on	anomalies	

	
Input	

•  Type	of	anomaly	(bus	speed,	
ambulance	delay…)	

•  Type	of	explana.on	(city	events,	
unplanned	events,	road	works,	…)	

Output	

•  Categoriza.on	of	diagnosis	
	

Live	demo:	hnp://9.162.92.201:8080/simplicity/index.jsp?city=DUBLIN	
Video:	hnp://goo.gl/TuwNyL	

Objec.ve:	Real-Time	and	Historical	Traffic	Diagnosis	(2)	



Miami,	USA	

Reverse	STAR-CITY	system	for	city	managers	

hnp://vtce.altervista.org/	



Reverse	STAR-CITY	system	for	city	managers	
Objec.ve:	City	Planning	

Input	

•  Type	of	anomaly	(bus	
speed,	ambulance	
delay…)	

•  Type	of	explana.on	
(city	events,	
unplanned	events,	
road	works,	…)	

Output	

•  Impact	of	events	and	
their	characteris.cs	
on	anomalies	

hnp://www.vtce.altervista.org/	



Reverse	STAR-CITY	system	for	city	managers	
Data	

Vocabulary	



Miami,	USA	

Mobile	STAR-CITY	app	for	ci.zen	in	Dublin	and	Bologna	



Miami,	USA	

Mobile	STAR-CITY	app	for	ci.zen	in	Dublin	and	Bologna	

Use	case	scenario:	Mee5ng	the	Increased	Mobility	Demand:	
	
•  Scenario	1	“Road	Traffic	Diagnosis”	
•  Scenario	2	“Road	Traffic	Predic.on”	
•  Scenario	3	“Personalized	Traffic	Restric.ons”	

Outcome:	
	
•  One	mobile	app		
•  Two	pilot	ci.es	(Dublin	and	Bologna)		
•  Live	and	real-.me	environment		
•  Real	data	(user	calendar,	open	data:	traffic	

conges.on,	weather,	events,	road	works,	accident	…)		
•  but	with	simulated	car	sensor	data	–	Aus.n	;-)	

Context	



Mobile	STAR-CITY	app	for	ci.zen	in	Dublin	and	Bologna	
Data	

Dublin	

Car-related	

User-related	

Vocabulary	

Bologna	



Mobile	STAR-CITY	app	for	ci.zen	in	Dublin	and	Bologna	

User	Context-aware		
Driving	(User	data)	

Open	Context-aware		
Driving	(Open	data)	

Private	Context-aware		
Driving	(City	data)	

Objec.ve:	Context-aware	driving	experience	(1)	



Mobile	STAR-CITY	app	for	ci.zen	in	Dublin	and	Bologna	
Objec.ve:	Context-aware	driving	experience	(2)	

Personal	Events-aware		
Driving	Car	Sensor		

Simula@on	

Car	Sensor-aware		
Driving	



Real-Time	Urban	Monitoring	in	Dublin	

hnps://www.youtube.com/watch?v=ImTI0jm3OEw	Green:	Dublin	Bike	availability	
Purple	dot:	Bus	in	conges5on	
Blue:	Noise	
Purple	bar:	Pollu5on	
Red:	Ameni5es	
Yellow:	Cameras	



Seman.c	Processing	of	Urban	Data	

hnps://www.youtube.com/watch?v=lrUHet5awzw&feature=youtu.be	

hnp://50.97.192.242:8080/Dali/	



PART	IV	



Conclusion	

Ci.es	are	characterized	by:	

•  Big	Data	
•  Complex	Systems	
	

Ci.es	want	to	be	Smarter:		
•  More	efficient	
•  More	reliable	
•  More	secure	
•  More	open	

Ci.es	can	benefits	from		

•  REAL	World	data:	Open	Data	to	get	Smarter	
•  Advances	in	AI	

AI	already	helped	a	lot!!	...	and	should	even	contribute	further	
•  Op.miza.on,	coordina.on	…	

•  Cheaper	
•  Faster	
•  More	integrated	
•  More	ci.zen-centric	

•  More	anrac.ve		
•  More	Intelligent	
•  Sustainable		
•  Bener	city	planning	

•  Integrated	Problems	
•  Scalability	Challenges	



Future	Work	
Analy.cs	and	Reasoning:	Scalability	from	One	City	to	Another	One	

Picture	of	different	ci.es	



Future	Work	
Applica.on:	From	Ci.es	to	mini-Ci.es	

Airport	

Supply-Chain	
Building	

Stadium	

Warehouse	



Future	Work	
More	Mul.-disciplinary:	AI	(Planning,	KRR,	ML,	…),	Database,	Mathema.cs	…			

More	Science		
Integra.on	
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Ques.ons	

Thank you!
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