A small synthesis about Interaction Models

between distributed Objects
Java RMI and CORBA as concrete examples

Sl4 AppRéparties PIl — F. Baude - 2011 1

Remote Method Invocation Protocol

» Java RMI and CORBA implement this protocol (RMI), also
SOAP/XML-RPC
» What happens exactly in the normal situation (no failure, nor
from the client, nor the server, nor the network)
® Caller object : doOperation (calling method on an interface)
which is blocking
» Network: transports the request
P Called object : gets the request, delegates it to the effective
object, prepares transportation of the reply if any (or ACK)
P Network: transports the reply (or signal to unblock the caller)
» Reception of the reply and delivery to the calling object
» Exactly-once semantics (case of any Object-based Method 1. in
a centralized setting)
| Means the called method is called exactly one time

Remote Method Invocation Protocol: failure case

® Caller object : doOperation (calling method on an interface) which is blocking.

. Several possible failure scenarios:

1. Network transports the request, but fails (eg if not TCP, or network conn.
crashes), or called object has failed. Request does not reach the called object
» Timeout from the caller process: several retries to send request
» After expired timeout: signals an error to the caller (caller side)

» Method has not been executed
P Network transports the request, eventually succeeds... One or

several requests reach the called object :
.. PCalled object filters duplicate requests, ie only one method call executed
11. Called object sends reply to the network which may fail
» Timeout from the called process: several retries to send reply
P After expired timeout: signals an error to the caller (done at caller side)
P Method has been executed once (but caller does not know it)
P Network transports the reply, eventually succeeds... :
» Caller receives a reply: — method has been executed one time

At most-once semantics from the caller viewpoint, if it receives a reply, it
means the called method has been executed one time and no more than one
time (it is the most costly protocol due to both sides retries, plus filter)

Case of JavaRMI and Corba synchronous method invocation model

H[liwrsilé
1CE sorMia ANTIPOLL

L

Remote Method Invocation Protocol: failure case
» Caller object : doOperation (calling method on an interface) which is
. blocking. Several possible failure scenarios:
1. Network transports the request, but fails ... or called object has
failed. Request does not reach the called object
» Timeout from the caller process: several retries to send request
P After expired timeout: signals an error to the caller (caller side)
P Method has not been executed
P Network transports the request, eventually succeeds... One or several
requests reach the called object
.. P Called object executes duplicate requests (no filtering)
11. Called object sends reply(ies) to the network which may fail
» Method has been executed but caller does not know it
» Network transports the reply(ies), eventually succeeds... Caller receives
first reply: — method has been executed one or several times
At least-once semantics : from the caller viewpoint, if it receives a
reply, it means the called method has been called at least one time
(traditional RPC systems, suited to stateless server).
It is less costly compared to the “at most once protocol” but additional
overheads can come from the application layer (several executions of

Hniwrsilé

e -.game-method)

Remote Method Invocation Protocol: failure case

® Caller object : doOperation (calling method on an interface) which

_ is blocking. Several possible failure scenarios:

1. Network transports the request or called object fails ... Request
does not reach the called object

® Timeout from the caller process and after expired timeout: signals an error to
the caller (caller side)

» Method has not been executed
P Network transports the request, eventually succeeds... The request
reaches the called object
B P Called object executes the request
11. Called object sends reply to the network which may fail
» Method has been executed but caller does not know it
P Network transports the reply, eventually succeeds... Caller receives
the reply: — method has been executed
This protocol does not include any fault-handling mechanism (not costly!
aybe semantics : from the caller viewpoint, whenever a method

| Higall is-triggered, it might be executed or not (eg Corba oneway)

A propos de Corba oneway, voir les détails donnés dans le transparent suivant.

How to handle the “oneway” IDL keyword

» Caller object : doOperation (calling method on an interface) which is NON blocking.
. Several possible failure scenarios:
1. Network transports the request or called object fails ... Request does not reach the
called object
» Timeout from the caller process and after expired timeout: signals an error to the caller (caller
side). which might not be ready to catch it however
P Method has not been executed

» Network transports the request, eventually succeeds... The request reaches the called
object
P Called object executes the request

>

1t beerexeettod
Maybe semantics : from the caller viewpoint, whenever a method call is triggered, it
might be executed or not

The presented fault handling is in line with the Corba oneway understanding by which
the programmer claims that it is not mandatory for the ORB to succeed to run the
method, ie, the programmer client code knows he faces a maybe semantics for this
method call. It is also important for the server side to know that a given method may
not necessarily have been executed even if called by a client. Indeed, this can

rinfluence the application logic on server side.

H[liw-rx'ue
ice sormis ax

L

La spec CORBA de oneway dit juste que ce type d’opération n‘aura ni retour ni
exception métier. Charge a I'ORB de le supporter de différentes facons plus ou
moins couteuses et pertinentes. Par exemple, JacORB démarre un thread pour que
I'appelant soit non bloquant. Dans ce cas, le code client percoit une sémantique
maybe , méme si, ensuite, la thread qui est branchée a I'ORB peut garantir une
sémantique plus riche. Si par exemple, la thread se repose sur 'ORB de SUN il est
fort possible que ce soit une sémantique at most once. En effet...IDLJ (mapping IDL
to Java) transforme une op. oneway en un appel bloquant synchrone au niveau du
stub, donc, I'appelant est quand méme bloqué et peut donc savoir si I'appel a
échoué, et si il ne regoit pas d’exceptions du tout, il sait méme que I'appel a réussi.
Dans ce cas, la sémantique de 'op oneway sans remontée d’erreur est donc la
méme que celle que I'ORB offre pour une op non oneway., qui est pour les ORB et
JavaRMI une sémantique at most once.

“Traditional” Distributed programming

» Technical additional duties (e.g. extends java.rmi.Remote, etc)
» More importantly: requires additional logic in the application
(for handling failure situations).

» Imagine a distributed voting system:
» Each voter (client) has a unique id
» He votes once by sending a vote to the remote voting system (if failure,
already gone...) and he is given only one chance (i.e., the web front-end
application is storing the fact that he has voted with his id)
» Even if abstention is a very common phenomena, the voting system
should make its best to account votes!
» Assume the application is not ready to be changed in order to handle
faulty scenarios,
» Receiving a reply (ACK) at client side: OK., nothing special to program
» Receiving a signal error at client side:
KHT‘:‘N* P Too bad, but client already doing something else

“Traditional” Distributed programming

® Given the underlying RMI protocol semantics (maybe, at-least, at-most),
guarantees at server side are completely different
P Maybe: no guarantee at all that a vote is accounted
P At least: PROBLEM because if server eventually reachable, a vote may be
counted several times...
P At most: The most suitable semantics, because if server eventually reachable,
vote from this id is accounted once
» More comfortable would be a fault-hiding system providing exactly-once
semantics ie. total transparency of remote execution for programmers.
P Can be very costly, and should work in case each faulty component (caller,
network, called) eventually gets back in a non-faulty state
P No magic solution, and so, is usually ad-hoc ; and tolerates only subsets of
possible faults
» That is why traditional systems decided not to claim RMI transparency, so
that application can more efficiently handle faulty situations. E.g.:
® Enable user to loop until ACK; Or after 10 unsuccessful trials, the voter decides
to abort his voting process
® On server side, check explicitly if “id” vote has already been accounted or not

H[liw-rsilé
ICE sorMia ANTIPOLI

L

Si on implémente cette spec. de systeme de vote, sur un middleware supportant les
appels de méthode distantes, il faut bien faire attention a la sémantique offerte
pour raisonner sur le comportement obtenu coté serveur. Si la sem. est maybe, on
n’a méme aucune assurance que le vote sera pris en compte; si la sem. est at least,
le vote coté serveur risque d’avoir été compté plusieurs fois (puisque la méthode
déclenchée a distance peut I'étre plusieurs fois par le middleware); si la sem. est at
most, |13, le code du serveur est correct puisque un vote n’est déclenché qu’une
seule fois. Mais, au prix d’un surco(t au sein du middleware qui aura géré les fautes
en évitant les duplicats (en filtrant). Malgré cela, I'appli cliente devrait tout de
méme étre modifiée pour gérer les erreurs signalant un echec dans le vote. C'est
pour cela que le plus confortable ce serait d’avoir une sémantique exactly one. Mais
on sait que c’est tres colteux. C’est pour cette raison que les middleware n’offrent
jamais exactly once, mais, au mieux at most once. Ce qui, en pratique, se traduit par
I'obligation du programmeur de distinguer les cas problématiques du cas normal.
D’ou le fait que les méthodes RMI ne sont jamais totalement transparentes. Ce
serait une illusion trop colteuse. Et méme si non transparent, c’est parfois plus
efficient de reposer sur une sémantique moins puissante que at most once, par
exemple, at least est suffisant si on implémente le test ‘est ce que cet id a déja voté’,
plutét qu’avoir un middleware qui filtre les duplicats de requétes quelles qu’elles
soient.

Summary: featured behaviour of underlying

middleware offering remote method invocation

NO ERROR signaled to the | ERROR signaled to the
caller

Exactly once semantics 1 Not applicable, however
caller is stuck

At most once semantics 1 Oorl

At least once semantics 1or+ 0,1or+

Maybe semantics Oorl Not always applicable and if
yes: 0 or 1

* Bricks used for implementing RMI « advanced » semantics
® Retry sending the request message whenever no answer
*® Filter duplicate requests
® Retransmit reply thanks to an history, without re-execution of

~ method
ﬁ?}'iﬁt‘fﬂ -*-@oncrete examples: WS-ReliableMessaging specification.

