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THÈSE


pour obtenir le titre de


DOCTEUR EN MATHEMATIQUES
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Abstract


This thesis deals with mesoscopic models of cortical columns and cortical areas. Here,


mesoscopic means that we use coarse-grained cortical units, called neural masses, as


elementary building blocks in our models. Neural masses are homogeneous neuronal


populations confined in a cortical column. So we model a cortical column as a small


network of interacting neural masses, and a cortical area as a two-dimensional, con-


tinuous network of such cortical columns, forming then a neural field. Mesoscopic


models have two main advantages. First, they are very economic in terms of the


number of parameters and variables needed for their description. This allows easier


computations as well as more tractable mathematical models compared to networks


using neurons as elementary building blocks. Second, most of the biophysical data


needed to model cortical structures at the mesoscopic scale is available. In particular,


a considerable amount of mesoscopic intracolumnar and intercolumnar connectivity


data has been collected in the last decade. Such data is still missing at the level of


single neurons.


The first part of this thesis is dedicated to cortical columns. We discuss the most


well-known biological principles that allow to define cortical columns, review the in-


tracolumnar circuitry and propose a mesoscopic approach to cortical column models.


Then we present a mathematical study of a mesoscopic column model –known as


Jansen’s model– based on bifurcation techniques. In the second part, we study two


nonlinear neural field models with very different mathematical techniques. The first


model consists in an infinite two-dimensional field using a Heaviside distribution to


convert the average membrane potential of neural masses into their average firing


rate. This model needs a precise instantiation of the connectivities and a precise def-


inition of the patterns we expect it to produce to make its analysis tractable. Then


we can make a linear stability analysis of its solutions. In this framework, we fo-


cus on the analysis of two-dimensional bumps (i.e. localized areas of high activity).


The second neural field model is defined on a compact domain and uses a sigmoid


instead of a Heaviside distribution. We discuss its well-posedness, stability and abil-


ity to show synchrony via functional analysis techniques. The last part of this thesis


deals with the modeling of voltage sensitive dye optical imaging (VSDOI) signals. We


show that neural fields can naturally integrate biophysical data and hence constitute


suitable models of cortical areas. Then we propose a biophysical formula, based on


neural fields, for the direct problem of VSDOI. Finally, we make numerical simula-


tions of this direct problem and reproduce optical signals that have been observed in


the visual cortex of mammals and the barrel cortex of the rat.
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Résumé


Cette thèse traı̂te de modèles mésoscopiques de colonnes et d’aires corticales. Dans


ce contexte, “mésoscopique” signifie que nous utilisons dans nos modèles des briques


de base relativement grossières, appelées “masses neuronales”. Les masses neu-


ronales sont des populations de neurones homogènes confinées à une colonne cor-


ticale. Nous modélisons donc une colonne corticale comme un petit réseau de masses


neuronales en interaction, et une aire, comme un réseau continu de telles colonnes,


formant un champ neuronal. Les modèles mésoscopiques ont deux principaux avan-


tages. Premièrement, ils sont peu coûteux en nombre de paramètres et de vari-


ables nécessaires à leur description. Ceci rend les calculs numériques moins lourds


et les équations plus faciles à traı̂ter mathématiquement que pour des réseaux qui


utilisent les neurones comme constituant élémentaire. Deuxièmement, l’essentiel


des données biophysiques nécessaires à la modélisation de structures corticales à


l’échelle mésoscopique est disponible. En particulier, une quantité considérable de


données mésoscopiques sur les connectivités intra- et inter-columnaires a été mise


au jour au cours de la dernière décennie. De telles données font encore défaut au


niveau du neurone. La première partie de cette thèse est consacrée aux colonnes cor-


ticales. Nous y discutons des principes biologiques les mieux connus qui permettent


de définir des colonnes, nous passons en revue les connaissances actuelles sur la mi-


crocircuiterie intracolumnaire et nous proposons une approche mésoscopique pour la


modélisation de colonnes. Ensuite, nous présentons une étude mathématique d’un


modèle mésoscopique de colonne –appelé modèle de Jansen– basée sur les bifurca-


tions. Dans la seconde partie, nous étudions deux modèles non-linéaires de champs


neuronaux sous deux angles mathématiques très différents. Le premier modèle con-


siste en un champ infini à deux dimensions où la conversion du potentiel de mem-


brane des masses neuronales en taux de décharge moyen est faite avec une distribu-


tion de Heaviside. Ce modèle nécessite une instanciation précise des connectivités et


de la forme des solutions que l’on cherche pour aboutir à un problème mathématique


abordable. On peut ensuite faire une analyse de la stabilité linéaire de ces solutions.


Dans le cadre de ce modèle, nous nous intéressons à l’analyse de bosses d’activité


en deux dimensions (c’est-à-dire des zones localisées de haute activité). Le second


modèle de champ neuronal est défini sur un domaine compact et la distribution de


Heaviside y est remplacée par une sigmoı̈de. Nous discutons l’existence, l’unicité et


la stabilité des solutions de ces équations de champ neuronal, et la capacité d’un


tel modèle à exhiber de la synchronie, en utilisant des techniques d’analyse fonc-


tionnelle. La dernière partie de cette thèse est consacrée à la modélisation des sig-


naux d’imagerie optique extrinsèque utilisant des colorants sensibles au potentiel.


Nous montrons d’abord que les champs neuronaux peuvent naturellement intégrer


des données biophysiques et de ce fait, constituer des modèles d’aires corticales sat-


isfaisants. Nous proposons ensuite une formule biophysique, basée sur les champs
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neuronaux, pour le problème direct de l’imagerie optique extrinsèque. Finalement,


nous présentons des simulations numériques de ce problème direct qui reproduisent


des signaux optiques observés dans le cortex visuel des mammifères ainsi que dans


le cortex barrelé du rat.
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The brain is a complex system in the strong sense: it features a great number of


units interacting in a nonlinear fashion. This system cannot be globally apprehended


yet but some structures and functions, emerging at different spatial and temporal


scales, can be observed and sometimes modeled.


At the microscopic scale, we know that certain neurons are highly specialized and


can be related to precise functions, like e.g. neurons involved in face recognition.


However in this thesis, we choose not to model brain structures at the scale of indi-


vidual neurons. Instead we use a looser, mesoscopic scale, considering homogeneous


localized populations of hundreds to thousands of neurons, called neural masses, as


elementary building blocks. Our intention in this thesis is to model cortical columns


and cortical areas composed of such mesoscopic blocks. Cortical columns are verti-


cal cortical units spanning the whole depth of the cortical sheet, with a diameter


comprised between 50µm and 1mm. Cortical areas are wider domains of the cortex


(centimeter scale) that we can see as horizontal networks of cortical columns.


There are at least three reasons why we think that the mesoscopic scale is relevant


to do this modeling.


• In most cases, individual neurons cannot be labeled with a precise function nor


linked to a specific stimulus. Hence they more likely blindly contribute to the


computational power of bigger, specialized neuronal networks. The idea that


individual neurons are not specialized is illustrated by neuronal plasticity: as


a function stops (for example because an organ has been removed), neurons


involved in this function are simply re-used by another function, after a period


where the neuron learns its new task.


• While MEG and scalp EEG recordings mostly give a bulk signal of a corti-


cal area, multi-electrode recordings, in vitro experiments on pharmacologically


treated brain slices and new imaging techniques like extrinsic optical imaging


can provide a spatially detailed description of populations dynamics in a macro-


scopic part of the brain like an area. Realistic modelling of an area at the scale of


the neuron is still difficult for obvious complexity reasons. Starting from meso-


scopic building blocks like neural masses, described by the average activity of


their neurons, is therefore a reasonable choice.


• Finally, the population scale is in good agreement with available local connec-


tivity data. Indeed, intracolumnar connectivity data is obtained by averaging


correlations between the activities of different types of neurons inside a column


and thus constitutes a mesoscopic connectivity information. The same holds for


intercolumnar connectivity inside an area, since it is generally established by


tracking the projections made by a whole local population of neurons. Moreover


at this coarse-grained scale local connectivity is supposed to be spatially invari-


ant within an area. Hence, we should be able to build biophysically relevant


economic models (in terms of the number of parameters) of cortical columns


and areas.


This thesis consists of three parts.


The first part focuses on cortical columns. In the first chapter we try to answer


several questions on biological columns. When can we speak of a columnar organiza-


tion in the cortex? How can we define a column? What is its spatial extent? What


drives its dynamics? We will see that the notion of cortical column is tricky, that


it is not relevant in all areas of the brain and strongly depends on the considered
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species. There are at least two ways to define cortical columns, on the basis of


anatomical data or by relating them to functions. Cortical columns cannot generally


be considered as isolated units interacting via horizontal projections but more likely


form continua of highly interconnected, overlapping units. Then, we explore the


complex microcircuitry of a column. The columnar organization is not made of


random connections between neurons. Instead, these are highly selective and must


be described at the level of neuronal compartments. Despite the fact that the net-


work formed by excitatory neurons is quite well understood, the action of inhibitory


cells is way more complex, because of the variety of their anatomical types, firing


patterns, connectivity and synaptic mechanisms. Then, we take a mesoscopic look


at this microscopic organization and present some principles for building mesoscopic


column models.


In chapter 2 we propose a mathematical study of a mesoscopic column model


known as Jansen’s model. We use bifurcations theory and the software XPP-Aut


(available on Bard Ermentrout’s webpage: http://www.pitt.edu/˜phase/ ) to


build a bifurcation diagram of the model and characterize its response to different


stimulation intensities. This way we mainly explain two phenomena: alpha activity


is related to Hopf bifurcations and epileptic spikes to a saddle-node bifurcation on an


invariant circle (SNIC).


In the second part of the thesis, we form continuous networks of cortical columns


and study the resulting neural fields with various mathematical techniques.


In chapter 3 we consider an infinite two-dimensional field composed of two layers


of neurons (excitatory and inhibitory) and try to characterize some of its stationary


solutions, namely, circularly symmetric bumps (i.e. localized areas of high activity).


These patterns are interesting from a neuroscientific point of view since they have


been linked to working memory tasks in the prefrontal cortex. We study the existence


of bumps, depending on their radii, and make a linear stability analysis on them. We


finally construct stable two-dimensional bumps in a principled manner, by imposing


local conditions of existence and conditions of stability.


In chapter 4, we propose more realistic and general neural field models featuring an


arbitrary number of neuronal populations. They are defined on compact domains and


use smooth sigmoids as pulse-to-wave transforms (while discontinuous Heaviside


distributions were used in the preceding chapter). We use functional analysis tech-


niques to establish conditions of existence, uniqueness and stability of the solutions


of these equations. We also discuss the conditions needed to obtain homogeneous or


locally homogeneous solutions, accounting for global or local synchrony among the


columns of the field.


The last part of this thesis is dedicated to the modeling of voltage sensitive dye opti-


cal imaging signals (VSDOI).


In chapter 5, we show that neural field models can naturally integrate the most re-


cent data on intra- and inter-columnar connectivity and more generally, that they


are natural biophysical models for cortical areas. Then we introduce the principles of


VSDOI and finally propose a formula for the direct problem of optical imaging, based


on a neural field description of an area.


In the last chapter, we simulate different phenomena observed by VSDOI in the vi-


sual cortex of mammals and in the rat’s barrel cortex. We describe the functional


organization of these cortices, parametrize the corresponding neural fields, extract
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the OI signal by the formula developed in chapter 5 and finally display the results.


We have been able to reproduce the principal features of two OI experiments: the cor-


tical correlates of the line-motion illusion and the different modes of propagation of


cortical activity in the rat’s barrel cortex, depending on the strength of the whisker’s


stimulation.
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Part I


Cortical columns
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CHAPTER 1


CORTICAL MICROCIRCUITS AND


CORTICAL COLUMNS


OVERVIEW


This chapter is dedicated to a better understanding of the concept of cortical column.


We start with the different definitions of a cortical column as an anatomical, physi-


ological or functional cortical subunit and discuss the relevance of columns and the


question of their spatial extent. Then we present the most striking features of cortical


microcircuits to get an insight of the neuronal organization inside a column. Finally


we present some principles supporting mesoscopic models of cortical columns, with


neural masses as their building blocks. Our goal here is not to build a detailed model


of the cortical column like what is done in Roger Traub’s work [114] or in the Blue


Brain Project [77], but to shed light on the main components and interactions inside


the column. This chapter is part of the technical report [45] (2007).
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1.1 BIOLOGICAL CORTICAL COLUMNS


1.1.1 Basic organizing principles in the cortex


The cortex is the superficial part of the encephalon and represents the biggest part


of grey matter in the brain. It has a horizontal organization in layers (laminae) of


different types of cells (figure 1.1). The number of layers, their cell composition, their


thickness and organization are not the same over the surface of the cortex. Those


differences led neuroanatomists to divide the cortex into small regions called areas


(figure 1.2) where those characteristics were homogeneous and that corresponded to


different functions, e.g., vision or motion. Nevertheless most of the cortex is made up


of six layers of neurons, from layer I at the surface of the cortex to layer VI that lies


next to the white matter. For humans, its thickness varies from 3 to 6 mm.


About fourty types of neurons have been identified through the cortex but they can


essentially be divided into only two classes: projection neurons and local interneurons.


Projection neurons (also called principal neurons) are excitatory cells, most of them


having a pyramidal cell body and being situated in layers III, V and VI of the cortex.


Interneurons can be found in all layers but they just amount to 20 up to 25% of


cortical neurons and are often inhibitory. Information processing in the cortex is


multi-step and the axons of projection neurons carry information from one stage to


the next, sometimes in distant groups of neurons. Interneurons can receive the same


input as principal neurons but just convey it to local cells implied in the same stage


of information processing. More detailed information about cortical structure and


function can be found in [60, 61, 87].


The organization of the cortex is not only laminar. It has been observed that neurons


one runs across when moving perpendicular to the cortex tend to be connected to


each other and to respond to precise stimulations with similar activities throughout


the layers. They form a cortical column.


1.1.2 The anatomical column


Many cortical neurons throw their axons and dendrites from the cortex surface to the


white matter thereby forming the anatomical basis of the columnar organization in


the cortex (figure 1.3-B and 1.4). Nervous fibers from the thalamus mostly end in


layer IV where they are connected to stellate neurons. These neurons throw their


axons towards the surface of the cortex, parallel to apical dendrites of neighboring


pyramidal neurons, and establish connections with them (figure 1.3-C). The thalamo-


cortical input is therefore conducted within a thin column of strongly connected cells


so that the same information is shared throughout the depth of the cortex perpendic-


ular to its surface [61].


Several studies have shown biological evidences for such small aggregates of about


one hundred neurons, 20 up to 50 µm wide, called minicolumns or microcolumns (see


figure 1.4). Their formation is due to the radial migration of neurons during brain


development [18, 82].


However the minicolumn hypothesis does not solve the problem of defining cortical


columns. They have not been extensively observed among species, nor among cortical


areas. Moreover, horizontal connectivity should not be underestimated and neigh-


boring minicolumns, far from being isolated, make numerous connections. These
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Figure 1.1: Layer organization of the cortex (a) Weigert’s coloration shows myelinated


fibers (axons) and so the connections inside and between layers, (b) Nissl’s coloration


only reveals cell bodies (c) Golgi’s coloration shows the whole cells (From [83]).


Figure 1.2: In 1909, Brodmann [17] divided the cortex into 52 cytoarchitectonic areas


according to the thickness of the cortical layers. For example, layer IV is very thin in


the primary motor cortex (area 4) while it is very thick in the primary visual cortex


(area 17).
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Figure 1.3: (A) Sagittal section of the primary somatosensory cortex of the monkey (S-


I) (B) Morphology of relay cells from layers III to V. Stellate neurons (layer IV) receive


information from the thalamus and transmit it to neighboring pyramidal cells in su-


perficial layers of the cortex. Pyramidal cells throw their axons towards deep layers


of the cortex and other cortical or sub-cortical regions. They also establish horizontal


connections with neighboring columns sharing the same physiological properties (C)


Diagram of intra-cortical excitatory circuitry (From [61]).


Figure 1.4: Myelinated fibre bundles (left) and cell soma aggregates (right) in the


same cortical region. These observation suggest minicolumnar organization in the


cortex(From [18]).
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horizontal connections explain the observation of larger columnar units, as we will


see in the following.


1.1.3 Cortical columns as physiological units


In 1957, Mountcastle discovered a columnar organization in the cortex [81] (see fig-


ure 1.5).


CORTEX


ELECTRODES


WHITE MATTER


activities
similar


activities
different


Figure 1.5: Mouncastle’s pioneering experiment. When he moved an electrode perpen-


dicular to the cortex surface, he encountered neurons with similar electrical activities


while moving the electrode obliquely gave him different types of recordings. So he


showed the existence of 300-500 µm wide columns in the cortex.


With electrode recordings, he showed that neurons inside columns of 300 to 500 µm


of diameter displayed similar activities. Those physiological units are usually called


macrocolumns. In figure 1.6, we see physiological columns obtained from the diffu-


sion of a radioactive substance.


Figure 1.6: Columns from the primary somatosensory cortex revealed by auto-


radiography after 45 minutes of stroking the hand of a monkey, which is then sac-


rificed, with a brush. On this sagittal section of the cortex a high activity (propor-


tional to the concentration of a radioactive substance) can be viewed in areas 1 and


3b. Columns are well defined in area 1 but not in area 3b (From [61]).
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Some of them are spatially well defined while some others are more difficult to dis-


tinguish from one another. What is the functional role of such units?


1.1.4 From physiological to functional units


Many experiments on somatosensory and visual cortices made it possible to relate


physiological columns to sensory functions [53, 54, 61, 74, 81] (see figure 1.6, 1.7


and 1.8). In some cases the processing site of a given function seems quite clearly


defined like in rat’s sensory cortex where every whisker is associated with a sharply


bounded cortical site in layer IV (see figure 1.7). However such a barrel structure is


less evident in other layers so that it is harder to distinguish columns and label them


with a given whisker.


Figure 1.7: Layer IV of rat’s sensory cortex (stained for serotonin). Every whisker of


the rat corresponds to a well defined area of the cortex mostly responsible for processing


information from it. These processing units have the same distribution as whiskers on


the muzzle. (From [61]).


Although, this particular case sheds light on the important role afferent thalamic


fibers play in shaping columns in sensory cortices [74]. These axonal fibers project


in layer IV in the form of tufts spanning horizontally a range of a few hundreds of


micrometers, therefore exciting and, up to horizontal connectivity, defining the width


of physiological columns processing input for a given sensory function. Actually, the


picture is more complex since different thalamic outputs may project on the same


cortical column and one thalamic output may project on different cortical columns.


Anyway, functional columns usually overlap if the corresponding functions are close


and information processing columnar sites move continuously across the surface of


the cortex as function “continuously” varies, as it is observed in somatotopy, retino-


topy, or orientation preference experiments (figure 1.8-B, left image, and figure 1.9,


left image) [43, 53, 54, 84]. Nevertheless, functional columns may have partial


well-defined boundaries at the discontinuities of the functional map. Examples
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of these discontinuities are given, in the visual cortex, by pinwheel points in the


primary visual cortex (V1) or reversal direction lines in area 18 (V2), where func-


tional columns are sharply separated (see figure 1.8 and 1.9, right image).


Figure 1.8: Optical imaging of intrinsic signals in tree shrew visual cortex. A, Differ-


ence images obtained for four stimulus angles. Dark signal indicates areas that were


active during presentation of the stimulus. B, Orientation preference map. Orienta-


tion preference of each location is color-coded according to the key shown below the


map. C, Portions of the orientation preference map shown in B have been enlarged to


demonstrate that the orientation preference maps contained both linear zones (left),


and pinwheel arrangements (right) that are functional discontinuities (From [14]).


To finish our discussion on functional columns, it is to be noted that these structures


have not been observed in all regions of mammals cortex and show species depen-


dency. For example, there is no orientation preference columnar structure in rat


primary visual cortex, which means that locally, cells with all orientation preference


are represented. One usually speaks of it as a “salt and pepper” structure. This has


been illustrated in [84] (see figure 1.10).
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Figure 1.9: Functional maps of selective responses in superficial layers of cat area 18


with single-cell resolution obtained by calcium imaging. Left: spatially smooth direc-


tion selectivity of neurons responding to a moving bar stimulus (preferred direction


of movement: 45◦ for purple cells, 90◦ for red cells and 135◦ for orange cells). Right:


discontinuity of direction selectivity giving partial boundaries to direction columns


(From [84]).


Figure 1.10: Non-columnar orientation preference organization of rat primary visual


cortex. Cells with different orientation preferences (see color code) are locally mixed


together (From [84]).
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1.1.5 What drives the cortical column activity?


We now raise the question of the driving forces that shape the activity of a cortical


column. What is the respective influence of intrinsic columnar organization, thalamic


input and neighbouring columns?


In [76], the authors use calcium imaging to observe the activity of neurons in in


vitro thalamo-cortical slices of a few millimeters wide. They investigated the relation


between spontaneously generated cortical activity (i.e. in the absence of thalamic


stimulation to the cortex) and the cortical activity induced by thalamic stimulation.


Surprisingly, very similar spontaneous and triggered activities have been observed.


The similarities concerned the set of activated cells as well as the temporal sequence


of their activation (figure 1.11).


Figure 1.11: Spatiotemporal dynamics of activation in spontaneous and triggered ac-


tivity. Cells activated in the same order (frames 1, 2 and 3), over several activations.


The three frames on the left show an example of spatiotemporal activation of the net-


work when triggered by thalamic input (activated cells in gray). The three central


frames correspond to spontaneous activation (green). Core frames indicate cells active


in the same order across all movies from this slice (red), regardless of the triggered or


spontaneous nature of the activation. Scale bar, 50µm. (From [76]).


These results suggest that the thalamic input would just serve to awaken circuit


dynamics that are intrinsic to the cortex. So, intracortical connectivity would play a


primary role in determining the cortical response to thalamic input.


However, the intensity of the thalamic input to a column has a strong impact on


the cortical response. We illustrate this with an optical imaging experiment in


the rat barrel cortex (figure 1.12) [89]. A single whisker of a rat is deflected with
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different angles and speed. Because of the structure of the rat barrel cortex, this


stimulus provokes a very localized input to the cortical barrel corresponding to


the excited whisker, in layer IV. The experiment shows that for weak stimulation,


only one column will be activated: the one corresponding to the whisker. As the


stimulus intensity increases, the activation is not anymore restricted to one column


but spreads horizontally to neighbouring columns. When the stimulation is strong


enough, the whole barrel cortex is activated.


In addition to the influence of thalamic input on cortical response, this experiment


shows that an excited column can activate its neighbours without the help of a


thalamic stimulation of these. Hence a column can be a major driving force for the


activity of its neighbours.


Figure 1.12: Response sequences in the rat barrel cortex observed by optical imaging.


A single whisker of the animal is stimulated with an increasing angle and speed (top


to bottom). In the upper left image, a map of the barrels in layer IV is superimposed.


A weak stimulation of the whisker provoke an activation in the column of barrel D2


(upper sequence). Stronger stimulation results in graded horizontal spread of activity


(middle and bottom sequences) (From [89]).


A recent study has shed light on the multi-scale nature of columnar organization in


the cortex by showing that functional columns are composed of finer scale, partially


segregated, minicolumnar subnetworks [122]. So there are many ways of speaking of


a cortical column. Together they form a complex and sometimes blurred or misused


concept.


Now we try to understand the organization of columns by exploring cortical microcir-


cuitry.


1.2 LOCAL CONNECTIVITY IN THE CORTEX


Local connectivity studies have been conducted on many species, in different


areas of their cortices, with various theoretical approaches and experimental tools.
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Although, most of them concern sensory cortices (especially the primary visual cortex,


V1) of mammals (monkey, cat, rat, human...), which have shown lots of similarities in


their composition (types of neurons, relative proportions of cell types) and structure.


Here we will try to synthetize the main results of those studies. We want to get a


good description of local connectivity inside a cortical area, like V1. So, we concen-


trate on connections between neurons in the same area, passing through gray matter


(intracortical connections). Afferent and efferent connections coming from and going


to other areas or thalamus, via white matter, do not belong to microcircuitry. Such


connections will be separated from intracortical connections when we will have to


mention them.


Cortical microcircuits show stereotypy, i.e. structural and functional repeating pat-


terns, through lots of their features like cell types, cell arrangements or patterns of


synaptic connectivity [100]. As long as considering a given area, age and species, it is


reasonable to think of the cortical tissue as repeating a common local template with


subtle variations. Yet microcircuits cannot be known with cell-by-cell precision across


an area, stereotypy makes it possible to speak of an average connectivity pattern re-


vealed by statistical connectivity studies.


1.2.1 Neuronal compartments and selectivity of synapses


Neurons are composed of several compartments: a cell body (soma), dendritic trees,


and axonal branches (see figure 1.13 and 1.14). Usually the whole cell crosses several


layers of the cortex, but neurons are commonly said to belong to a specific layer: the


one their soma belongs to. However, this tells nothing on the location of the neuron’s


dendritic trees or axon terminals. For example, deep layers pyramidal cells have api-


cal dendrites in the superficial layers of the cortex (see figure 1.14). So two neurons


may contact in a layer none of their cell bodies belong to.


Excitatory cells (pyramidal cells (PCs) and spiny stellate cells (SSCs)) axons target


dendrites of post-synaptic cells. Inhibitory cells axons have various target compart-


ments on post-synaptic cells. Chandelier cells almost exclusively target the axon


hillocks of pyramidal neurons. Large, small and nest basket cells provide most of the


somatic and perisomatic inhibitory synapses for excitatory and inhibitory neurons.


Dendrites are preferentially targeted by double bouquet, bitufted, bipolar, neurogli-


aform and Martinotti cells, with some types favoring either spines or their supporting


branches (shafts).


Several teams have recorded a huge amount of data on neuron, axon, dendrite and


synapse density in the cortex of rodents and cat, by different techniques including


2D microscopy and 3D reconstruction of neurons [8, 9, 15, 28, 29, 87, 88]. These


studies have led to connectivity estimations based on the idea that neurons establish


non-specific synaptic contacts. This means that neurons project their axonal boutons


across the cortex and locally make synapses with all represented types of neurons,


proportionally to the fraction of dendritic surface these locally provide (Peters’ rule,


used by [15] and [13]).


Several recent studies show that connections are not just spatially uniformly ran-


dom, depending on the local density of boutons and spines but are highly selective


[7, 66, 103, 110, 111, 113, 118]. Dendrites and axons properties of pyramidal and in-


hibitory cells strongly suggest this specificity in intracortical connections. Pyramidal


axons follow linear trajectories and typically form en passant boutons. These straight


paths suggest that pyramidal axons do not search out specific postsynaptic partners.
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Figure 1.13: Neuronal compartments and dendritic spines.


On the other hand the dendrites of excitatory cells have large numbers of dendritic


spines projecting up to 4 mm from the parent dendrite that are capable of movement


and emerge at different angles from the dendritic shaft, suggesting that postsynaptic


cells do seek out suitable excitatory inputs. Inhibitory neurones appear take the op-


posite approach with straight and largely spine free dendrites and axons that follow


extremely complicated routes to make highly selective contacts with specific regions


of their postsynaptic partners [7, 104, 106].


Connectivity studies taking specificity into account are mostly based on joint activity


recordings, by calcium imaging or paired electrodes. Connections are established by


physiological signals correlation and usually take the form of a connection probability


between two types of neurons.


A quantitative description of interactions between each pair of neuronal types present


in a local circuit has not yet been completed. However, some sub-networks are well


known, like the excitatory pathway or certain intralaminar networks. The inhibitory


network is way more complex, by the number of its neuronal types, their action and


their role in the circuit.


1.2.2 Excitatory network


Excitatory cells account for approximately 70-80 % of neurons in the cortex and are


divided into two main groups: pyramidal and spiny stellates. Both groups use gluta-


mate as their primary neurotransmitter. Action potentials traveling down the axon of


an excitatory neuron provoke the release of glutamate at the level of axonal terminal


boutons. These neurotransmitter molecules bind to specific receptors on the post-


synaptic neuron’s membrane and modify its permeability to different ionic species.


Ionic fluxes through the membrane of the postsynaptic cell result in the generation of


transient changes in the membrane’s polarization called excitatory postsynaptic po-


tentials (EPSP). EPSPs are said to be depolarizing because they tend to increase the


membrane potential and hence to bring the natural resting membrane potential of


neurons, which is about -70mV, toward zero. They are called excitatory because as


they summate on the postsynaptic membrane, they can trigger the generation of an
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Figure 1.14: Dendritic arbors (upper panel) and axonal trees (lower panel) of exci-


tatory neurons. In the lower panel, the different axonal trees belonging to the same


neuron are distinguished by different colors (From [7]).
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action potential in the postsynaptic cell (see figure 1.15).
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Figure 1.15: Summation of EPSPs leading to the generation of an action potential.


PCs somata are situated in layers II to VI and SSCs somata are situated within layer


IV of primary sensory areas. The two classes have spiny dendrites. For that rea-


son, excitatory cells in the cortex are often referred to as spiny cells. SSCs lack the


long vertically oriented apical dendrite of PCs, so they do not get input from superfi-


cial layers. Moreover SSCs only establish local intracortical connections, while PCs


project myelinated axons to the thalamus (cortico-thalamic projections) and other


cortical areas (cortico-cortical projections). PCs show a lot of variability. While their


anatomy is relatively stereotypical, their dendritic, axonal trees and spike discharge


patterns vary among and inside layers [7].


The excitatory network is usually divided into two pathways. The feedforward path-


way goes from layer IV (receiving cortical input from the thalamus) to layer II/III


and then project to deep layers V and VI. It corresponds to the most basic and well-


known trajectory of the thalamic input through cortical layers. The feedback path-


way mainly consists in projections from deep layers (V-VI) to more superficial lay-


ers (III-IV), and from superficial layers (especially layer III) to layer IV. All layers


display dense intralaminar excitatory projections targeting all types of neurons (see


figure 1.16).


Layer IV


Layer IV is the main target of afferent thalamic fibers. These target both excita-


tory and inhibitory neurones in the highly interconnected networks in layer IV, but


of all the synapses made with layer IV basket cells, thalamic inputs constitute only


13% and with SSCs only 6%. Yet, thalamocortical terminals are generally highly


efficacious so that they reliably activate layer IV and sensory information from the


thalamus strongly influences computations in the cortex. Moreover the majority of


excitatory synaptic contacts to layer IV excitatory cells are supplied by other cells


receiving direct input from the thalamus. Layer IV PCs and SSCs have extensive


intralaminar axonal arbours and focussed projections to layer III. Less dense projec-


tions may also target the deeper layers V and VI. So, layer IV spiny cells appear to


have two major roles: amplify the input received in layer IV and feed excitation to
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Thalamus
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Figure 1.16: Main intracortical projections made by excitatory neurons. The diagram


on the left is a simplified version of the detailed diagram on the right, showing only


the most salient features of the excitatory pathway. Interlaminar projections, includ-


ing the feedforward and feedback pathways are represented on the left. Black arrows


indicate projections to excitatory neurons (PC: pyramidal cells, SC: spiny cells includ-


ing both PCs and SSCs, IB: intrinsically bursting PCs, RS: regular spiking PCs, CT:


cortico-thalamic PCs, CC: cortico-cortical PCs, see text for details) and green arrows


projections to inhibitory neurons (not represented on this figure). Projections from the


thalamus are indicated in purple. All layers display dense intralaminar excitatory


projections targeting all types of neurons. The thickness of the different arrows gives


an insight of the relative importance of the different connections. Thinner arrows in-


dicate weaker or less well identified interlaminar connections, often involving layer


VI.
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layer III (see figure 1.16).


Layer II/III


Layer II pyramidal axons ramify most extensively in layers II and III where they


make frequent connections with other local pyramidal cells. They also make long


range projections through white matter. Layer III pyramidal axons ramify most ex-


tensively in layer II/III and V and make frequent synaptic connections with spiny


cells there. Connections from layer III to V are highly selective. Layer III PCs mainly


target large, tufted and intrinsically bursting (IB) PCs in layer V and make very few


connections to the smaller regular spiking (RS) cells1. The rate of connectivity to IB


cells is also dependent on the distance over which the two cells are separated later-


ally, the highest probability of connection being when the presynaptic cell is within


∼ 50µm of the ascending post-synaptic apical dendrite. Layer III PCs also make


back projections to layer IV with preferential innervation of inhibitory cells (see fig-


ure 1.16).


Layer V


The IB and RS pyramidal cells in layer V have similar patterns of axonal arboriza-


tion. The axons of both classes ramify most extensively in layer V, indicating that


they prefer to innervate cells in their own layer since the pyramidal cells in more su-


perficial layers do not have dendritic access to these dense arbours in layer V. Paired


intracellular recordings reveal that while both classes are indeed synaptically con-


nected, the RS cells are almost exclusively presynaptic to IB cells, which are in turn


presynaptic to other IB cells. In addition to these dense intralaminar projections,


layer V PCs project back to all other layers of the cortex, hence representing a major


source of excitation to superficial laminae. Layer V PCs make very few and weak


projections to layer III excitatory cells, but they do innervate inhibitory cells in this


layer (see figure 1.16).


Layer VI


Layer VI is the secondary main target of thalamic afferent fibers and also provides


cortico-thalamic (CT) and cortico-cortical (CC) projections via white matter. PCs of


layer VI that provide either CT or CC outputs can be identified by their distinctive


morphologies. CT cells are typically oriented vertically, have short apical dendrites


terminating in layer IV or in upper layer V and vertically oriented axonal arbours ter-


minating in the vicinity of their dendrites. CC cells generate dendritic arbours that


rarely extend beyond layer V and a characteristically long and horizontally oriented


axon confined to the deep cortical layers. Phasically firing cells would have CC-like


morphology and tonically firing cells would have CT-like morphology2. The phasically


firing CC-like cells principally innervate other layer VI PCs while tonically firing CT-


like cells prefer to target interneurons, mostly in layer VI. They may also target layer


IV inhibitory cells, but these projections have not been studied in detail to date. This


specialization is not found in PCs subclasses of other layers. One possibility for the


function of such selectivity in the connections of layer VI cells is that the CC cells may


1For more explanations on the terms intrinsically bursting and regular spiking, the reader is referred


to appendix A.
2See appendix A.
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be responsible for conveying only the most novel information to other cortical regions


via their phasic spike discharge. On the other hand, the CT cells which can maintain


firing for longer, and prefer to activate interneurons, may therefore be responsible for


the generation of powerful inhibition of the cortical columns in response to prolonged


excitation both by thalamic afferents or by strong local circuit connections [7].


Layer VI PCs receive weak inputs from all other layers. They make few interlami-


nar projections, mostly weak ones from CC cells to layer V PCs. The relatively low


involvement of layer VI in interlaminar connections and its evident specialization


in targeting distant sites through white matter projections explain why it is often


termed as an “output layer” and sometimes neglected in the intracortical network


(see figure 1.16).


Back projections from PCs of layers III and V-VI


These back projections mainly target inhibitory cells in the previous layer of the feed-


forward pathway. It suggests that pyramidal cells in each layer might, when gener-


ating outputs to integrated inputs, simultaneously initiate inhibition of their input


layers via local circuit neurons (interneurons). This mechanism would be useful to


prevent undesirable positive feedback loops and ensure the integrity of the excitatory


flow through the cortex by silencing the cells responsible for their inputs as soon as


appropriate outputs to the next stage of processing has been achieved [7] (see fig-


ure 1.16).


1.2.3 Inhibitory action


20 to 30 % of cortical neurons are inhibitory cells. These cells use


gamma aminobutyric acid (GABA) as their primary neurotransmitter. The release


of GABA in the synaptic cleft provokes a transient hyperpolarization of the postsy-


naptic membrane called inhibitory postsynaptic potential (IPSP), summating to other


postsynaptic potentials with a negative contribution, then pulling the potential away


from the firing threshold. Hence, IPSPs can prevent the generation of action po-


tentials in the postsynaptic cell. GABA-ergic neurons do not only influence their


post-synaptic targets by hyperpolarizing the post-synaptic membrane. GABA neuro-


transmitters exist in several forms in the cortex, the most prominent of which being


GABAA. GABAA inhibition is mediated by Cl− channels and the concentration gra-


dient for Cl− across the cell membrane determines the nature of the inhibitory effect


caused by GABA-ergic synapses. As an inhibitory synapse has a reversal potential


near the resting potential of the neuron, it must elicit particularly large conductance


openings in the neuron’s membrane in order to produce a significant inhibitory cur-


rent. A specific non-linear inhibitory effect, called shunting inhibition, can appear if


these conductance openings get large enough to induce an important reduction of the


cell’s membrane resistance. Then, following Ohm’s law, the amplitude of subsequent


excitatory postsynaptic potentials can be dramatically reduced. This phenomenon is


called “shunting” because the conductance short-circuits currents that are generated


at adjacent excitatory synapses. Shunting synapses occuring between an excitatory


synapse and the action potential initiation site (typically, on the perisomatic region


of the post-synaptic cell) are more effective since they shunt the global contribution


of many synapses.


The relative density of inhibitory cells compared to excitatory cells or comparing the


different types of inhibitory cells vary in different species, brain regions and layers.
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Most of these cells have aspiny dendrites, so that they are often termed as “smooth


cells”. Their axons usually arborize within a cortical column and can project later-


ally across cortical columns but do not typically project down into the white matter


to contact the thalamus or distant brain regions, so they are also called “local circuit


neurons” or “interneurons”3.


The complexity of the inhibitory network and inhibitory action in the cortex has been


demonstrated in several reviews [78, 112] and is the largest obstacle to unraveling the


organization of cortical microcircuits. One of the main problems arises from the diffi-


culty to define subclasses of inhibitory cells. Indeed, there are about ten well-known


morphological types of interneurons (see figure 1.17) and a dozen of electrophysio-


logical types (see appendix A). Each anatomical type has multiple firing patterns,


which in turn correspond to multiple anatomical types of neurons. Hence there are


more than fifty anatomo-electrophysiological types of interneurons in the cortex (see


figure 1.18).


Figure 1.17: Summary of the main anatomical properties of cortical inhibitory in-


terneurons (dendrites in red and axons in blue) classified according to their preferred


axonal targets (From [78]).


Interneurons can be roughly classified according to the post-synaptic neuronal com-


partment their axons preferentially innervate and have typical axonal arbors (see


figure 1.17).


3We will use the term interneurons to designate inhibitory interneurons, whereas there exist some


classes of excitatory interneurons, like SSCs.
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Figure 1.18: Anatomical-electrophysiological diversity of cortical inhibitory neurons.


Above circles: anatomical types (ChC: chandelier cell, LBC: large basket cell, NBC:


nest basket cell, SBC: small basket cell, DBC: double bouquet cell, BPC: bipolar cell,


NGC: neurogliaform cell, BTC: bitufted cell, MC: Martinotti cell). Bottom cylinders:


types of firing responses to somatic current injections (AC: accomodating, NAC: non-


accomodating, STUT: stuttering, IS: irregular spiking, BST: bursting) (From [78]).


Main anatomical types of interneurons


• Basket cells (BC) represent 50% of inhibitory interneurons and are divided into


three main subclasses on the basis of differences in dendritic and axonal mor-


phologies. BCs are specialized in targetting the somata and proximal dendrites


(i.e. those situated near the soma of a neuron) of their post-synaptic targets


(PCs and interneurons). This position allows them to adjust the gain of inte-


grated synaptic response and influence the action potential discharge, so that


they play a role in phasing and synchronizing neuronal activity.


– Large basket cells (LBC) provide lateral inhibition across columns in their


layer of origin. They can also extend vertically, ramifying in several, often


non adjacent layers. They have sparse axonal arbors with low terminal


(also called “boutons”) density on them. LBCs are largely represented in


layers II-VI.


– Small basket cells (SBC) have a very local impact since their axonal arbors


are usually confined in the same column and layer as their soma. They


have curvy frequently branching axons. They are present in layers II-VI,


especially in layer IV.


– Nest basket cells (NBC) have local axonal clusters and lower boutons den-


sity than LBCs. They are present in layers II-VI, and especially in layers


II-IV.


• Chandelier cells (ChC) are few compared to BCs. One finds them in layers


II-VI, especially in layer II/III and V. Their local axonal clusters make numer-


ous branchings and primarily target the axon initial segment (axon hillock) of


pyramidal cells. ChCs hence influence the action potentials output of PCs by


affecting their generation and timing, possibly silencing the firing of spikes.


• Martinotti cells (MC) are very numerous in all layers. They specialize in pro-


jecting their axons toward layer I where they inhibit pyramidal dendrites and


can extend horizontally to neighbouring or distant columns. Some of them selec-


tively target layer IV. MCs can also innervate proximal dendrites and somata.
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• Double bouquet cells (DBC) have a fascicular axonal cylinder that can extend


across all layers and make frequent branching. DBCs mainly innervate den-


drites of post-synaptic PCs. They are present layers II-V.


• Bitufted cells (BTC) are similar to bipolar cells (see next item) and DBCs, but


show a wider horizontal axonal span and less extensive vertical projections.


They primarily target pyramidal dendrites.


• Bipolar cells (BPC) are relatively sparsely represented in the cortex and have a


narrow vertical axonal tree (less than 50µm wide) that crosses all layers. They


show low boutons density and mainly target PCs proximal dendrites. They are


found in layers II-IV.


• Neurogliaform cells (NGC) have a dense, complex axonal arborization targetting


dendrites of post-synaptic cells. There are few such cells in the cortex. They


can be found in all layers but they have been mainly observed in layer I and


IV of cortical sensory regions. They connect on PCs dendrites and make dense


interconnections with other interneurons via gap junctions (electrical synapses).


• Layer I contains an heterogeneous population of small interneurons with vari-


ous axonal arborizations and large neurons with horizontal processes confined


to layer I, known as Cajal Retzius cells, that are mostly present during develop-


ment.


Those neuronal types can be separated into two main classes, based on their mor-


phologies, preferential post-synaptic targets and firing patterns4. The first class con-


tains the proximal targeting cells, including basket and chandelier cells, that usu-


ally show fast spiking firing patterns, project on proximal compartments of PCs and


whose dendrites radiate in all directions from the soma.


The second class is constituted from low-threshold spiking (LTS) dendrite-preferring


interneurons, including Martinotti, double bouquet and bitufted cells, that preferen-


tially target dendrites of post-synaptic PCs, usually show low-threshold spiking and


bitufted dendritic trees (issuing from the apical and basal poles of the soma).


Although they preferentially target dendrites, bipolar and neurogliaform cells stand


apart from these classes. Bipolar cells firing patterns are stuttering and contrary to


LTS neurons, they may receive thalamic input. Neurogliaform cells do not display


bitufted dendritic arborization and have very specific firing patterns [78, 112].


Interneurons in the microcircuit


Pyramidal cells receive most of their synapses from other PCs. Inhibitory synapses


on PCs are less numerous and mostly arise from neighbouring interneurons. For ex-


ample, only 16% of synapses on PCs in layer II/III are inhibitory and a majority of


these arise from interneurons lying in the same cortical column and layer; only 15%


of them come from interneurons belonging to an other column.


Nevertheless, the balance between excitation and inhibition in the brain is main-


tained over a large dynamic range and for many stimuli, suggesting a reliable ac-


tivation of the inhibitory pathway [80]. This activation is crucial since the lack of


inhibition has been linked to various pathologies, including epilepsy [22].


4See appendix A.
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Recent findings have shown that layer V PCs evoke inhibitory responses in neigh-


bouring PCs via the interplay of Martinotti cells [101]. Moreover, the probability for


such a disynaptic inhibition has been observed to be more than double the probability


of direct connections between layer V PCs, suggesting a high connection probability


of Martinotti cells on layer V PCs.


Excitatory synapses onto interneurons mostly arise on dendrites and sometimes on


somata. Intralaminar connections from spiny excitatory cells to interneurons are fre-


quent and do not appear to show striking preference for any particular interneuronal


class. We should also mention interlaminar back projections from PCs of layer III and


V-VI (see above). Some classes of inhibitory interneurons even receive direct input


from the thalamus, mainly proximal targeting cells and bipolar cells. LTS neurons


seem to receive little or no input from the thalamus.


Relatively fewer studies have investigated connections between interneurons, but


some of them indicate that connections between interneurons of all classes are dense


and involve quite disparate classes and interneurons in different layers. Basket cells,


especially LBCs, seem to have a prominent role in governing the activity of inhibitory


networks in the cortex [109]. They make numerous connections with other neigh-


bouring basket cells and also contact dendrite-preferring neurons [78, 112]. Dense


networks of interneurons having similar properties, connected through gap junctions


(i.e. electrical synapses), have also been observed in the cortex [50]. Cortical elec-


trical synapses seem to be an exclusive property of interneurons since none have yet


been found among PCs. They favor high synchronization between neighbouring in-


hibitory cells of the same class5 [107, 108]. We summarize the essential features of


the inhibitory network in figure 1.19.


1.3 THE MESOSCOPIC APPROACH TO CORTICAL


COLUMNS


Several teams have modeled cortical columns from the most detailed information


available on neurons and microcircuits [77, 114]. They have simulated networks


with several thousands of neurons, taking into account the different neuronal


compartments and ionic channels. This approach requires huge computational


power and memory for simulations and information storage of many parameters,


sometimes including 3D whole cell reconstructions. One of the main problems of


such models resides in the difficulty of a mathematical investigation, due to their


inherent complexity.


Here we propose a mesoscopic approach to cortical columns, i.e. a description at an


intermediate level between the microscopic (cellular) scale and the macroscopic one


(cortical areas). The complexity of the network is reduced to a few building blocks,


allowing subsequent mathematical analysis (see next chapter).


1.3.1 Neural masses


The elementary building block we will use in mesocopic modeling is the neural mass.


A neural mass is an assembly of several hundreds to several thousands of usually


neighbouring, interconnected neurons that share similar properties (morphology, fir-


ing patterns...) and tend to activate together. Typically, a neural mass is a cluster of


5The probability of gap junction between two neighbouring interneurons of the same class is higher


than 50%; this probability becomes inferior to 5% if the neurons belong to different classes.
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Thalamus


SC


BC


LTS


Figure 1.19: Highly simplified cortical inhibitory network. Proximally targeting neu-


rons are represented by their principal cellular type, basket cells (BC), and can receive


thalamic input. LTS cells mostly target the dendrites of spiny cells (SC). Both groups


form densely connected networks, possibly through gap junctions, and interact with


each other though BCs seem to have a prominent driving role. Although interneurons


can make and receive interlaminar projections, dense intralaminar connections with


spiny cells are observed in most cortical layers and constitute one of the most salient


features of the inhibitory network. Black arrows indicate excitatory projections and


red arrows, inhibitory ones.
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neurons of similar anatomical type, confined in the same cortical column and layer.


Its spatial extent is hence of the order of a few hundreds of micrometers. Neural


masses are described in terms of the average membrane potential or average firing


rate of their constitutive cells. So at the mesoscopic scale a cortical column is seen


as a small layered network of homogeneous neural masses. This approach opens the


door to a very compact description of cortical columns organization and activity in


terms of the number of parameters and variables.


Besides, this mesoscopic description of cortical columns is consistent with most of


the available data on local cortical connectivity derived from activity correlation be-


tween neurons. Indeed connections between neurons are usually investigated within


columns of a few hundreds of micrometers wide and they are expressed as connection


probabilities between cell types [112].


1.3.2 An example of mesoscopic cortical column model


Usually a column model does not need many different types of neural masses to


be able to reproduce interesting phenomena. Most mathematical models from


the literature use only two classes of neurons: excitatory and inhibitory (for


a very general review, see for example [31]). In the next chapter we will present


the analysis of a column model based on three neuronal populations (Jansen’s model).


However in biophysical models of cortical columns, a wider variety of neural masses


is needed to account for essential intra- and interlaminar connections in the cortex.


Mesoscopic column models are basically build from a selection of prominent neural


masses, connected if possible with biophysically based weights.


In [49], the authors propose a model of cortical connectivity grounded on the sta-


tistical description of cortical microcircuits achieved by A. Thomson and co-workers


(figure 1.20).


As we said before, there is a match between the spatial scale of cortical columns and


the one of connections reported in local connectivity studies. Hence, we can see the


wiring diagram 1.20 as a biophysical cortical column model, considering the repre-


sented neuronal populations as neural masses and using average connectivity data


as connection strengths between those. This model constitutes a good compromise


between simplicity and biophysical relevance, and we will use it in the third part of


this thesis.


The following chapter provides a mathematical analysis of a simpler cortical column


model known as Jansen’s model.
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Figure 1.20: Simplified weighted diagram of cortical connections reported by A. Thom-


son and co-workers (excitatory projections in black and inhibitory ones, in red). The


numbers indicated on arrows are the average amplitudes of postsynaptic potentials


and in parenthesis, connection probabilities between two cell types. Question marks


indicate values for which stronger experimental evidence is needed (From [49]).
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CHAPTER 2


CORTICAL COLUMN MODELS


OVERVIEW


We present a mathematical model of a neural mass developed by a number of people,


including Lopes da Silva and Jansen. This model features three interacting popula-


tions of cortical neurons and is described by a six-dimensional nonlinear dynamical


system. We address some aspects of its behavior through a bifurcation analysis with


respect to the input parameter of the system. This leads to a compact description of


the oscillatory behaviors observed in [58] (alpha activity) and [119] (spike-like epilep-


tic activity). In the case of small or slow variation of the input, the model can even


be described as a binary unit. Again using the bifurcation framework, we discuss


the influence of other parameters of the system on the behavior of the neural mass


model. This chapter almost exactly corresponds to the article [46], published in Neu-


ral Computation in 2006.
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49







Jansen’s neural mass model is based on the work of Lopes Da Silva et al. and


Van Rotterdam et al. [71, 72, 117]. They developed a biologically inspired mathemat-


ical framework to simulate spontaneous electrical activities of neurons assemblies


recorded by electroencephalography (EEG), with a particular interest for alpha ac-


tivity. In their model, populations of neurons interact by excitation and inhibition


and can in effect produce alpha activity. Jansen and co-workers [58, 59] discovered


that this model was also able to simulate evoked potentials, i.e. EEG activities ob-


served after a sensory stimulation (by a flash of light, a sound, etc...). More recently,


Wendling et al. used this model to synthesize activities very similar to those observed


in epileptic patients [119], and David and Friston studied connectivity between corti-


cal areas with a similar framework [25, 26].


The contribution of this chapter is a fairly detailed description of the behaviour of


this particular cortical column model as a function of its input [46]. This description


is grounded in the mathematics of dynamic systems and bifurcation theories. We


briefly recall the model in section 2.1 and describe in section 2.2 the properties of the


associated dynamical system.


2.1 DESCRIPTION OF THE MODEL


Figure 2.1: a) Neural mass model of a cortical unit: it features a population of pyrami-


dal cells interacting with two populations of inter-neurons, one excitatory (left branch)


and the other inhibitory (right branch). b) Block representation of a unit. The h boxes


simulate synapses between the neurons populations. Sigm boxes simulate cell bodies


of neurons by transforming the membrane potential of a population into an output


firing rate. The constants Ci model the strength of the synaptic connections between


populations.


The model features a population of pyramidal neurons (central part of figure 2.1.a.)


that receive excitatory and inhibitory feedback from local interneurons and an ex-


citatory input from neighbouring cortical units and sub-cortical structures like the
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thalamus. Actually the excitatory feedback must be considered as coming from both


local pyramidal neurons and genuine excitatory interneurons like spiny stellate cells.


Equations of the model


Figure 2.1b. is a translation of figure 2.1.a in the language of system theory. It


represents the mathematical operations performed inside such a cortical unit.


The excitatory input is represented by an arbitrary average firing rate p(t) which


can be random (accounting for a non specific background activity) or deterministic,


accounting for some specific activity in other cortical units. The three families


–pyramidal neurons, excitatory and inhibitory inter-neurons– and synaptic interac-


tions between them are modeled by different systems.


The Post-synaptic systems Pi, i = 1, 2, 3 (labeled he(t) or hi(t) in the figure) convert


the average firing rate describing the input to a population into an average excita-


tory or inhibitory post-synaptic potential (EPSP or IPSP). From the signal processing


standpoint, they are linear stationary systems that are described either by a convo-


lution with an impulse response function or, equivalently, by a second-order linear


differential equation. The impulse response function is of the form


h(t) =


{
αβte−βt t ≥ 0
0 t < 0


.


It has been proposed by van Rotterdam [117] in order to reproduce well the charac-


teristics of real EPSPs and IPSPs (see figure 2.2).
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Figure 2.2: Postsynaptic profiles obtained for different choices of α and β.


In other words, if x(t) is the input to the system, its output y(t) is the convolution


product h ∗ x(t).
The constants α and β are different in the excitatory and inhibitory cases. α, ex-


pressed in millivolts, determines the maximal amplitude of the post-synaptic po-


tentials, β, expressed in s−1, lumps together characteristic delays of the synaptic
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transmission, i.e. the time constant of the membrane and the different delays in the


dendritic tree [39, 59].


The corresponding differential equation is


ÿ(t) = αβx(t) − 2βẏ(t) − β2y(t), (2.1)


In the excitatory (respectively inhibitory) case we have α = A, β = a (respectively


α = B, β = b). This second-order differential equation can be conveniently rewritten


as a system of two first-order equations


{
ẏ(t) = z(t)
ż(t) = αβx(t) − 2αz(t) − α2y(t)


. (2.2)


The Sigmoid systems introduce a nonlinear component in the model. They are the


gain functions that transform the average membrane potential of a neural population


into an average firing rate (see figure 2.3 and e.g. [41]):
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Figure 2.3: Function Sigm used in this model. It converts the average membrane


potential of a mass into its average firing rate.


Sigm(v) =
νmax


2
(1 + tanh


r


2
(v − v0)) =


νmax


1 + er(v0−v)
,


where νmax is the maximum firing rate of the families of neurons, v0 is the value of


the potential for which a 50% firing rate is achieved and r is proportional to the slope


of the sigmoid at v0; v0 can be viewed either as a firing threshold or as the excitability


of the populations.


This sigmoid transformation approximates the functions proposed by the neurophys-


iologist Walter Freeman [39] to model the cell body action of a population.


The connectivity constants C1, . . . , C4 account for the number of synapses established


between two neurons populations. We will see that they can be reduced to a single
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parameter C.


There are three main variables in the model, the outputs of the three post-synaptic


boxes noted y0, y1 and y2 (see figure 2.1.b); we also consider their derivatives ẏ0, ẏ1, ẏ2


noted y3, y4 and y5, respectively. If we write two equations similar to (2.2) for each


post-synaptic system we obtain a system of 6 first-order differential equations that


describes Jansen’s neural mass model:







ẏ0(t) = y3(t) ẏ3(t) = AaSigm[y1(t) − y2(t)] − 2ay3(t) − a2y0(t)
ẏ1(t) = y4(t) ẏ4(t) = Aa{p(t) + C2Sigm[C1y0(t)]} − 2ay4(t) − a2y1(t)
ẏ2(t) = y5(t) ẏ5(t) = BbC4Sigm[C3y0(t)] − 2by5(t) − b2y2(t).


(2.3)


We focus on the variable y = y1 − y2, the membrane potential of the main family of


neurons (see figure 2.1.b). We think of this quantity as the output of the unit because


in the cortex, the pyramidal cells are the main vectors of long range cortico-cortical


connections. Besides, their electrical activity corresponds to the EEG signal: pyrami-


dal neurons throw their apical dendrites to the superficial layers of the cortex where


the post-synaptic potentials are summed, accounting for the essential part of the


EEG activity [61].


Numerical values of the parameters


The parametersA, B, a and b have been adjusted by van Rotterdam [117] to reproduce


some basic properties of real post-synaptic potentials and make the system produce


alpha activity. These authors set A = 3.25mV , B = 22mV , a = 100s−1 and b = 50s−1.


The excitability of cortical neurons can vary as a function of the action of several


substances and v0 could potentially take different values, though we will use v0 =
6mV as suggested by Jansen on the basis of experimental studies due to Freeman


[40]. The works of the latter also suggest that νmax = 5s−1 and r = 0.56mV −1, the


values used by Jansen and Rit.


The connectivity constants Ci, i = 1, . . . , 4 are proportional to the average number


of synapses between populations. On the basis of several neuroanatomical studies


([15] among others) where these quantities had been estimated by counting synapses,


Jansen and Rit succeeded in reducing them to fractions of a single parameter C:


{
C1 = C C2 = 0.8C
C3 = 0.25C C4 = 0.25C


Jansen and Rit varied C to observe alpha-like activity and obtained it for C = 135
(see figure 2.4).


In summary, previous work shows that the following set of parameters allows the


neural mass model described by equations (2.3) to produce a set of EEG-like signals:







A = 3.25 B = 22
a = 100 b = 50
v0 = 6 C = 135


(2.4)


We show in section 2.2.4 that the behaviour of the neural mass model is fairly sensi-


tive to the choice of the values of these parameters. Indeed changes as small as 5%


in these values produce some fairly different behaviours.
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Figure 2.4: Activities of the unit shown in figure 2.1 when simulated with a uniformly


distributed white noise (between 120 and 320 Hz) as input. The different curves show


different activities depending on the value of the parameter C. The third curve from


the top looks like alpha activity and has been obtained for C = 135 (From [58]).
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The quantity p represents the lumped activity of the brain areas connected to the


unit. Jansen and Rit chose p(t) to be a uniformly distributed noise ranging from 120


to 320 pulses per second as they wanted to model non-specific input (they used the


terms background spontaneous activity). This noise dynamics allowed them to pro-


duce alpha-like activity. Similarly, Wendling and his colleagues used a white Gaus-


sian noise (mean 90 and standard deviation 30) for p(t) and observed the emission of


spikes that was reminiscent of an epileptic activity. We show in the next section that


these two different behaviours can be nicely accounted for by a geometric study of the


system (2.3) through its bifurcations.


2.2 BIFURCATIONS AND OSCILLATIONS


In this section we consider p as a parameter of the system and propose to


study the behavior of a unit when p varies. We therefore study the dynamical system


(2.3) all parameters, but p, being kept constant and equal to the values set by Jansen


and Rit (see (2.4)). In section 2.2.4 we extend this analysis to other values of the


parameters in (2.4).


Let Y = (y0, . . . , y5)
T , the system has the form


Ẏ = f(Y, p),


where f is the smooth map from R
6 to R


6 given by (2.3) and p is a parameter.


We are interested in computing the fixed points and periodic orbits of the system


as functions of p because they will allow us to account for the appearance of such


activities as those shown in figures 2.4 (alpha-like activity) and 2.5 (epileptic spike-


like activity).


2.2.1 Fixed points


The one parameter family of fixed points


We look for the points Y where the vector field f(., p) vanishes (called fixed points,


critical points or equilibrium points). Writing Ẏ = 0 we obtain the system of equa-


tions 




y0 = A
a Sigm[y1 − y2] y3 = 0


y1 = A
a (p+ C2Sigm[C1y0]) y4 = 0


y2 = B
b C4Sigm[C3y0] y5 = 0,


(2.5)


which leads to the (implicit) equation of the one-parameter family of equilibrium


points in the (p, y = y1 − y2) plane:


y =
A


a
p+


A


a
C2Sigm


[A
a
C1Sigm(y)


]
− B


b
C4Sigm


[A
a
C3Sigm(y)


]
(2.6)


As mentioned before, y = y1 − y2 can be thought of as representing the EEG activity


of the unit and p is our parameter of interest. We show the curve defined by (2.6) in


figure 2.6.a. The number of intersections between this curve and a vertical line of


equation p = constant is the number of equilibrium points for this particular value of


p. We notice that for p ≈ 110 − 120, the system goes from three equilibrium points to


a single one. We also note that the curve has been drawn for some negative values of
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Figure 2.5: (a)-(e) Activities of the unit shown in figure 2.1 when simulated with a


white Gaussian noise as input (corresponding to an average firing rate between 30


and 150 Hz). The authors varied the excitation/inhibition ratio A/B. As this ratio is


increased we observe sporadic spikes followed by increasingly periodic activities. (f)-(i)


Real activities recorded from epileptic patients before (f,g) and during a seizure (h,i)


(From [119]).


56







p. These points do not have any biological meaning since p is a firing rate. It turns


out though that they play a central role in the mathematical description of the model


(see section 2.2.2).


The coordinates of the singular points cannot be written explicitely as functions of p
but every singular point is completely determined by the quantity y. More precisely,


the coordinates of every singular point S(y) have the following form :


S(y) =
(
A


a
Sigm(y)


A


a
(p + C2Sigm[C1


A


a
Sigm(y)])


B


b
C4Sigm[C3


A


a
Sigm(y)] 0 0 0


)⊤


(2.7)


p and y being related through equation (2.6).


Local study near the singular points


In order to study the behavior of the system near the fixed points we linearize it and


calculate its Jacobian matrix, i.e. the partial derivative J of f(., p) at the fixed point


S(y). It is easy but tedious to show that at the fixed point S(y) we have


J (S(y)) =


(
03 I3


KM(y) −K


)
,


where K = 2diag(a, a, b), M(y) =






−a/2 γ(y) −γ(y)
δ(y) −a/2 0
θ(y) 0 −b/2



, I3 is the three-


dimensional identity matrix and 03 the three-dimensional null matrix.


The three functions γ, δ and θ are defined by


γ(y) = A
2 Sigm′(y)


δ(y) = AC1C2


2 Sigm′(C1y0(y))


θ(y) = BC3C4


2 Sigm′(C3y0(y)),


where y0(y) is the first coordinate of S(y) and Sigm′ is the derivative of the function


Sigm.


We compute the eigenvalues of J along the curve of figure 2.6.a to analyze the sta-


bility of the family of equilibrium points. The results are summarized in figure 2.6.b.


The solid portions of curve correspond to stable fixed points (all eigenvalues have a


negative real part) and the dashed ones to unstable fixed points (some eigenvalues


have a positive real part). Stars indicate points where at least one eigenvalue of the


system crosses the imaginary axis, having therefore a zero real part. These points


are precious landmarks for the study of bifurcations of the system.


2.2.2 Bifurcations and oscillatory behaviour in Jansen’s model


A bifurcation is a drastic and sudden change in the behavior of a dynamic system


that occurs when one or several of its parameters are varied. Often it corresponds to


the appearance or disappearance of limit cycles. Describing oscillatory behaviours in
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Jansen’s model is therefore closely related to studying its bifurcations. In our case


when p varies from −∞ to +∞ the system undergoes five bifurcations (remember


that only the positive values of p are biologically relevant).


We now describe these bifurcations from a somewhat intuitive viewpoint but our re-


sults are grounded in the mathematical theory of bifurcations [10, 11, 55, 68, 86]


and the extensive use of the software XPP-Aut due to Bard Ermentrout (available on


http://www.pitt.edu/˜phase/ ). We were also inspired by bifurcation studies of


single neuron models (see [52, 56, 96]).


Hopf bifurcations and alpha activity in Jansen’s model


When p is varied smoothly the eigenvalues of the fixed points move smoothly in the


complex plane: when two complex conjugate eigenvalues cross the imaginary axis the


system undergoes in general what is called a Hopf bifurcation (see figure 2.7).


Two of them happen in Jansen’s model (if we ignore the negative values of p) for


p = 89.83 and p = 315.70. A theorem due to Hopf [86] shows 1 that for p = 89.83 a


one parameter family of stable periodic orbits appears at the fixed point that has


two complex conjugate eigenvalues crossing the imaginary axis towards positive real


parts. These periodic orbits persist till p = 315.70 where a second Hopf bifurcation


occurs: the two eigenvalues whose real parts became positive for p = 89.83 see


them become negative again, corresponding to the (re)creation of a simple attractive


fixed point. This is shown in figure 2.6.c: for p between 89.83 and 315.70, there is a


family of periodic orbits (we call them Hopf cycles from now on) parametrized by p
for which the minimal and maximal y values have been plotted (thick oval curve).


Numerically, using XPP-Aut, we find that these oscillations have a frequency around


10 Hz, which corresponds to alpha activity. So it appears that alpha-like activity in


Jansen’s model is determined by Hopf cycles. Interestingly enough, the system does


not display any Hopf bifurcation if we approximate the sigmoid by a piecewise linear


function, or if we try to reduce the dimensionality of the system using lower order


postsynaptic responses or by singular perturbation theory [11]. In these cases the


system is unable to produce alpha activity.


Let us interpret Jansen and Rit’s results in the light of our mathematical analysis.


They report observing alpha activity (third curve in figure 2.4) when they use a uni-


formly distributed noise in the range 120-320 Hz at the entry of the system. This


is easy to account for if we look at figure 2.6.c: in this domain of p values, the Hopf


cycles are essentially the only attractors of the dynamical system (2.3). So, at every


time instant t, its trajectories will tend to coil around the Hopf cycle corresponding to


p = p(t). We will therefore see oscillations of constant frequency and varying ampli-


tude leading to the waxing and waning activity reported by Jansen and Rit.


Global bifurcations and spike-like epileptic activity


Hopf bifurcations are called local because their appearance only depends on local


properties of the dynamical system around the bifurcation point. In figure 2.5, we see


that the system is able to display spike-like activities that resemble certain epileptic


1 The proof of the existence of a Hopf bifurcation relies on the calculation of the Lyapunov number at


the bifurcation points.
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Figure 2.6: a) Curve defined by equation (2.6). For each value of p, the curve yields the


coordinate(s) y of the corresponding fixed point(s). b) Fixed points and their stability:


stable fixed points lie on the solid portions of the curve and unstable points lie on the


dashed ones. Stars correspond to transition points where the Jacobian matrix has


some eigenvalues with zero real part. c) Curve of the fixed points with two branches of


limit cycles (shaded regions bounded by thick black curves). The stars labeled 3 and


5 are Hopf bifurcation points. The oval between them is the branch of Hopf cycles: for


each 89.83 ≤ p ≤ 315.70, the thick black curves between points 3 and 5 give the highest


and lowest y values attained by the Hopf cycle. The other branch of limit cycles lies


in the domain between the star labelled 1, where there is a saddle-node bifurcation


with homoclinic orbit and the dash-dotted line 4 representing a fold bifurcation of


limit cycles. This kind of representation is called a bifurcation diagram. d) A Hopf


bifurcation at the point labeled 2 (p = −12.15) gives rise to a branch of unstable limit


cycles that merges with the branch of stable cycles lying between the point labeled 1


and the dashed line labeled 4. This phenomenon is called a fold bifurcation of limit


cycles.
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periodic orbit


stable fixed point:


unstable fixed point:


bifurcating point:


Figure 2.7: Projection of a Hopf bifurcation in a subplane of the phase space. Left.


Stable fixed point with an exponentially converging trajectory (all eigenvalues have a


negative real part). Center. Bifurcating point with a trajectory converging infinitely


slowly (a pair of complex conjugate eigenvalues lie on the imaginary axis, having there-


fore a negligible attractive power). Right. The bifurcating point has turned unstable


(the two complex conjugate eigenvalues have a positive real part) and a periodic orbit


has emerged from it.


EEG recordings [119]. These activities arise from a branch of large stable periodic


orbits delimited by a pair of global bifurcations (i.e. depending not only on local


properties of the dynamical system) that correspond to the star labeled 1 and the


dash-dotted line labeled 4 in figure 2.6.c. From now on, we will call these orbits spike


cycles.


The branch of spike cycles begins for p = 113.58, thanks to a saddle-node bifurcation


with homoclinic orbit 2 (see figure 2.8 and [68, 86]).


It ends for p = 137.38 because of a fold bifurcation of limit cycles that we identified


with XPP-Aut. This bifurcation results from the fusion of a stable and an unstable


family of periodic orbits. The stable family is the branch of spike cycles and the


unstable family originates from a Hopf bifurcation occuring at p = −12.15.


Thanks to XPP-Aut, we have been able to plot the folding and the associated Hopf


bifurcation with respect to the y0 axis (see figure 2.6.d). So far we have shown the


bifurcation diagrams in the (p, y) plane, but for technical reasons due to XPP-Aut,


we show the bifurcation diagram in the (p, y0) plane in this case. Its general proper-


ties are the same though. For example we recognize the S shape of the fixed points


diagram and the relative position of landmarks 1, 2 and 4.


Contrary to the Hopf cycles whose periods remains around 10 Hz, the spike cycles


can display every frequency in the range 0 − 5 Hz (it increases with p) so that they


are able to reproduce the various “spiking” activities observed in figure 2.5.


In this case also we can identify the central role played by p in shaping the output of


the unit. Wendling et al. used a Gaussian noise with mean 90 and standard deviation


30 to produce the spikes in figure 2.5 resulting in an input to the unit essentially


varying between 30 and 150 Hz, which is quite low compared to the range used by


2 The proof of the existence of this saddle-node bifurcation with homoclinic orbit (SNIC) uses a theo-


rem due to Shil’nikov [68].
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heteroclinic orbit homoclinic orbit periodic orbit


stable fixed point: unstable fixed point: saddle fixed point:


Figure 2.8: Projection of a SNIC bifurcation in a subplane of the phase space. The


figure features three invariant circles (i.e. closed curves composed of one or more tra-


jectories). Left. An heteroclinic orbit (i.e. a curve composed of two trajectories emerging


from the same unstable fixed point and converging to the same stable fixed point) sur-


rounds an unstable fixed point. Center. The two fixed points belonging to the invariant


circle merge into a semi-stable saddle fixed point. The resulting homoclinic orbit has


an infinite period. Right. The invariant circle turns into a periodic orbit as the fixed


points disappear.


Jansen and Rit. Let us first distinguish two parts in the curve of fixed points in


figure 2.6.c. We call lower branch the set of stable fixed points below the star labelled


1 and upper branch the one between the stars labelled 2 and 3. For p between 30


and 90 the system displays a classical bistable behaviour with two stable fixed points


(one on each branch), the lowest fixed points appearing to be dominant: we found


experimentally that the basin of attraction of the upper point is not very large, so that


one has to start quite close to it in order to converge to it. As a result, a low input


(p ≤ 90) produces in general a low output: the trajectory is attracted by the lower


branch. For p between 110 and 140, we are in the range of p values where spike-like


activity can appear and where spiking competes with Hopf cycles, but trajectories


near the lower branch are attracted by spike cycles (as we will see in 2.2.3) hence


producing spike-shaped activities. These two facts – attraction to the lower branch


and preference of the lower branch for spike cycles – allow us to understand how the


model can produce epileptic-like activities.


2.2.3 Synthesis


We now have in hands all the ingredients to describe the activity of this neural mass


model when stimulated by a slowly varying input. For that purpose we computed


two trajectories (or orbits) of the system with p increasing linearly in time at a slow


rate (dp/dt = 1). The system was initialized at the two stable fixed points at p = 0:


the stable state on the lower branch and the one on the upper branch (see stars in


figure 2.9).


As long as p ≤ 89.83, the two trajectories are “flat”, following their respective branches
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of fixed points (figure 2.10, p = 80). After the Hopf bifurcation occurring at p = 89.83
the orbit corresponding to the upper branch naturally coils on the Hopf cycles branch


(figure 2.10, p = 100), resulting in alpha-like activity. The trajectory on the lower


branch does the same with the spike cycles as soon as p reaches the value 113.58
(figure 2.10, p = 125). As p ≥ 137.38, the only remaining attractor is the Hopf cycle


branch so that the system can only exhibit alpha-like behaviour (figure 2.10, p = 200).


For high values of p (≥ 315.70), there is only one stable fixed point and the trajectory


is “flat” again.


These results lead us to distinguish two states, the lower and the upper, for the unit.


The lower state is described by the combination of the lower branch of fixed points


that correspond to rest, and the spike cycles (thick lines in figure 2.9). It corresponds


to positive values of p less than 137.38. The upper state is described by the upper


branch of fixed points, the Hopf cycle branch and the branch of fixed points following


it (thin lines in figure 2.9). It corresponds to positive values of p. These states are


relevant for slow dynamics of the input p. In effect, a trajectory starting near one


of these states will stay in its neighborhood when p is varied slowly (increasing or


decreasing). When the unit is in its lower state and p becomes larger than 137.38,


it jumps to its upper state and cannot return to its lower state (if p varies slowly).


Therefore, when in its upper state, a unit essentially produces alpha-like activity and


its input must be decreased abruptly to bring it back to its lower state. Conversely,


starting in the lower state a unit can be brought to the upper state by an abrupt


increase of its input. It can also stay in its lower state regime, between rest and


spiking, if the input and its variation remains moderate.


2.2.4 What about other parameters?


We think that the bifurcation analysis with respect to p is the most relevant since


this parameter is expected to vary more and faster than the others, but it is inter-


esting to build bifurcation diagrams with respect to p with different settings of the


other parameters. We indeed observed that varying any parameter by more than 5%
leads to quite drastic changes in the bifurcation diagram and to significantly less rich


behaviours of the unit. These changes fall into two broad categories (see figure 2.11).


For low values of A, B or C, or high values of a or b, the system is no longer able


to produce oscillations (figure 2.11.a). For high values of A, B or C, or low values


of a or b, we observed a new kind of bifurcation diagram (an example is given in


figure 2.11.b). In this regime, the system has only one stable state for each value of p,
except sometimes in a narrow range of p values (in the figure, 173.1 ≤ p ≤ 180.4). The


range where spiking can occur is broader and the one for alpha activity is severely


truncated. Moreover, spiking does not coexist with alpha rhythm anymore so that


(except for a very small range of p values) it is the only available behaviour on a


broad interval of p values (in the figure, 112.6 ≤ p ≤ 173.1). So spiking becomes really


prominent.


The mathematical explanation for this new diagram is the fusion of the Hopf cycles


branch with the branch of unstable periodic orbits that can be seen in figure 2.6.d. It


results in a new organization of periodic orbit branches. We have two stable branches


(for 112.6 ≤ p ≤ 180.4 and 173.1 ≤ p ≤ 457.1), linked by a branch of unstable orbits.


Transitions between stable and unstable orbits are made via fold bifurcations of limit


cycles like the one in figure 2.6.d.
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Figure 2.9: Diagram of the stable attractors (stable fixed points and stable limit cycles)


of the model described by equations (2.3). The stars show the starting points of the two


trajectories we simulated with p slowly increasing. Their time courses have been frozen


for p = 80, 100, 125 and 200 (as indicated by the vertical dashed lines on this figure)


and can be seen in figure 2.10. Lower and upper states of the unit correspond to the


thick and thin lines, respectively.


63







80 80.5 81 81.5
0


2


4


6


8


10


12


t (s)


y 
(m


V
)


p=80


100 100.5 101 101.5
0


2


4


6


8


10


12


t (s)


y 
(m


V
)


p=100


125 125.5 126 126.5
0


2


4


6


8


10


12


t (s)


y 
(m


V
)


p=125


200 200.5 201 201.5
0


2


4


6


8


10


12


t (s)


y 
(m


V
)


p=200


Figure 2.10: Activities produced by Jansen’s neural mass model for typical values


of the input parameter p (see text). The thin (respectively thick) curves are the time


courses of the output y of the unit in its upper (respectively lower) state. For p > 137.38,


there is only one possible behaviour of the system. Note: in the case of oscillatory


activities we added a very small amount of noise to p (a zero mean Gaussian noise


with standard deviation 0.05).
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Figure 2.11: The stable attractors of the system in two typical cases encountered for


different settings of parameters A, B, C, a or b. a) corresponds to lower (respectively


higher) values of A, B, C (respectively a and b) than those given by (2.4). Here, A = 3
instead of 3.25: there are no more limit cycles. b) corresponds to higher (respectively


lower) values of A, B, C (respectively a and b). Here C = 140 instead of 135. The


spiking behaviour is more prominent and is the only one available in a wide range of


p values (112.6 ≤ p ≤ 173.1). Except in a narrow band (173.1 ≤ p ≤ 180.4), the system


displays one single behaviour for each value of p.


2.3 CONCLUSION


So, Jansen’s model is a raw neuronal network model, essentially bistable,


exhibiting oscillatory behaviours that matches certain oscillatory EEG signals from


the cortex: 10Hz alpha activity and epileptic spikes up to 5Hz. Now we raise the


question of the spatial scale of the cortical sources of such signals. Alpha activity is


a common EEG signal arising from the synchronization of several thousands of neu-


rons. EEG spatial resolution is relatively poor (centimeter scale). However, stereo-


electroencephalography (SEEG) or magnetoencephalography (MEG) can provide a


higher spatial resolution (millimeter scale) where alpha activity and epileptic spikes


are also observed, which suggests that Jansen’s model could also be adapted to this


lower scale.


Jansen, Lopes Da Silva, David, Friston, Wendling and their co-workers have used


neural masses to build large scale networks of cortical areas and thalamic nuclei con-


nected via white matter fibers. In these models, units like Jansen’s column actually


stood for whole cortical areas or parts of epileptogenic networks. They have succeeded


in modeling complex dynamic behaviours involved in epilepsy, evoked potentials or


long range functional connectivity between different regions of the brain, that they


have correlated with MEG/EEG/SEEG signals.


We would like to use the mesoscopic approach for finer scales of cortical modeling.


In the next section, we study several models of neural fields seen as 2D continua of


small cortical columns.
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Part II


Mathematical neural field


models
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CHAPTER 3


INFINITE NEURAL FIELD MODELS


OVERVIEW


Neural field models first appeared in the 50’s, but the theory really took off in the


70’s with the works of Wilson and Cowan [120, 121] and Amari [3, 4]. Neural fields


are continuous networks of interacting neural masses, describing the dynamics of the


cortical tissue at the population level. In this chapter, we study homogeneous station-


ary solutions (i.e independent of the spatial variable) and bump stationary solutions


(i.e. localized areas of high activity) in two kinds of infinite two-dimensional neu-


ral field models composed of two neuronal layers (excitatory and inhibitory neurons).


We particularly focus on bump patterns, which have been observed in the prefrontal


cortex and are involved in working memory tasks [42]. We first show how to derive


neural field equations from the spatialization of mesoscopic cortical column models.


Then, we introduce classical techniques borrowed from Coombes [24] and Folias and


Bressloff [38] to express bump solutions in a closed form and make their stability


analysis. Finally we instantiate these techniques to construct stable two-dimensional


bump solutions. This chapter corresponds to the research report [34] (2007) and will


be included in a future paper, currently in preparation.
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We consider the formation of bumps in an infinite two-dimensional neural field


composed of two interacting layers of neural masses: excitatory and inhibitory


masses such as shown in figure 3.1. Each point of the field can be viewed as a cortical


column composed of two neural masses (one in each layer). Columns are assembled


spatially to form the neural field, which is meant to represent a macroscopic part of


the neocortex, e.g. a cortical area.


Excitatory layer


Inhibitory layer


Wee


Wii


WieWei


Figure 3.1: Two interacting neuronal layers of excitatory and inhibitory cells.


In this chapter, we consider an infinite neural field. Then each layer can be identified


with R
2. Neural masses are characterized by their layer, e or i, and their horizontal


coordinates r = (r1, r2).


3.1 NEURAL FIELD EQUATIONS


3.1.1 Interactions between a few neural masses


The following derivation is built after Ermentrout’s review [31]. We consider n inter-


acting neural masses. Each mass k is described by its membrane potential Vk(t) or


by its instantaneous firing rate νk(t), the relation between the two quantities being


of the form νk(t) = Sk(Vk(t)) [27, 41], where Sk is sigmoidal and depends on the layer


of neuron k. Here we consider the limiting case of a Heaviside function


Sx(V ) = νxH(V − θx), x ∈ {e, i},


where H is the Heaviside distribution, νx the maximal firing rate of neurons of type


x and θx their excitabillity threshold.


The mass m is connected to the mass k. A single action potential from m is seen as


a post-synaptic potential PSPkm(t − s) by k, where s is the time of the spike hitting


the terminal and t the time after the spike. We neglect the delays due to the distance


travelled down the axon by the spikes. Assuming that the post-synaptic potentials
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sum linearly, the membrane potential of the mass k is


Vk(t) =
∑


m,p


PSPkm(t− tp)


where the sum is taken over presynaptic masses and the arrival times of the spikes


produced by them. The number of spikes arriving between t and t + dt is νm(t)dt.
Therefore we have


Vk(t) =
∑


m


∫ t


t0


PSPkm(t− s)νm(s) ds =
∑


m


∫ t


t0


PSPkm(t− s)Sm(Vm(s)) ds,


or, equivalently


νk(t) = Sk


(
∑


m


∫ t


t0


PSPkm(t− s)νm(s) ds


)
(3.1)


There are two main simplifying assumptions that appear in the literature [31] and


yield two different models.


The voltage-based model


The assumption, made in [51], is that the post-synaptic potential has the same shape


no matter which presynaptic neuron type caused it, the sign and amplitude may vary


though. This leads to the relation


PSPkm(t) = WkmPSPk(t).


If Wkm > 0 mass m excites mass k whereas it inhibits it when Wkm < 0. Finally, if we


assume that PSPkm(t) = Wkme
−t/τkH(t) (where H is the Heaviside distribution), or


equivalently that


τk
dPSPkm(t)


dt
+ PSPkm(t) = Wkmτkδ(t), (3.2)


we end up with the following system of ordinary differential equations


dVk(t)


dt
+
Vk(t)


τk
=
∑


m


WkmSm(Vm(t)) + Iext
k (t), k = 1, ..., n, (3.3)


that describes the dynamic behaviour of the network. We have added an external


current Iext
k (t) ≥ 0 to model external input to mass k. We introduce the n× n matrix


W = Wkm, and the function S : R
n → R


n such that S(x) is the vector of coordinates


Sk(xk). We rewrite (3.3) in vector form and obtain the following system of n ordinary


differential equations


V̇ = −LV + WS(V) + Iext, (3.4)


where L is the diagonal matrix L = diag(1/τk).


The activity-based model


The assumption is that the shape of a post-synaptic potential depends only on the


nature of the presynaptic mass, that is


PSPkm(t) = WkmPSPm(t).
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As above we suppose that PSPkm(t) satisfies the differential equation (3.2) and define


the activity to be


Am(t) =


∫ t


t0


PSPm(t− s)νm(s) ds.


A similar derivation yields the following set of ordinary differential equations


dAk(t)


dt
+
Ak(t)


τk
= Sk


(
∑


m


WkmAm(t) + Iext
k (t)


)
, k = 1, ..., n.


We rewrite this in vector form


Ȧ = −LA + S(WA + Iext). (3.5)


3.1.2 Neural fields models


Following the above rules for a discrete network of masses, we form a two layers


continuum of masses.


We note V(r, t) (respectively A(r, t)) the 2-dimensional state vector at the point r of


the continuum and at time t. We introduce the 2 × 2 matrix function W(r, r′) which


describes how the mass at point r′ influences that at point r. More precisely, Wxy(r, r
′)


describes how the mass in layer y at point r′ influences the mass in layer x at point r.


We call W the connectivity matrix function. Equation (3.4) can now be extended to


V̇(r, t) = −LV(r, t) +


∫


R2


W(r, r′)S(V(r′, t)) dr′ + Iext(r, t), (3.6)


and equation (3.5) to


Ȧ(r, t) = −LA(r, t) + S


(∫


R2


W(r, r′)A(r′, t) dr′ + Iext(r, t)


)
.1 (3.7)


In detail, we have the following systems


{
V̇e(r, t) + Ve(r,t)


τe
=
∫


R2 Wee(r, r
′)Se(Ve(r


′, t)) +Wei(r, r
′)Si(Vi(r


′, t)) dr′ + Iext
e (r, t)


V̇i(r, t) + Vi(r,t)
τi


=
∫


R2 Wie(r, r
′)Se(Ve(r


′, t)) +Wii(r, r
′)Si(Vi(r


′, t)) dr′ + Iext
i (r, t)


,


(3.8)


and


{
Ȧe(r, t) + Ae(r,t)


τe
= Se


(∫
R2 Wee(r, r


′)Ae(r
′, t) +Wei(r, r


′)Ai(r
′, t) dr′ + Iext


e (r, t)
)


Ȧi(r, t) + Ai(r,t)
τi


= Si


(∫
R2 Wie(r, r


′)Ae(r
′, t) +Wii(r, r


′)Ai(r
′, t) dr′ + Iext


i (r, t)
) .


(3.9)


In this study we will consider W translation invariant, W(r, r′) = W(r − r′).


3.2 STUDY OF BUMP SOLUTIONS


This is an extension of the work of Bressloff, Coombes and Folias [24, 38].


Another interesting study on stationary patterns in two-dimensional neural fields


can be found in [85].


1Although they are similar, equations (3.6) and (3.7) are not equivalent, as discussed in [31].
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3.2.1 Stationary solutions


We look for stationary solutions of the systems (3.8) and (3.9):


{
ve(r) = τe


∫
R2 Wee(r− r′)Se(ve(r


′)) +Wei(r − r′)Si(vi(r
′)) dr′ + τe I


ext
e (r)


vi(r) = τi
∫


R2 Wie(r− r′)Se(ve(r
′)) +Wii(r − r′)Si(vi(r


′)) dr′ + τi I
ext
i (r)


(3.10)


and
{
ae(r) = τe Se


(∫
R2 Wee(r− r′)ae(r


′) +Wei(r − r′)ai(r
′) dr′ + Iext


e (r)
)


ai(r) = τi Si


(∫
R2 Wie(r − r′)ae(r


′) +Wii(r − r′)ai(r
′) dr′ + Iext


i (r)
) . (3.11)


We introduce the terms Ŵxy =
∫


R2 Wxy(r) dr.


Homogeneous solutions


Homogeneous stationary solutions (i.e., independent of the space variable) verify the


systems 




ve = τe


(
ŴeeSe(ve) + ŴeiSi(vi) + Iext


e


)


vi = τi


(
ŴieSe(ve) + ŴiiSi(vi) + Iext


i


) (3.12)


and 




ae = τe Se


(
Ŵeeae + Ŵeiai + Iext


e (r)
)


ai = τi Si


(
Ŵieae + Ŵiiai + Iext


i (r)
) . (3.13)


These systems have at most four solutions. In the case of (3.12), (ve, vi) possibly


have four values because there are two possible values for each Sx(vx) (namely, 0
and νx), depending on whether ve and vi are below or above the thresholds θe and


θi. We obtain two expressions, for ve and vi, and they have to satisfy the threshold


conditions, depending on Ŵ, Iext and τx, to be validated as actual solutions. In detail,


the four possible solutions, with their threshold conditions are


{
ve = τe I


ext
e ≤ θe


vi = τi I
ext
i ≤ θi


(3.14)


{
ve = τe Ŵee νe + τe I


ext
e ≥ θe


vi = τi Ŵie νe + τi I
ext
i ≤ θi


(3.15)


{
ve = τe Ŵei νi + τe I


ext
e ≤ θe


vi = τi Ŵii νi + τi I
ext
i ≥ θi


(3.16)







ve = τe


(
Ŵee νe + Ŵei νi + Iext


e


)
≥ θe


vi = τi


(
Ŵie νe + Ŵii νi + Iext


i


)
≥ θi


(3.17)


One can easily see that some of these pairs of threshold conditions are mutually


exclusive, namely (3.14) and (3.16), (3.15) and (3.16), and (3.15) and (3.17). Since in


three pairs of solutions, at least two of them will be incompatible, there can be at


most two homogeneous stationary solutions. The case of zero solutions is impossible


because it would require two mutually exclusive conditions like τe I
ext
e > θe and


τe Ŵee νe + τe I
ext
e < θe. Hence, one and two solutions are the only possible scenarii


and both can actually occur. For example, (3.14) and (3.15) are compatible, but if
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τe I
ext
e > θe, only (3.15) remains true.


In the case of (3.13), we assign a value to each ax (0 or τxνx) and impose that the term


inside each Sx verifies the corresponding threshold condition. We can derive a similar


discussion as above and prove that this system can only have one or two solutions.


Remark that in this second case, the input needs not to be homogeneous.


Circularly symmetric bumps solutions


Looking for bump solutions means that we pay special attention to the domain of the


field where the components of v or a are “high”. Indeed, bumps can be defined as


localized high activity areas on the neural field. Here “high activity” means that the


terms in the sigmoids are above the characteristic thresholds. We look at rotationally


invariant (i.e. depending only on r = ‖r‖) stationary solutions centered at the origin


of R
2. It is not difficult to check on systems (3.10) and (3.11) that this only makes


sense for Iext and W rotationally invariant.


We look for bump solutions so that Se and Si are on a high state only in the disks Dre


and Dri
, of radii re and ri respectively. If we define


bxy(r, ρ) = νy


∫


Dρ


Wxy(|r − r′|) dr′, 2


these bumps necessarily verify


{
ve(r) = τe


(
bee(r, re) + bei(r, ri) + Iext


e (r)
)


vi(r) = τi
(
bie(r, re) + bii(r, ri) + Iext


i (r)
) (3.18)


and {
ae(r) = τe Se


(
τebee(r, re) + τibei(r, ri) + Iext


e (r)
)


ai(r) = τi Si


(
τebie(r, re) + τibii(r, ri) + Iext


i (r)
) . (3.19)


At this point, it looks like we have an explicit formula for the bumps in the voltage-


based and the activity-based frameworks. It is not true, since for a general (re, ri) the


corresponding solution may not be consistent with the threshold conditions, which for


the voltage case amount to


{
τe
(
bee(r, re) + bei(r, ri) + Iext


e (r)
)
> θe, iff r < re


τi
(
bie(r, re) + bii(r, ri) + Iext


i (r)
)
> θi, iff r < ri


, (3.20)


and for the activity case to


{
τebee(r, re) + τibei(r, ri) + Iext


e (r) > θe, iff r < re
τebie(r, re) + τibii(r, ri) + Iext


i (r) > θi, iff r < ri
. (3.21)


So, to solve the bumps existence problems, one has to find re and ri such that the


(necessary and) sufficient condition (3.20) or (3.21) is satisfied. We will refer to ex-


pressions (3.18) and (3.19) as pseudo-bumps.


As in [24] , we can rewrite b using Bessel functions. The Hankel transform of W (r)
is defined by


W̃ (k) =


∫ ∞


0
W (r)J0(kr)r dr,


2Let us recall that νy > 0 and that the sign of Wxy depends on whether y is excitatory or inhibitory.
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where Jν is the Bessel function of the first kind of order ν, and we have the following


property


W̃ (k) =


∫


R2


eik.rW (r) dr,


where we have considered the rotationally invariant 2D function W (r) = W (r). Then,


we can write


W (r) =


∫ ∞


0
W̃ (k)J0(rk)k dk.


According to [38], we obtain
∫


Dρ


W (|r − r′|) dr′ = 2πρ


∫ ∞


0
W̃ (k)J0(rk)J1(ρk) dk.


Then we can use the properties of Bessel functions. For example, we can get rid of


integrals in the expression of the bumps with appropriate connectivity kernels. In


[24] the author considers the following approximation


e−r ≈ 4


3
(K0(r) −K0(2r)),


where Kν is the modified Bessel function of the second type of order ν, and exploit


the fact that the Hankel transform of K0(pr) is equal to Hp(k) = (k2 + p2)−1. So, if we


choose to approximate exponential connectivities of the form
{
Wee(r) = ceee


−δer Wie(r) = ciee
−δer


Wei(r) = ceie
−δir Wii(r) = ciie


−δir ,


we have


W̃ee(k) = 4
3cee


(
1


k2 + δ2e
− 1
k2 + 4δ2e


)


W̃ei(k) = 4
3cei


(
1


k2 + δ2i
− 1
k2 + 4δ2i


)


W̃ie(k) = 4
3cie


(
1


k2 + δ2e
− 1
k2 + 4δ2e


)


W̃ii(k) = 4
3cii


(
1


k2 + δ2i
− 1
k2 + 4δ2i


)


, (3.22)


and use the following property to obtain the explicit formula for the bumps


∫ +∞


0
Hx(k)J0(rk)J1(ρk) dk =







1


x
I1(xρ)K0(xr) r ≥ ρ


1


x2ρ
− 1


x
I0(xr)K1(xρ) r < ρ


,


where Iν is the modified Bessel function of the first type of order ν. Hence, we get


bxy(r, ρ) =
8


3
π
νy


δy
cxy ρ







I1(δyρ)K0(δyr) −
1


2
I1(2δyρ)K0(2δyr) r ≥ ρ


3


4δyρ
− I0(δyr)K1(δyρ) +


1


2
I0(2δyr)K1(2δyρ) r < ρ


. (3.23)


This thus provide an expression for the pseudo-bumps (3.18) and (3.19) explicitly


depending only on r.


In these developments we have seen how crucial is the choice of the connectivity


kernels to make bumps calculations tractable.
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3.2.2 Stability of the solutions


Homogeneous solutions


We make a linear stability analysis of the homogeneous solutions v of the system


(3.8). We consider perturbations of the form


V(r, t) = v + φ(r)eλt


with |φ| ≪ |v|, inject them in the corresponding linearized equation, and simplify the


exponential terms. We have therefore


(λId + L)φ(r) =


∫


R2


W(|r − r′|)DS(v)φ(r′) dr′,


and since DS(v) = 0, we obtain


(λId + L)φ(r) = 0,


which has two negative solutions λ = − 1
τe


and λ = − 1
τi


.


Hence, the homogeneous solutions are stable. A similar derivation guarantees the


stability of the homogeneous solutions in the activity case.


Bump solutions


Here we make a linear stability analysis of the bumps solutions v(r) and a(r) of


systems (3.8) and (3.9). We consider perturbations of the form


V(r, t) = v(r) + φ(r)eλt and A(r, t) = a(r) +ψ(r)eλt,


with |φ| ≪ |v| and |ψ| ≪ |a|, inject them in their corresponding linearized equations,


and simplify the exponential terms. We obtain


(λId + L)φ(r) =


∫


R2


W(|r − r′|)DS(v(r′))φ(r′) dr′


and


(λId + L)ψ(r) = DS


(∫


R2


W(|r − r′|)a(r′) dr′ + Iext(r)


)∫


R2


W(|r − r′|)ψ(r′) dr′.


We will use the fact that


DS(f(r)) =




δ(r − re)
|f ′e(re)|


0


0
δ(r − ri)
|f ′i(ri)|



 ,


where functions fxs only reach θx at rx.


In the voltage case, we obtain


λeφe(r) = αe


∫ 2π
0 Wee(|r − r′e|)φe(r


′
e) dθ


′ + αi


∫ 2π
0 Wei(|r − r′i|)φi(r


′
i) dθ


′


λiφi(r) = αe


∫ 2π
0 Wie(|r− r′e|)φe(r


′
e) dθ


′ + αi


∫ 2π
0 Wii(|r− r′i|)φi(r


′
i) dθ


′
, (3.24)


where r′x = [rx, θ
′]T , and


λx = λ+
1


τx
, αx =


rx
|v′x(rx)| .
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In the activity case, we have


λeψe(r) = βe/re δ(r − re)
∫


R2 Wee(|r − r′|)ψe(r
′) +Wei(|r − r′|)ψi(r


′) dr′


λiψi(r) = βi/ri δ(r − ri)
∫


R2 Wie(|r− r′|)ψe(r
′) +Wii(|r − r′|)ψi(r


′) dr′
,


where


βx =
rx


|(τeb′xe(rx, re) + τib
′
xi(rx, ri)) + Iext


x
′
(rx)|


.


We see that the mass of distributions ψe and ψi is concentrated on the circles {r = re}
and {r = ri} respectively because of the Dirac terms in the above formulas. So we can


rewrite them as


λeψe(r) = βe/re δ(r − re)
(
re
∫ 2π
0 Wee(|r − r′e|)ψe(r


′
e) dθ


′ + ri
∫ 2π
0 Wei(|r − r′i|)ψi(r


′
i) dθ


′
)


λiψi(r) = βi/ri δ(r − ri)
(
re
∫ 2π
0 Wie(|r − r′e|)ψe(r


′
e) dθ


′ + ri
∫ 2π
0 Wii(|r − r′i|)ψi(r


′
i) dθ


′
) .


(3.25)


Separation of radial and angular variables


We specialize the perturbations by separating angular and radial variables


ζm(r) = ζm(r)eimθ, m ∈ Z,


with ζ = φ or ψ. By a change of variable ϕ = θ′ − θ, we obtain


∫ 2π


0
Wyx(|r − r′x|)ζm


x (r′x) dθ′ = ζm
x (rx)eimθ


∫ 2π


0
Wyx(|r − rxe


iϕ|)eimϕ dϕ,


with ζ = φ or ψ, and set


hm
yx(r) =


∫ 2π


0
Wyx(|r − rxe


iϕ|)eimϕ dϕ =


∫ 2π


0
Wyx(


√
r2 + r2x − 2rrx cosϕ) cos(mϕ) dϕ.


Now, in the voltage case, equations (3.24) can be rewritten


λeφ
m
e (r) = αeφ


m
e (re)h


m
ee(r) + αiφ


m
i (ri)h


m
ei(r)


λiφ
m
i (r) = αeφ


m
e (re)h


m
ie (r) + αiφ


m
i (ri)h


m
ii (r)


.


We evaluate these equations for respectively r = re and r = ri, and set


M(m) =


(
αeh


m
ee(re) αih


m
ei(re)


αeh
m
ie(ri) αih


m
ii (ri)


)
.


Then we have (
M(m) −


(
λe 0
0 λi


))(
φm


e (re)
φm


i (ri)


)
= 0,


or equivalently (as soon as φm
e (re) or φm


i (ri) 6= 0)


det (M(m) − L − λId) = 0,


which is a second order polynomial in the variable λ.


System (3.24) is stable to a given perturbation (i.e. given m) if and only if both roots


of the above second order polynomial have a negative real part. This condition is


equivalent to


det (M(m) − L) > 0 and tr (M(m) − L) < 0. (3.26)
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For equations (3.25), the specialization of the perturbation gives


λeψ
m
e (r) = βe/re δ(r − re) (reψ


m
e (re)h


m
ee(r) + riψ


m
i (ri)h


m
ei (r))


λiψ
m
i (r) = βi/ri δ(r − ri) (reψ


m
e (re)h


m
ie(r) + riψ


m
i (ri)h


m
ii (r))


.


We integrate these expressions on R
+


λeψ
m
e (re) = βe/re (reψ


m
e (re)h


m
ee(re) + riψ


m
i (ri)h


m
ei (re))


λiψ
m
i (ri) = βi/ri (reψ


m
e (re)h


m
ie(ri) + riψ


m
i (ri)h


m
ii (ri))


,


and set


M′(m) =


(
βeh


m
ee(re)


ri


re
βih


m
ei(re)


re


ri
βeh


m
ie(ri) βih


m
ii (ri)


)
and M′′(m) =


(
βeh


m
ee(re) βih


m
ei(re)


βeh
m
ie(ri) βih


m
ii (ri)


)
.


Then the stability condition is


det
(
M′(m) − L


)
> 0 and tr


(
M′(m) − L


)
< 0, (3.27)


which is equivalent to


det
(
M′′(m) − L


)
> 0 and tr


(
M′′(m) − L


)
< 0. (3.28)


Hence we obtain the same condition as in the voltage case with βxs instead of αxs.


3.3 CONSTRUCTION OF BUMP SOLU-
TIONS


When the connections are weak, we see from (3.10) and (3.11) that


V → L−1Iext and A → L−1S(Iext).


So the form of the stationary solution is similar to the input.


Moreover, the solution is stable because the equations become


V̇ ≈ −LV + Iext and Ȧ ≈ −LA + S(Iext),


and the corresponding eigenvalues are λ = − 1
τe


and λ = − 1
τi


. Hence a stable bump


solution is easily obtained by choosing a bump-shaped input.


From now on, we will look at another, more complex particular case: self-sustained


states of localized high activity, corresponding to Iext = 0. Because of the similari-


ties between the equations of the two cases for the existence and stability of bumps,


we will focus on the voltage-case in the forthcoming derivations. We will consider


continuous, integrable connectivity kernels with radially decreasing absolute value


|Wxy|′(r) < 0. All illustrations and simulations will be performed with pseudo-bumps


given by bxys of the form (3.23). The parameters we have used to produce them are


shown in table 1.
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Parameters


(
cee cei
cie cii


)
(τe, τi) (δe, δi) (νe, νi)


Values


(
0.75 δe −0.08 δi
0.15 δe −0.02 δi


)
(0.01, 0.02) (1, 2) (1, 1)


Table 3.1: Parameters used in computations.


3.3.1 Existence


Each pair (re, ri) ∈ R+
2 defines a pseudo-bump by formula (3.18), but not all of these


pseudo-bumps are actual bumps satisfying the threshold conditions. Our goal here


is to identify subdomains of the (re, ri) plane where real bumps can be found, and


discuss the dependence of the solutions on the excitability thresholds θe and θi.


We first discuss the existence of putative bumps depending on the values of the ex-


citability thresholds of the layers.


The difficulty for the fulfillment of the sufficient conditions of existence (3.20) resides


in their global nature. So, we will first try to satisfy weaker, local criteria. A pair


(re, ri) ∈ R
2
+ being given, the corresponding pseudo-bump must satisfy three neces-


sary local conditions to be a real bump





vx(0) > θx


vx(rx) = θx


vx(+∞) < θx


, for x ∈ {e, i}.


Since vx(+∞) = 03, we can rewrite them more specifically as
{
θe = τe (bee(re, re) + bei(re, ri))
θi = τi (bie(ri, re) + bii(ri, ri))


(3.29)


and {
0 < bee(re, re) + bei(re, ri) < bee(0, re) + bei(0, ri)
0 < bie(ri, re) + bii(ri, ri) < bie(0, re) + bii(0, ri)


. (3.30)


In particular, given a pair of radii (re, ri) (and hence a pseudo-bump), a unique pair


of thresholds could satisfy the above conditions. The two threshold surfaces corre-


sponding to (3.29) have been plotted on figure 3.2.


Now that the thresholds are given, only a fraction of the pseudo-bumps satisfy the


inequalities at 0 and +∞. In figure 3.3, we have plotted the subdomain of the (re, ri)
plane where conditions (3.30) are fullfilled if we impose the adequate values for θe


and θi.


However, even in this subdomain pseudo-bumps are not guaranteed to be real


bumps. This is illustrated on figure 3.4.


3.3.2 Stability


Now that we have been able to construct a pair of real bumps, we study their stability.


A pair of bumps is stable if and only if conditions (3.26) are fulfilled for all m.


3vx(r) is a sum of terms of the form bxy(r, ρ) = νy


R
Dρ


Wxy(|r − r
′|) dr′, where ρ, the radius of the


integration domain, is fixed. As r → +∞, the terms Wxy(|r − r
′|) pointwise converge to 0, because Wxy


is radially decreasing and integrable. So, in virtue of Lebesgue’s theorem, each term bxy converges to


zero.
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Figure 3.2: Plot of θe(re, ri) (left) and θi(re, ri) (right).


Figure 3.3: Domain of the (re, ri) plane where conditions (3.30) are all satisfied (light


color).
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Figure 3.4: Examples of pseudo-bumps profiles (solid lines, red for the excitatory layer


and green for the inhibitory one) with their corresponding thresholds (dashed lines).


The little blue squares indicate the points (rx, θx). Left. This pseudo-bumps pair is


obtained for (re = 3, ri = 4), which belongs to the yellow domain in figure 3.3. It is


actually a pair of real bumps, since it respects the global conditions (3.20). Middle.


These pseudo-bumps are obtained for (re = 0.5, ri = 3). They do not even respect the


local conditions (3.30), so they are not real bumps. Right. These pseudo-bumps corre-


sponding to (re = 0.35, ri = 1) satisfy local conditions (3.30) but not global conditions


(3.20), so they are not real bumps.
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The terms hm
xy(rx) can be seen as Fourier coefficients. Hence they satisfy


lim
m→+∞


hm
xy(rx) = 0.


So M(m) → 0, and we have


det(M(m) − L) → 1


τeτi
> 0 and trace(M(m) − L) → − 1


τe
− 1


τi
< 0.


So, one should particularly care about “small” values of m in the stability analysis.


We show an example of stability analysis with the bump obtained for (re = 3, ri = 4)
(see figure 3.4). This particular bump is not stable as can be seen on figure 3.5 since


it will be destabilized by the isotropic component of a perturbation (m = 0).
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Figure 3.5: Plots of the determinant (left) and trace (right) of the matrix giving stabil-


ity conditions (3.26) for the bumps pair (re = 3, ri = 4). These bumps are not stable


since the determinant is negative for m = 0.


We can give an example of stable bumps. It is the case for (re = 8, ri = 8), as shown


on figure 3.6.
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Figure 3.6: Plots of the bumps profiles (left), and the determinant (center) and trace


(right) of the matrix giving stability conditions for the stable bumps pair (re = 8, ri =
8).


On figure 3.7, we show the domain of the (re, ri) plane where pseudo-bumps are stable


to all perturbations (i.e. all m ∈ N)4.


4In this particular parametrization of the neural field, it corresponds to the domain det(M(0)−L) > 0
since all domains {det(M(m)−L) ≤ 0} and {trace(M(m)−L) ≥ 0}, m ∈ N are included in {det(M(0)−
L) ≤ 0}
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Figure 3.7: Domain of the (re, ri) plane where pseudo-bumps are stable to all pertur-


bations (light color).


3.4 CONCLUSION


In this chapter, we have studied some basic properties of bump solutions


in a simplified neural field model. We have assumed that the field was infinite and


that the wave-to-pulse transforms were Heaviside-shaped. This allowed us to use


translation-invariant connectivity kernels and thanks to a right choice of these ker-


nels, to express bump solutions in a closed form, perform a linear stability analysis


on them and construct stable two-dimensional bumps.


However, those assumptions are of course unrealistic as one wants to model a part of


the cortical tissue. In addition, the classical Cauchy problem of existence and unique-


ness of solutions is ill-posed, because of discontinuities in the wave-to-pulse functions.


In the next chapter, we intend to overcome these problems by proposing a more


realistic neural field model defined on a compact domain and featuring Lipschitz-


continuous sigmoidal transforms.
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CHAPTER 4


BOUNDED NEURAL FIELD MODELS


OVERVIEW


In this chapter, we investigate basic properties of bounded neural fields featuring an


arbitrary number of neuronal populations. We first establish the well-posedness of


neural field equations under certain conditions and discuss the stability of their so-


lutions. Then, we look for homogeneous or locally homogeneous solutions, accounting


for partial or global synchrony among the cortical columns composing the field. The


theoretical results are finally illustrated through numerical examples. This chap-


ter is based on the research report [36] (2007). The corresponding paper has been


accepted for publication in SIAM Journal of Applied Mathematics.
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We model neural fields as continuous networks of cortical units, and investigate


the ability of these units to completely synchronize, i.e. to produce the same output


when receiving the same input independently of their initial state. We therefore


emphasize the dynamics and the spatio-temporal behaviour of these networks.


Contrary to the preceding chapter, we will here focus on compact neural fields, i.e.,


neural fields defined on a compact domain.


In section 4.1 we describe the local and spatial models of neural mass networks and


derive the equations that govern their spatio-temporal variations, as in the previous


chapter. In section 4.2 we analyze the problem of the existence and uniqueness of


the smooth general and homogeneous solutions of these equations. In section 4.3


we study the absolute stability of these solutions, i.e. their robustness to arbitrary


perturbations caused by changes of the initial conditions. In section 4.4 we extend


this analysis to the absolute stability of the homogeneous, i.e. independent of space,


solutions when they exist. A consequence of the absolute stability is the ability of the


network to completely synchronize. In section 4.5 we revisit the functional framework


of our analysis and extend our results to non-smooth functions with the effect that


we can discuss the existence and absolute stability of locally homogeneous solutions.


We also propose another extension of the model by generalizing the previous results


to higher order synaptic responses. In section 4.6 we present a number of numerical


experiments to illustrate the theory and conclude in section 4.7.


4.1 THE MODELS


4.1.1 The local models


We consider n interacting neural masses forming a column. We consider that each


neural population i is described by its average membrane potential Vi(t) or by its


average instantaneous firing rate νi(t), the relation between the two quantities being


of the form νi(t) = Si(Vi(t)) [27, 41], where Si is sigmoidal. The functions Si, i =
1, · · · , n satisfy the following properties introduced in the


Definition 4.1.1. For all i = 1, · · · , n, Si and S′
i are positive and bounded (S′


i


is the derivative of the function Si). We note Sim = supx Si(x), Sm = maxi Sim,


S′
im = supx S


′
i(x) and DSm = maxi S


′
im. Finally, we define DSm as the diagonal matrix


diag(S′
im).


Neurons in population j are connected to neurons in population i. A single action


potential from neurons in population j is seen as a post-synaptic potential PSPij(t−s)
by neurons in population i, where s is the time of the spike hitting the synapse and


t the time after the spike. We neglect the delays due to the distance travelled down


the axon by the spikes.


Assuming that the post-synaptic potentials sum linearly, the average membrane


potential of population i is


Vi(t) =
∑


j,k


PSPij(t− tk)


where the sum is taken over the arrival times of the spikes produced by the neu-


rons in population j. The number of spikes arriving between t and t + dt is νj(t)dt.
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Therefore we have


Vi(t) =
∑


j


∫ t


t0


PSPij(t− s)νj(s) ds =
∑


j


∫ t


t0


PSPij(t− s)Sj(Vj(s)) ds,


or, equivalently


νi(t) = Si



∑


j


∫ t


t0


PSPij(t− s)νj(s) ds



 (4.1)


The PSPijs can depend on several variables in order to account for adaptation, learn-


ing, etc . . .


There are two main simplifying assumptions that appear in the literature [31] and


yield two different models.


The voltage-based model


The assumption, made in [51], is that the post-synaptic potential has the same shape


no matter which presynaptic population caused it, the sign and amplitude may vary


though. This leads to the relation


PSPij(t) = WijPSPi(t).


PSPi represents the unweighted shape of the postsynaptic potentials and Wij is the


average strength of the postsynaptic potentials elicited by neurons of type j on neu-


rons of type i. In biophysical connectivity models, like the one presented in figure


1.20, the Wijs should be chosen proportional to the number of presynaptic cells, the


average amplitude of postsynaptic potentials and the probability of connection be-


tween the considered neuron species [47]. In particular, if Wij > 0 the population j
excites population i whereas it inhibits it when Wij < 0.


Finally, if we assume that PSPi(t) = e−t/τiY (t) (where Y is the Heaviside distri-


bution), or equivalently that


τi
dPSPi(t)


dt
+ PSPi(t) = τiδ(t), (4.2)


we end up with the following system of ordinary first order differential equations


dVi(t)


dt
+
Vi(t)


τi
=
∑


j


WijSj(Vj(t)) + Ii
ext(t), (4.3)


that describes the dynamic behaviour of a cortical column. We have added an external


current Iext(t) to model the non-local connections of population i.
The approach developed in this chapter generalizes easily to the case of more


sophisticated postsynaptic potentials models resulting in higher order differential


equations, as shown in section 4.5.3.


We introduce the n × n matrix W = (Wij)i,j, and the function S: R
n → R


n such


that S(x) is the vector of coordinates Si(xi). We rewrite (4.3) in vector form and obtain


the following system of n ordinary differential equations


V′ = −LV + WS(V) + Iext, (4.4)


where L is the diagonal matrix L = diag(1/τi).
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The activity-based model


The assumption is that the shape of a PSP depends only on the nature of the presy-


naptic cell, that is


PSPij(t) = WijPSPj(t).


As above we suppose that PSPi(t) satisfies the differential equation (4.2) and define


the activity to be


Aj(t) =


∫ t


t0


PSPj(t− s)νj(s) ds.


A similar derivation yields the following set of n ordinary differential equations


dAi(t)


dt
+
Ai(t)


τi
= Si



∑


j


WijAj(t) + Ii
ext(t)



 , i = 1, · · · , n.


We rewrite this in vector form as


A′ = −LA + S(WA + Iext), (4.5)


We introduce the following


Definition 4.1.2. We note τmax the maximum of the decay time constants τi, i =
1, · · · , n:


τmax = max
i
τi.


4.1.2 Neural fields models


We now combine these local models to form a continuum of columns, e.g., in the case


of a model of a significant part Ω of the cortex. From now on we consider a compact


subset Ω of R
q, q = 1, 2, 3. This encompasses several cases of interest.


When q = 1 we deal with one-dimensional neural fields. Even though this appears


to be of limited biological interest, it is one of the most widely studied cases because


of its relative mathematical simplicity and because of the insights one can gain of the


more realistic situations.


When q = 2 we discuss properties of two-dimensional neural fields. This is per-


haps more interesting from a biological point of view since Ω can be viewed as a piece


of cortex where the third dimension, its thickness, is neglected. This case has re-


ceived by far less attention than the previous one, probably because of the increased


mathematical difficulty.


Finally q = 3 allows us to discuss properties of volumes of neural masses, e.g.


cortical sheets where their thickness is taken into account [20, 61].


The results that are presented in this chapter are independent of q. Nevertheless,


we have a good first approximation of a real cortical area with q = 2, and cortical


depth given by the index i = 1, · · · , n of the considered cortical population, following


the idea of a field composed of columns, or equivalently, of interconnected cortical


layers.


We note V(r, t) (respectively A(r, t)) the n-dimensional state vector at the point r


of the continuum and at time t. We introduce the n × n matrix function W(r, r′, t)
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which describes how the neural mass at point r′ influences that at point r at time t.
More precisely, Wij(r, r


′, t) describes how population j at point r′ influences popula-


tion i at point r at time t. We call W the connectivity matrix function. Neglecting, as


in the local case above, the delays due to the distance between the neural masses, we


extend equation (4.4) to


Vt(r, t) = −LV(r, t) +


∫


Ω
W(r, r′, t)S(V(r′, t)) dr′ + Iext(r, t), (4.6)


and equation (4.5) to


At(r, t) = −LA(r, t) + S


(∫


Ω
W(r, r′, t)A(r′, t)) dr′ + Iext(r, t)


)
. (4.7)


Vt (resp. At) stands for the partial derivative of the multivariate vector V (resp. A)


with respect to the time variable t. A particular case which will be considered later is


when W is translation invariant, W(r, r′, t) = W(r − r′, t). We give below sufficient


conditions on W and Iext for equations (4.6) and (4.7) to be well-defined and study


their solutions.


4.2 EXISTENCE AND UNIQUENESS OF A SOLUTION


In this section we deal with the problem of the existence and uniqueness


of a solution to (4.6) and (4.7) for a given set of initial conditions. Unlike previous


authors [21, 33, 79] we consider the case of a neural field with the effect that we have


to use the tools of functional analysis to characterize their properties.


We start with the assumption that the state vectors V and A are differentiable


(respectively continuous) functions of the time (respectively the space) variable.


This is certainly reasonable in terms of the temporal variations because we are


essentially modeling large populations of neurons and do not expect to be able to


represent time transients. It is far less reasonable in terms of the spatial dependency


since one should allow neural masses activity to be spatially distributed in a locally


non-smooth fashion with areas of homogeneous cortical activity separated by smooth


boundaries. A more general assumption is proposed in section 4.5. But it turns out


that most of the groundwork can be done in the setting of continuous functions.


Let F be the set Cn(Ω) of the continuous functions from Ω to R
n. This is a Banach


space for the norm ‖V‖n,∞ = max1≤i≤n supr∈Ω |Vi(r)|, see appendix B. We denote by


J a closed interval of the real line containing 0.


We will several times need the following


Lemma 4.2.1. We have the following inequalities for all x, y ∈ F and r′ ∈ Ω


‖S(x(r′))−S(y(r′))‖∞ ≤ DSm‖x(r′)−y(r′)‖∞ and ‖S(x)−S(y)‖n,∞ ≤ DSm‖x−y‖n,∞.


Proof. S is smooth so we can perform a zeroth-order Taylor expansion with inte-


gral remainder, [30], and write


S(x(r′)) − S(y(r′)) =


(∫ 1


0
DS(y(r′) + ζ(x(r′) − y(r′))) dζ


)
(x(r′) − y(r′)),


and, because of lemma B.2.1 and definition 4.1.1


‖S(x(r′)) − S(y(r′))‖∞ ≤
∫ 1


0
‖DS(y(r′) + ζ(x(r′) − y(r′)))‖∞ dζ ‖x(r′) − y(r′)‖∞ ≤


DSm‖x(r′) − y(r′)‖∞.
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This proves the first inequality. The second follows immediately.


4.2.1 General solution


A function V(t) is thought of as a mapping V : J → F . This means that V(t) is now a


function defined in Ω. Equations (4.6) and (4.7) are formally recast as an initial value


problem, see, e.g. [32]: {
V′(t) = f(t,V(t))
V(0) = V0


(4.8)


where V0 is an element of F and the function f from J × F is equal to fv defined by


the righthand side of (4.6):


fv(t,x)(r) = −Lx(r) +


∫


Ω
W(r, r′, t)S(x(r′)) dr′ + Iext(r, t) ∀x ∈ F , (4.9)


or to fa defined by the righthand side of (4.7):


fa(t,x)(r) = −Lx(r) + S


(∫


Ω
W(r, r′, t)x(r′) dr′ + Iext(r, t)


)
∀x ∈ F . (4.10)


We have the


Proposition 4.2.1. If the following two hypotheses are satisfied


1. The connectivity function W is in C(J;Cn×n(Ω × Ω)) (see appendix B),


2. The external current Iext is in C(J;Cn(Ω)),


then the mappings fv and fa are from J×F to F , continuous, and Lipschitz continuous


with respect to their second argument, uniformly with respect to the first (Cn×n(Ω×Ω)
and Cn(Ω) are defined in appendix B).


Proof. Let t ∈ J and x ∈ F . We introduce the mapping


Fv : (t,x) → Fv(t,x) such that Fv(t,x)(r) =


∫


Ω
W(r, r′, t)S(x(r′)) dr′ (4.11)


Fv(t,x) is well defined for all r ∈ Ω because, thanks to the first hypothesis, it is


the integral of the continuous function W(r, ., t)S(x(.)) on a compact domain. For all


r′ ∈ Ω, W(., r′, t)S(x(r′)) is continuous (first hypothesis again) and we have (lemma


B.2.1)


‖W(r, r′, t)S(x(r′))‖∞ ≤ ‖W(., ., t)‖n×n,∞‖S(x(r′))‖∞.
Since ‖S(x(.))‖∞ is bounded, it is integrable in Ω and we conclude that Fv(t,x) is


continuous on Ω. Then it is easy to see that fv(t,x) is well defined and belongs to F .


Let us prove that fv is continuous.


fv(t,x) − fv(s,y) = −L(x − y) +


∫


Ω


(
W(·, r′, t)S(x(r′)) − W(·, r′, s)S(y(r′))


)
dr′


+ Iext(·, t) − Iext(·, s)


= −L(x− y) +


∫


Ω
(W(·, r′, t) − W(·, r′, s))S(x(r′)) dr′


+


∫


Ω
W(·, r′, s)(S(x(r′)) − S(y(r′)) dr′ + Iext(·, t) − Iext(·, s)
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It follows from lemma 4.2.1 that


‖fv(t,x) − fv(s,y)‖n,∞ ≤ ‖L‖∞ ‖x − y‖n,∞ + |Ω|Sm‖W(·, ·, t) − W(·, ·, s)‖n×n,∞+


|Ω| ‖W(·, ·, s)‖n×n,∞DSm ‖x − y‖n,∞ + ‖Iext(·, t) − Iext(·, s)‖n,∞.


Because of the hypotheses we can choose |t − s| small enough so that ‖W(·, ·, t) −
W(·, ·, s)‖n×n,∞ and ‖Iext(·, t) − Iext(·, s)‖n,∞ are arbitrarily small. Similarly, since W


is continuous on the compact interval J, it is bounded there and ‖W(·, ·, s)‖n×n,∞ ≤
w > 0 for all s ∈ J. This proves the continuity of fv.


It follows from the previous inequality that


‖fv(t,x) − fv(t,y)‖n,∞ ≤ ‖L‖∞ ‖x− y‖n,∞ + |Ω| ‖W(·, ·, t)‖n×n,∞DSm ‖x − y‖n,∞,


and because ‖W(·, ·, t)‖n×n,∞ ≤ w > 0 for all ts in J, this proves the Lipschitz conti-


nuity of fv with respect to its second argument, uniformly with respect to the first.


A very similar proof applies to fa.


We continue with the proof that there exists a unique solution to the abstract initial


value problem (4.8) in the two cases of interest.


Proposition 4.2.2. Subject to the hypotheses of proposition 4.2.1 for any element V0


(resp. A0) of F there is a unique solution V (resp. A), defined on a subinterval of


J containing 0 and continuously differentiable, of the abstract initial value problem


(4.8) for f = fv (resp. f = fa).


Proof. All conditions of the Picard-Lindelöf theorem on differential equations in


Banach spaces [6, 30] are satisfied, hence the proposition.


This solution, defined on the subinterval J of R can in fact be extended to the whole


real line and we have the


Proposition 4.2.3. If the following two hypotheses are satisfied


1. The connectivity function W is in C(R;Cn×n(Ω × Ω)),


2. The external current Iext is in C(R;Cn(Ω)),


then for any function V0 (resp. A0) in F there is a unique solution V (resp. A), defined


on R and continuously differentiable, of the abstract initial value problem (4.8) for


f = fv (resp. f = fa).


Proof. In theorem C.1.1 of appendix C, we prove the existence of a constant τ > 0
such that for any initial condition (t0,V0) ∈ R ×F , there is a unique solution defined


on the closed interval [t0−τ, t0+τ ]. We can then cover the real line with such intervals


and finally obtain the global existence and uniqueness of the solution of the initial


value problem.


4.2.2 Homogeneous solution


A homogeneous solution to (4.6) or (4.7) is a solution U that does not depend upon the


space variable r, for a given homogeneous input Iext(t) and a constant initial condition


U0. If such a solution U(t) exists, then it satisfies the following equation


U′(t) = −LU(t) +


∫


Ω
W(r, r′, t)S(U(t)) dr′ + Iext(t),
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in the case of (4.6) and


U′(t) = −LU(t) + S


(∫


Ω
W(r, r′, t)U(t) dr′ + Iext(t)


)
,


in the case of (4.7). The integral
∫
Ω W(r, r′, t)S(U(t)) dr′ is equal to(∫


Ω W(r, r′, t) dr′
)


S(U(t)). The integral
∫
Ω W(r, r′, t)U(t) dr′ is equal to(∫


Ω W(r, r′, t) dr′
)


U(t). They must be independent of the position r. Hence a neces-


sary condition for the existence of a homogeneous solution is that


∫


Ω
W(r, r′, t) dr′ = W(t), (4.12)


where the n× n matrix W(t) does not depend on the spatial coordinate r.


In the particular case where W(r, r′, t) is translation invariant, W(r, r′, t) ≡ W(r−
r′, t), the condition is not satisfied in general because of the border of Ω. In all cases,


the homogeneous solutions satisfy the differential equation


U′(t) = −LU(t) + W(t)S(U(t)) + Iext(t), (4.13)


for (4.6) and


U′(t) = −LU(t) + S
(
W(t)U(t)) + Iext(t)


)
, (4.14)


for (4.7), with initial condition U(0) = U0, a vector of R
n. The following proposition


gives a sufficient condition for the existence of a homogeneous solution.


Theorem 4.2.1. If the external current Iext(t) and the connectivity matrix W(t) are


continuous on some closed interval J containing 0, then for all vector U0 of R
n, there


exists a unique solution U(t) of (4.13) or (4.14) defined on a subinterval J0 of J con-


taining 0 such that U(0) = U0.


Proof. The proof is an application of Cauchy’s theorem on differential equations.


Consider the mapping fhv : R
n × J → R


n defined by


fhv(x, t) = −Lx + W(t)S(x) + Iext(t)


We have


‖fhv(x, t) − fhv(y, t)‖∞ ≤ ‖L‖∞‖x − y‖∞ + ‖W(t)‖∞‖S(x) − S(y)‖∞


It follows from lemma 4.2.1 that ‖S(x) − S(y)‖∞ ≤ DSm‖x − y‖∞ and, since W is


continuous on the compact interval J, it is bounded there by w > 0 and


‖fhv(x, t) − fhv(y, t)‖∞ ≤ (‖L‖∞ + wDSm)‖x − y‖∞


for all x, y of R
n and all t ∈ J. A similar proof applies to (4.14) and the conclusion of


the proposition follows.


As in proposition 4.2.3, this existence and uniqueness result extends to the whole


time real line if I and W are continuous on R.


This homogeneous solution can be seen as describing a state where the columns


of the continuum are synchronized: they receive the same input Iext(t) and produce


the same output U(t).
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4.2.3 Some remarks about the case Ω = R
q


A significant amount of work has been done on equations of the type (4.6) or (4.7) in


the case of a one-dimensional infinite continuum, Ω = R, or a two-dimensional infinite


continuum, Ω = R
2. The reader is referred to the review papers by Ermentrout [31]


and by Coombes [24] as well as to [38, 92, 93].


Beside the fact that an infinite cortex is unrealistic, the case Ω = R
q raises some


mathematical questions. Indeed, the choice of the functional space F is problem-


atic. A natural idea would be to choose F = L2
n(Rq), the space of square-integrable


functions with values in R
n, see appendix B. If we make this choice we immediately


encounter the problem that the homogeneous solutions (constant with respect to the


space variable) do not belong to that space. A further difficulty is that S(x) does not


in general belong to F if x does. As shown in this chapter, these difficulties vanish if


Ω is compact.


4.3 ABSOLUTE STABILITY OF THE GENERAL SOLUTION


We investigate the absolute stability of a solution to (4.6) and (4.7) for a


given input Iext. Proposition 4.2.3 guarantees that for a given initial condition there


exists a unique solution to (4.6) or (4.7) defined for all times.


In order to investigate its absolute stability we choose a different initial condi-


tion, which is a way to perturb the solution, in effect the only way because of the


existence uniqueness proposition 4.2.3, and look for sufficient conditions for the new


solution to converge toward the original one. Absolute stability implies linear sta-


bility which is studied by perturbing the solution by adding to it a small function,


and performing a first-order Taylor expansion of the equations thereby obtaining


a perturbed equation. One then usually has to make some assumptions about the


spatio-temporal form of the perturbation, e.g. that it is separable in time and space,


ending up with a non-trivial eigenvalue problem which has to be solved in order


to find sufficient conditions for the perturbation to converge to 0, up to first-order


[24, 31, 33, 38, 69, 79, 92, 93, 94]. This is also the case of [5] and [23] who study


the convolution case for n = q = 1 but incorporate propagation delays. Linear sta-


bility is local because it is derived for a particular solution. The functional analysis


approach that we use in this chapter allows us to find simple sufficient conditions


for the absolute stability of the system, hence for all its solutions, regardless of the


initial condition or input. In this sense it is a global approach. This is achieved by


constructing a Lyapunov function measuring some distance between two state vec-


tors at each time instant. This function has a single minimum corresponding to the


equality of the states. One then finds sufficient conditions for the time derivative of


this function to be strictly negative thereby guaranteeing the asymptotic equality of


the states. This approach has been followed by much fewer people. In [67] the authors


study the case where W(r, r′) is symmetric in with respect to the space variables r


and r′ for n = q = 1 for a finite interval and add the translation invariance assump-


tion when the interval is infinite. They do not study the case of general time-varying


input currents.


Absolute stability is a relevant concept for systems of neurons. Indeed, absolutely


stable systems forget their initial state exponentially fast, but do not forget their


input. Hence such systems can differentiate distinct stimuli by converging to the


corresponding states without being influenced by their initial state. This property is


desirable for example in modelling visual perception: different forms elicit different
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percepts but the percepts should not depend on the initial state of the visual system.


We first look at the general case then at the convolution case.


4.3.1 The general case


We define a number of matrices and linear operators that are useful in the sequel


Definition 4.3.1. Let


Wcm = WDSm Wmc = DSmW


Consider also the linear operators, noted g, gm, and hm defined on F :


g(x)(r, t) =


∫


Ω
W(r, r′, t)x(r′) dr′ ∀x ∈ F ,


gm(x)(r, t) =


∫


Ω
Wcm(r, r′, t)x(r′) dr′ ∀x ∈ F ,


and


hm(x)(r, t) =


∫


Ω
Wmc(r, r


′, t)x(r′) dr′ ∀x ∈ F .


We start with a lemma.


Lemma 4.3.1. With the hypotheses of proposition 4.2.1, the operators g, gm, and hm


are compact operators from F to F for each time t ∈ J.


Proof. This is a direct application of the theory of Fredholm’s integral equations


[30]. We prove it for g.
Because of the hypothesis 1 in proposition 4.2.1, at each time instant t in J, W is


continuous on the compact set Ω×Ω, therefore it is uniformly continuous. Hence, for


each ε > 0 there exists η(t) > 0 such that ‖r1 − r2‖ ≤ η(t) implies that ‖W(r1, r
′, t) −


W(r2, r
′, t)‖∞ ≤ ε for all r′ ∈ Ω, and, for all x ∈ F


‖g(x)(r1, t) − g(x)(r2, t)‖∞ ≤ ε|Ω|‖x‖n,∞


This shows that the image g(B) of any bounded subset B of F is equicontinuous.


Similarly, if we set w(t) = ‖W(., ., t)‖n×n,∞, we have ‖g(x)(r, t)‖∞ ≤ w(t)|Ω|‖x‖n,∞.


This shows that for every r ∈ Ω, the set {y(r),y ∈ g(B)}, is bounded in R
n, hence


relatively compact. From the Arzelà-Ascoli theorem, we conclude that the subset


g(B) of F is relatively compact for all t ∈ J. And so the operator is compact.


The same proof applies to gm and hm.


To study the absolute stability of the solutions of (4.6) and (4.7) it is convenient to


use an inner product on F . It turns out that the natural inner-product will pave the


ground for the generalization in section 4.5. We therefore consider the pre-Hilbert


space G defined on F by the usual inner product


〈x, y〉 =


∫


Ω
x(r)T y(r) dr


We note ‖x‖n,2 the corresponding norm to distinguish it from ‖x‖n,∞, see appendix B.


It is easy to show that all previously defined operators are also compact operators


from G to G. We have the
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Lemma 4.3.2. g, gm and hm are compact operators from G to G for each time t ∈ J.


Proof. We give the proof for g.
The identity mapping x → x from F to G is continuous since ‖x‖n,2 ≤√
n|Ω| ‖x‖n,∞. Consider now g as a mapping from G to F . As in the proof of


lemma 4.3.1, for each ε > 0 there exists η(t) > 0 such that ‖r1 − r2‖ ≤ η(t) im-


plies ‖W(r1, r
′, t) − W(r2, r


′, t)‖∞ ≤ ε for all r′ ∈ Ω. Therefore the ith coordinate


gi(x)(r1, t) − gi(x)(r2, t) satisfies (Cauchy-Schwarz’ inequalities):


|gi(x)(r1, t) − gi(x)(r2, t)| ≤
∑


j


∫


Ω
|Wij(r1, r


′, t) −Wij(r2, r
′, t)| |xj(r


′)| dr′ ≤


ε
∑


j


∫


Ω
|xj(r


′)| dr′ ≤ ε
√


|Ω|
∑


j


(∫


Ω
|xj(r


′)|2 dr′
)1/2


≤ ε
√
n |Ω|‖x‖n,2,


and the image g(B) of any bounded set B of G is equicontinuous. Similarly, if we set


w(t) = ‖W(., ., t)‖n×n,∞ in Ω × Ω, we have |gi(x)(r, t)| ≤ w(t)
√
n |Ω| ‖x‖n,2. The same


reasoning as in lemma 4.3.1 shows that the operator x → g(x) from G to F is compact


and since the identity from F to G is continuous, x → g(x) is compact from G to G.


The same proof applies to gm and hm.


We then proceed with the following


Lemma 4.3.3. The adjoint g∗ of the operator g of G is the operator defined by


g∗(x)(r, t) =


∫


Ω
WT (r′, r, t)x(r′) dr′


It is a compact operator. Similar results apply to g∗m and h∗m.


Proof. The adjoint, if it exists, is defined by the condition 〈g(x), y〉 = 〈x, g∗(y)〉 for


all x, y in G. We have


〈g(x), y〉 =


∫


Ω
y(r)T


(∫


Ω
W(r, r′, t)x(r′) dr′


)
dr =


∫


Ω
x(r′)T


(∫


Ω
WT (r, r′, t)y(r) dr


)
dr′,


from which the conclusion follows. Since G is not a Hilbert space the adjoint of a


compact operator is not necessarily compact. But the proof of compactness of g in


lemma 4.3.2 extends easily to g∗.


We finally prove two useful lemmas that will complete our toolbox for the proof of the


main results of this section.


Lemma 4.3.4. Given a diagonal matrix D = diag(d1, ..., dn), with d1, ..., dn ∈ L∞(Ω)
and a function x ∈ G, we have


‖Dx‖n,2 ≤ max
i


(‖di‖∞)‖x‖n,2.


Proof.


‖Dx‖2
n,2 =


∫


Ω
x(r)T D2(r)x(r) dr =


∑


i


∫


Ω
d2


i (r)x
2
i (r) dr ≤


∑


i


‖di‖2
∞


∫


Ω
x2


i (r) dr,


from which the result follows.
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Lemma 4.3.5. ‖g‖G , ‖gm‖G , and ‖hm‖G satisfy the following inequalities


‖gm‖G ≤ DSm ‖g‖G and ‖hm‖G ≤ DSm ‖g‖G ,


where DSm is defined in definition 4.1.1.


Proof. By definition


‖gm‖G = sup
‖x‖n,2≤1


‖gm(x)‖n,2


‖x‖n,2
= sup


‖x‖n,2≤1


‖g(DSmx)‖n,2


‖x‖n,2
.


Let y = DSmx. Since {x ∈ G, ‖x‖n,2 ≤ 1} ⊂ {x ∈ G, ‖DSmx‖n,2 ≤ DSm} (lemma 4.3.4),


‖gm‖G ≤ sup
‖y‖n,2≤DSm


‖g(y)‖n,2


‖DS−1
m y‖n,2


= sup
‖y‖n,2≤1


‖g(y)‖n,2


‖DS−1
m y‖n,2


≤


sup
‖y‖n,2≤1


‖g(y)‖n,2


‖y‖n,2
· sup
‖y‖n,2≤1


‖y‖n,2


‖DS−1
m y‖n,2


≤ ‖g‖G DSm


The last inequality is also obtained from lemma 4.3.4, which is used again to prove


the inequality for hm: hm = DSmg and ‖DSmg(x)‖n,2 ≤ DSm‖g(x)‖n,2, for all x ∈ G,


from which the result follows.


We show in appendix B a table summarizing the main notations introduced so far for


future reference.


We now state an important result of this section.


Theorem 4.3.1. A sufficient condition for the absolute stability of a solution to (4.6)


is


DSmτmax ‖g‖G < 1 (4.15)


where ‖.‖G is the operator norm.


Proof. Let us note S the function DS−1
m S and rewrite equation (4.6) as follows


Vt(r, t) = −LV(r, t) +


∫


Ω
Wcm(r, r′, t)S(V(r′, t)) dr′ + Iext(r, t).


Let U be its unique solution with initial conditions U(0) = U0, an element of G. Let


also V be the unique solution of the same equation with different initial conditions


V(0) = V0, another element of G. We introduce the new function X = V − U which


satisfies


Xt(r, t) = −LX(r, t) +


∫


Ω
Wcm(r, r′, t)H(X,U)(r′, t) dr′ =


− LX(r, t) + gm(H(X,U))(r, t) (4.16)


where the vector H(X,U) is given by H(X,U)(r, t)) = S(V(r, t)) − S(U(r, t)) =
S(X(r, t) + U(r, t)) − S(U(r, t)). Consider now the functional (Lyapunov function)


V (X) =
1


2


〈
X, L−1X


〉
,


where the symmetric positive definite matrix L can be seen as defining a metric on


the state space. Its time derivative is
〈
X, L−1Xt


〉
. We replace Xt by its value from


(4.16) in this expression to obtain


dV (X)


dt
= −〈X, X 〉 +


〈
X, L−1gm(H(X,U))


〉
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We consider the second term in the righthand side of this equation:


|
〈
X, L−1gm(H(X,U))


〉
|≤ ‖X‖n,2 ‖L−1gm(H(X,U))‖n,2 ≤


τmax‖X‖n,2 ‖gm(H(X,U))‖n,2 ≤ τmax‖X‖n,2 ‖gm‖G‖H(X,U)‖n,2 (4.17)


Using a zeroth-order Taylor expansion with integral remainder, as in the proof of


lemma 4.2.1, we write H(X,U) = DmX, where Dm is a diagonal matrix whose diago-


nal elements are continuous functions with values between 0 and 1:


Dm(r, t) =


∫ 1


0
DS(U(r, t) + ζ(V(r, t) − U(r, t))) dζ.


Hence, according to lemma 4.3.4,


‖H(X,U)‖n,2 = ‖DmX‖n,2 ≤ ‖X‖n,2


We use this result and lemma 4.3.5 in equation (4.17) to obtain


|
〈
X, L−1gm(H(X,U))


〉
|≤ τmaxDSm ‖g‖G ‖X‖2


n,2,


and the conclusion follows.


An identical sufficient condition holds for the stability of a solution to (4.7).


Theorem 4.3.2. A sufficient condition for the absolute stability of a solution to (4.7)


is


DSmτmax ‖g‖G < 1


Proof. Let U be the unique solution of (4.7) with an external current Iext(r, t)
and initial conditions U(0) = U0. As in the proof of theorem 4.3.1 we introduce the


new function X = V − U, where V is the unique solution of the same equation with


different initial conditions. We have


Xt(r, t) = −LX(r, t) + S


(∫


Ω
W(r, r′, t)V(r′, t) dr′ + Iext(r, t)


)
−


S


(∫


Ω
W(r, r′, t)U(r′, t) dr′ + Iext(r, t)


)
(4.18)


Using a zeroth-order Taylor expansion, as in the proof of lemma 4.2.1, this equation


can be rewritten as


Xt(r, t) = −LX(r, t) +


(∫ 1


0
DS
(∫


Ω
W(r, r′, t)U(r′t) dr′ + Iext(r, t)+


ζ


∫


Ω
W(r, r′, t)X(r′, t) dr′


)
dζ


)(∫


Ω
W(r, r′, t)X(r′, t) dr′


)


We use the same functional as in the proof of theorem 4.3.1


V (X) =
1


2


〈
X, L−1X


〉
.


Its time derivative is readily obtained with the help of equation (4.18)


dV (X)


dt
= −〈X, X 〉 +


〈
X, L−1Dmhm(X)


〉
, (4.19)
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where Dm is defined by


Dm(U,X, r, t) =
∫ 1


0
DS
( ∫


Ω
W(r, r′, t)U(t) dr′ + Iext(r, t) + ζ


∫


Ω
W(r, r′, t)X(r′, t) dr′


)
DS−1


m dζ,


a diagonal matrix whose diagonal elements are continuous functions with values be-


tween 0 and 1. We consider the second term in the righthand side of equation (4.19)


and use the property of matrix Dm and lemma 4.3.5 to obtain


|
〈
X, L−1Dmhm(X)


〉
|≤ ‖X‖n,2‖L−1Dmhm(X)‖n,2


≤ τmax‖X‖n,2 ‖hm(X)‖n,2 ≤ τmaxDSm ‖g‖G ‖X‖2
n,2,


from which the result follows.


Note that ‖g‖G = ‖g‖L2 by density of G in L2 (see section 4.5). In appendix C, we show


how to compute such operator norms.


4.3.2 The convolution case


In the case where W is translation invariant we can obtain a slightly easier to exploit


sufficient condition for the stability of the solutions than in the theorems 4.3.1 and


4.3.2. We first consider the case of a general compact Ω and then the case where Ω
is an interval. Translation invariance means that W(r + a, r′ + a, t) = W(r, r′, t) for


all a such that a + r ∈ Ω and a + r′ ∈ Ω, so we can write W(r, r′, t) = W(r − r′, t).
Hence W(r, t) must be defined for all r ∈ Ω̂ = {r − r′, with r, r′ ∈ Ω} and we suppose


it continuous on Ω̂ for each t. Ω̂ is a symmetric with respect to the origin, compact


subset of R
q.


General Ω


We note 1A the characteristic function of the subset A of R
q and M∗ = M


T
the


conjugate transpose of the complex matrix M.


We prove the following


Theorem 4.3.3. If the eigenvalues of the Hermitian matrix


W̃∗(f , t)W̃(f , t) (4.20)


are strictly less than (τmaxDSm)−2 for almost all f ∈ R
q and t ∈ J, then the system


(4.6) is absolutely stable1. W̃(f , t) is the Fourier transform with respect to the space


variable r of 1bΩ
(r)W(r, t),


W̃(f , t) =


∫


bΩ
W(r, t)e−2iπr·f dr


Proof. We recall that


‖g‖2
G = sup


‖x‖n,2≤1


‖g(x)‖2
n,2


‖x‖2
n,2


.


1Remark that since fW is continuous with respect to f , some eigenvalues of the Hermitian matrix


may be equal to (τmaxDSm)−2 on a zero measure domain.
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We then note that, by definition


‖g(x)‖n,2 = ‖(1bΩW) ⊗ (1Ωx)‖Rq , n, 2,


where ⊗ indicates the convolution over R
q. Parseval’s theorem gives


‖(1bΩ
W) ⊗ (1Ωx)‖2


Rq , n, 2 =


∫


Rq


x̃∗(f , t)W̃∗(f , t)W̃(f , t)x̃(f , t) df ,


where x̃ is the Fourier transform of 1Ωx.


As an Hermitian matrix, W̃∗(f , t)W̃(f , t) can be rewritten as U∗(f , t)D(f , t)U(f , t),
with U∗U = Idn and D real and diagonal. In particular, U preserves length (‖Uv‖2 =


‖v‖2). Besides, W̃∗W̃ is positive because for any complex vector v,


v∗W̃∗W̃v = ‖W̃v‖2
2 ≥ 0.


So, all values of D are positive and if the hypothesis of the theorem is satisfied, lemma


4.3.4 yields


∫


Rq


x̃∗(f , t)W̃∗(f , t)W̃(f , t)x̃(f , t) df = ‖
√


DUx̃‖2
Rq , n, 2 ≤


(τmaxDSm)−2‖Ux̃‖2
Rq, n, 2 = (τmaxDSm)−2‖x̃‖2


Rq, n, 2 = (τmaxDSm)−2‖x‖2
n,2,


hence ‖g‖G < (τmaxDSm)−1 and theorem 4.3.1 applies.


Since the sufficient condition for the absolute stability of the solution of the


activation-based model is identical, we have the


Theorem 4.3.4. If the eigenvalues of the Hermitian matrix


W̃∗(f , t)W̃(f , t)


are strictly less than (τmaxDSm)−2 for almost all f and t ∈ J then the system (4.7) is


absolutely stable. W̃(f , t) is the Fourier transform of 1bΩ(r)W(r, t) with respect to the


space variable r.


These two theorems are somewhat unsatisfactory since they replace a condition that


must be satisfied over a countable set, the spectrum of a compact operator, as in


theorems 4.3.1 and 4.3.2, by a condition that must be satisfied over a continuum, i.e.


R
q. Nonetheless one may consider that the computation of the Fourier transforms of


the matrix W, extended by zeros outside Ω̂, is easier than that of the spectrum of the


operator g, for which a method is given in appendix C.


Ω is an interval


In the case where Ω is an interval, i.e. an interval of R (q = 1), a parallelogram


(q = 2), or a parallelepiped (q = 3), we can state different sufficient conditions. We


can always assume that Ω is the q-dimensional interval [0, 1]q by applying an affine


change of coordinates. The connectivity matrix W is defined on J × [−1, 1]q and ex-


tended to a q-periodic function of periods 2 on J × R
q, reflecting periodic boundary


conditions. Similarly, the state vectors V and A as well as the external current Iext


defined on J × [0, 1]q are extended to q-periodic functions of the same periods over


J × R
q by padding them with zeros in the complement in the interval [−1, 1]q of the
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interval [0, 1]q. G is now the space L2
n(2) of the square integrable q-periodic functions


of periods 2 with values in R
n.


We define the functions ψm(r) ≡ e−πi(r1m1+···+rqmq), for m ∈ Z
q and consider the ma-


trix W̃(m, t) whose elements are given by


W̃ij(m, t) =


∫


[0,2]q
Wij(r, t)ψm(r) dr 1 ≤ i, j ≤ n.


We recall the


Definition 4.3.2. The matrix W̃(m) is the mth element of the Fourier series of the


periodic matrix function W(r).


The theorems 4.3.3 and 4.3.4 can be stated in this framework.


Theorem 4.3.5. If the eigenvalues of the Hermitian matrix


W̃∗(m, t)W̃(m, t) (4.21)


are strictly less than (τmaxDSm)−2 for all m ∈ Z
q and all t ∈ J, then the system (4.6)


(resp. (4.7)) is absolutely stable. W̃(m, t) is the mth element of the Fourier series of the


q-periodic matrix function W(r, t) with periods 2 at time t.


4.4 ABSOLUTE STABILITY OF THE HOMOGENEOUS SOLU-
TION


We next investigate the absolute stability of a homogeneous solution to (4.6) and


(4.7). As in the previous section we distinguish the general and convolution cases.


4.4.1 The general case


The homogeneous solutions are characterized by the fact that they are spatially con-


stant at each time instant. We consider the subspace Gc of G of the constant functions.


We have the following


Lemma 4.4.1. Gc is a complete linear subspace of G. The orthogonal projection opera-


tor PGc from G to Gc is defined by


PGc(x) = x =
1


|Ω|


∫


Ω
x(r) dr


The orthogonal complement G⊥
c of Gc is the subset of functions of G that have a zero


average. The orthogonal projection2 operator PG⊥
c


is equal to Id − PGc
. We also have


PG⊥
c
Mx = MPG⊥


c
x ∀x ∈ G, M ∈ Mn×n (4.22)


Proof. The constant functions are clearly in G. Any Cauchy sequence of constants


is converging to a constant hence Gc is closed in the pre-Hilbert space G. Therefore


there exists an orthogonal projection operator from G to Gc which is linear, continuous,


of unit norm, positive and self-adjoint. PGc(x) is the minimum with respect to the


2To be accurate, this is the projection on the closure of G⊥


c in the closure of G which is the Hilbert


space L
2


n(Ω).
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constant vector a of the integral
∫
Ω ‖x(r) − a‖2 dr. Taking the derivative with respect


to a, we obtain the necessary condition


∫


Ω
(x(r) − a) dr = 0


and hence amin = x. Conversely, x−amin is orthogonal to Gc since
∫
Ω(x(r)−amin)b dr =


0 for all b ∈ Gc.


Let y ∈ G,
∫
Ω xy(r) dr = x


∫
Ω y(r) dr = 0 for all x ∈ Gc if and only if y ∈ G⊥


c .


Finally


PG⊥
c
Mx = Mx − Mx = Mx − Mx = M(x − x) = MPG⊥


c
x


We are now ready to prove the theorem on the absolute stability of the homogeneous


solutions to (4.6).


Theorem 4.4.1. If W satisfies (4.12), a sufficient condition for the absolute stability


of a homogeneous solution to (4.6) is that the norm ‖g∗‖G⊥
c


of the restriction to G⊥
c of


the compact operator g∗ be less than (τmaxDSm)−1 for all t ∈ J.


Proof. This proof is inspired by [90]. Note that G⊥
c is invariant by g∗ and hence by


g∗m. Indeed, from lemma 4.3.3 and equation (4.12) we have


g∗(x) = WT (t)x = 0 ∀x ∈ G⊥
c


Let Vp be the unique solution of (4.6) with homogeneous input Iext(t) and initial


conditions Vp(0) = Vp0 ∈ G, and consider the initial value problem:


{
X′(t) = PG⊥


c


(
fv(t,PG⊥


c
X + PGcVp)


)


X(0) = X0


(4.23)


X = PG⊥
c
Vp is a solution with initial condition X0 = PG⊥


c
Vp0, since P2


G⊥
c


= PG⊥
c


, and


PG⊥
c
Vp + PGcVp = Vp. But X = 0 is also a solution with initial condition X0 =


0. Indeed Gc is flow-invariant because of (4.12), that is fv(t,Gc) ⊂ Gc, and hence


PG⊥
c


(fv(t,Gc)) = 0. We therefore look for a sufficient condition for the system (4.23) to


be absolutely stable at X = 0.


We consider again the functional V (X) = 1
2


〈
X, L−1X


〉
with time derivative


dV (X)
dt =


〈
X, L−1Xt


〉
. We substitute Xt with its value from (4.23) which can be rewrit-


ten as


Xt = PG⊥
c


(
− L(PG⊥


c
X + PGcVp) +


∫


Ω
W(r, r′, t)S(PG⊥


c
X(r′, t) + PGcVp(r


′, t)) dr′


)


Because of lemma 4.4.1 this yields


Xt = −LPG⊥
c
X + PG⊥


c


(∫


Ω
Wcm(r, r′, t)S(PG⊥


c
X(r′, t) + PGcVp(r


′, t)) dr′
)


Using a zeroth-order Taylor expansion, as in the proof of lemma 4.2.1, we write


S(PG⊥
c
X + PGcVp) = S(PGcVp) +


(∫ 1


0
DS(PGcVp + ζPG⊥


c
X) dζ


)
PG⊥


c
X,
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and since S(PGcVp) ∈ Gc, and because of (4.12)


PG⊥
c


(∫


Ω
Wcm(r, r′, t)S(PG⊥


c
X(r′, t) + PGcVp(r


′, t)) dr′
)


=


PG⊥
c


(∫


Ω
Wcm(r, r′, t)


(∫ 1


0
DS(PGcVp(r


′, t) + ζPG⊥
c
X(r′, t)) dζ


)
PG⊥


c
X(r′, t) dr′


)


We use (4.22) and the fact that PG⊥
c


is self-adjoint and idempotent to write


dV (X)


dt
= −〈PG⊥


c
X, PG⊥


c
X〉+


〈
PG⊥


c
X, L−1


∫


Ω
Wcm(r, r′, t)


(∫ 1


0
DS(PGcVp(r


′, t)+ζPG⊥
c
X(r′, t)) dζ


)
PG⊥


c
X(r′, t) dr′


〉


Let us denote by Dv(r
′, t) the diagonal matrix


∫ 1
0 DS(PGcVp(r


′, t)+ζPG⊥
c
X(r′, t)) dζ. Its


diagonal elements are continuous functions with values between 0 and 1. Letting Y =
PG⊥


c
X we rewrite the previous equation in operator form, introducing the operator gm


(definition 4.3.1), as


dV (X)


dt
= −〈Y, Y〉 +


〈
Y, L−1gm(Dv Y)


〉


By definition of the adjoint


〈
Y, L−1gm(Dv Y)


〉
=
〈
g∗m
(
L−1Y


)
, Dv Y


〉


Using the Cauchy-Schwarz’ inequality and lemma 4.3.4


∣∣〈g∗m
(
L−1Y


)
, Dv Y


〉∣∣ ≤
∥∥g∗m


(
L−1Y


)∥∥
n,2


‖Dv Y‖n,2 ≤
∥∥g∗m


(
L−1Y


)∥∥
n,2


‖Y‖n,2 ,


and since


∥∥g∗m
(
L−1Y


)∥∥
n,2


≤ ‖g∗m‖G⊥
c


∥∥L−1Y
∥∥


n,2
≤ τmaxDSm‖g∗‖G⊥


c
‖Y‖n,2 ,


the conclusion follows.


Note that ‖g∗‖G⊥
c


= ‖g∗‖L2


0


by density of G⊥
c in L2


0, where L2
0 is the subspace of L2 of


zero mean functions. We show in appendix C how to compute this norm.


We prove a similar theorem in the case of (4.7).


Theorem 4.4.2. If W satisfies (4.12), a sufficient condition for the stability of a homo-


geneous solution to (4.7) is that the norm ‖g‖G⊥
c


of the restriction to G⊥
c of the compact


operator g be less than (τmaxDSm)−1 for all t ∈ J.


Proof. The proof is similar to that of theorem 4.4.1. We consider Ap the unique


solution to (4.7) with homogeneous input Iext(t), initial conditions Ap(0) = Ap0, and


consider the initial value problem


{
A′(t) = PG⊥


c


(
fa(t,PG⊥


c
A + PGcAp)


)


A(0) = A0


(4.24)


A = PG⊥
c
Ap is a solution with initial conditions A0 = PG⊥


c
Ap0 since PG⊥


c
Ap +PGcAp =


Ap. But A = 0 is also a solution with initial conditions A0 = 0. Indeed Gc is flow-


invariant because of (4.12), that is fa(t,Gc) ⊂ Gc, and hence PG⊥
c


(fa(t,Gc)) = 0. We
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therefore look for a sufficient condition for the system (4.24) to be absolutely stable


at A = 0.


Consider again the functional V (A) = 1
2


〈
A, L−1A


〉
with time derivative


dV (A)
dt =〈


A, L−1At


〉
. We substitute At with its value from (4.24) which, using (4.12), can be


rewritten as


At =


PG⊥
c


(
−L(PG⊥


c
A+PGcAp)+S


(∫


Ω
W(r, r′, t)PG⊥


c
A(r′, t) dr′ + W(t)PGcAp + Iext(t)


))


We perform a first-order Taylor expansion with integral remainder of the S term and


introduce the operator hm (definition 4.3.1):


S


(∫


Ω
W(r, r′, t)PG⊥


c
A(r′, t) dr′ + W(t)PGcAp + Iext(t)


)
= S


(
W(t)PGcAp + Iext(t)


)
+


(∫ 1


0
DS
(
W(t)PGcAp + Iext(t) + ζ


∫


Ω
W(r, r′, t)PG⊥


c
A(r′, t) dr′


)
dζ


)
hm(PG⊥


c
A)(r, t)


Let us define


Da(r, t) =


∫ 1


0
DS
(
W(t)PGcAp + Iext(t) + ζ


∫


Ω
W(r, r′, t)PG⊥


c
A(r′, t) dr′


)
dζ,


a diagonal matrix whose diagonal elements are continuous functions with values be-


tween 0 and 1. Letting Y = PG⊥
c
A we write


dV (A)


dt
= −〈Y, Y〉 +


〈
Y, L−1Da hm(Y)


〉


and the conclusion follows from the Cauchy-Schwarz’ inequality and lemmas 4.3.4


and 4.3.5


∣∣〈Y, L−1Da hm(Y)
〉∣∣ ≤ ‖Y‖n,2


∥∥L−1Da hm(Y)
∥∥


n,2
≤


τmax ‖Y‖n,2 ‖hm(Y)‖n,2 ≤ τmaxDSm ‖g‖G⊥
c


‖Y‖2
n,2


4.4.2 The convolution case


As W is translation invariant
∫
Ω W(r − r′, t) dr′ is in general a function of r, unless


Ω has no border. In our framework, this case only occurs as Ω is an interval with


periodic conditions and we have the following


Theorem 4.4.3. A sufficient condition for the stability of a homogeneous solution to


(4.6) (resp. (4.7)) is that the eigenvalues of the Hermitian matrices


W̃∗(m, t)W̃(m, t)


are strictly less than (τmaxDSm)−2 for all m 6= 0 ∈ Z
q and all t ∈ J. W̃(m, t) is the


mth element of the Fourier series of the q-periodic matrix function W(r, t) with respect


to the space variable r.


The only difference with theorem 4.3.5 is that there are no constraints on the Fourier


coefficient m = 0. This is due to the fact that we only “look” at the subspace of G of


functions with zero spatial average.
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4.4.3 Complete synchronization


The property of absolute stability of the solution that is characterized in theorems


4.4.1, 4.4.2 and 4.4.3 can be seen as the ability for the neural masses in the continuum


to synchronize. By synchronization we mean that the state vectors at all points in the


continuum converge to a unique state vector that is a function only of the common


input Iext and not of the initial states of the neural masses. The state vector is the


homogeneous solution of (4.6) and (4.7). This effect is called complete synchronization


[91].


4.5 EXTENDING THE THEORY


We have developed our analysis of (4.6) and (4.7) in the Banach space F of


continuous functions of the spatial coordinate r even though we have used a structure


of pre-Hilbert space G on top of it. But there remains the fact that the solutions


that we have been discussing are smooth, i.e., continuous with respect to the space


variable. It may be interesting to also consider non-smooth solutions, e.g., piecewise


continuous solutions that can be discontinuous along curves of Ω. A natural setting,


given the fact that we are interested in having a structure of Hilbert space, is L2
n(Ω),


the space of square-integrable functions from Ω to R
n, see appendix B. It is a Hilbert


space and G is a dense subspace: G = L2
n(Ω), where A indicates the topological closure


of the set A.


4.5.1 Existence, uniqueness and stability of a solution


The theory developed in the previous sections can be readily extended to L2
n(Ω): the


analysis of the stability of the general and homogeneous solutions has been done


using the pre-Hilbert space structure of G and all the operators that have been shown


to be compact in G are also compact in its closure L2
n(Ω) [30]. The only point that has


to be re-worked is the problem of existence and uniqueness of a solution addressed


in propositions 4.2.1 and 4.2.2. This allows us to relax the rather stringent spatial


smoothness hypotheses imposed on the connectivity function W and the external


current Iext, thereby bringing in more flexibility to the model. We have the following


Proposition 4.5.1. If the following two hypotheses are satisfied


1. The mapping W is in C(J;L2
n×n(Ω × Ω)),


2. The external current Iext is in C(J;L2
n(Ω)),


then the mappings fv and fa are from J × L2
n(Ω) to L2


n(Ω), continuous, and Lipschitz


continuous with respect to their second argument, uniformly with respect to the first.


Proof. Because of the first hypothesis, the fact that S(x) is in L2
n(Ω) for all x ∈


L2
n(Ω), and lemma B.2.2, fv is well-defined. Let us prove that it is continuous. As in


the proof of proposition 4.2.1 we write


fv(t,x) − fv(s,y) = −L(x − y) +


∫


Ω
(W(·, r′, t) − W(·, r′, s))S(x(r′)) dr′+


∫


Ω
W(·, r′, s)(S(x(r′)) − S(y(r′)) dr′ + Iext(·, t) − Iext(·, s),
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from which we obtain, using lemma B.2.2


‖fv(t,x) − fv(s,y)‖n,2 ≤ ‖L‖F ‖x − y‖n,2 +
√
n|Ω|Sm‖W(·, ·, t) − W(·, ·, s)‖F +


DSm‖W(·, ·, s)‖F ‖x − y‖n,2 + ‖Iext(·, t) − Iext(·, s)‖n,2,


and the continuity follows from the hypotheses. ‖ ‖F is the Frobenius norm, see ap-


pendix B. Note that since W is continuous on the compact interval J, it is bounded


and ‖W(·, ·, t)‖F ≤ w for all t ∈ J for some positive constant w. The Lipschitz con-


tinuity with respect to the second argument uniformly with respect to the first one


follows from the previous inequality by choosing s = t.
The proof for fa is similar.


From this proposition we deduce the existence and uniqueness of a solution over a


subinterval of R:


Proposition 4.5.2. Subject to the hypotheses of proposition 4.5.1 for any element V0


of L2
n(Ω) there is a unique solution V, defined on a subinterval of J containing 0 and


continuously differentiable, of the abstract initial value problem (4.8) for f = fv and


f = fa such that V(0) = V0.


Proof. All conditions of the Picard-Lindelöf theorem on differential equations in


Banach spaces (here a Hilbert space) [6, 30] are satisfied, hence the proposition.


We can also prove that this solution exists for all times, as in proposition 4.2.3:


Proposition 4.5.3. If the following two hypotheses are satisfied


1. The connectivity function W is in C(R;L2
n×n(Ω × Ω)),


2. The external current Iext is in C(R;L2
n(Ω)),


then for any function V0 in L2
n(Ω) there is a unique solution V, defined on R and


continuously differentiable, of the abstract initial value problem (4.8) for f = fv and


f = fa.


Proof. The proof is similar to the one of proposition 4.2.3.


The absolute stability of the solution can be studied exactly as in theorems 4.3.1 and


4.3.2. Since G is dense in L2
n(Ω) we have ‖g‖G = ‖g‖L2


n(Ω) and similar relations for all


the other operators. We have the following


Theorem 4.5.1. If the compact operator g satisfies the condition of theorem 4.3.1 the


solution of the abstract initial value problem (4.8) for f = fv and f = fa is absolutely


stable.


4.5.2 Locally homogeneous solutions


An application of the previous extension is the following. Consider a partition of Ω
into P subregions Ωi, i = 1, · · · , P . We assume that the Ωis are closed, hence com-


pact, subsets of Ω intersecting along finitely many piecewise regular curves. These


curves form a set of 0 Lebesgue measure of Ω. We consider locally homogeneous input


current functions


Iext(r, t) =
P∑


k=1


1Ωk
(r)Ik


ext(t), (4.25)


where the P functions Ik
ext(t) are continuous on some closed interval J containing 0.


On the border between two adjacent regions the value of Iext(r, t) is undefined. Since


this set of borders is of 0 measure, the functions defined by (4.25) are in L2
n(Ω) at each


time instant.
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Existence and uniqueness


We are interested in the existence of solutions to the abstract initial value problem


(4.8) that are homogeneous in each subregion Ωi, i = 1, · · · , P . We call them locally


homogeneous solutions.


We assume that the connectivity matrix W satisfies the following conditions


∫


Ωk


W(r, r′, t) dr′ =


P∑


i=1


1Ωi
(r)Wik(t) k = 1, · · · , P. (4.26)


These conditions are analogous to (4.12). A locally homogeneous solution of (4.6) or


(4.7) can be written


V(r, t) =


P∑


i=1


1Ωi
(r)Vi(t),


where the functions Vi satisfy the following system of ordinary differential equations


V′
i(t) = −LVi(t) +


P∑


k=1


Wik(t)S(Vk(t)) + Ii
ext(t), (4.27)


for the voltage-based model and


V′
i(t) = −LVi(t) + S


(
P∑


k=1


Wik(t)Vk(t) + Ii
ext(t)


)
, (4.28)


for the activity-based model. The conditions for the existence and uniqueness of a


locally homogeneous solution are given in the following theorem, analog to theorem


4.2.1:


Theorem 4.5.2. If the external currents Ik
ext(t), k = 1, · · · , P and the connectivity ma-


trices Wik(t), i, k = 1, · · · , P are continuous on some closed interval J containing 0,


then for all sets of P vectors Uk
0 , k = 1, · · · , P of R


n, there exists a unique solution


(U1(t), · · · ,UP (t)) of (4.27) or (4.28) defined on a subinterval J0 of J containing 0 such


that Uk(0) = Uk
0 , k = 1, · · · , P .


Proof. The system (4.27) can be written in the form


V ′(t) = −LV(t) + W(t)S(V(t)) + Iext(t), (4.29)


where V is the nP dimensional vector






V1
...


VP



, Iext =






I1
ext
...


IP
ext



, S(X ) =






S(X1)
...


S(XP )



,


W is the block matrix (Wik)i,k and L is the block diagonal matrix whose diagonal


elements are all equal to L. Then we are dealing with a classical initial value problem


of dimension nP and the proof of existence and uniqueness is similar to the one of


theorem 4.2.1. A similar proof can be written in the case of system (4.28).


Again, if Iext and W are continuous on R, the existence and uniqueness result


extends to the whole time line R.
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Absolute stability


Having proved the existence and uniqueness of a locally homogeneous solution we


consider the problem of characterizing its absolute stability. The method is the same


as in section 4.4. We consider the subset, noted GP
c , of the functions that are constant


in the interior
◦
Ωi of each region Ωi, i = 1, · · · , P (the interior


◦
A of a subset A is defined


as the biggest open subset included in A). We have the following lemma that echoes


lemma 4.4.1


Lemma 4.5.1. GP
c is a complete linear subspace of L2


n(Ω). The orthogonal projection


operator PGP
c


from L2
n(Ω) to GP


c is defined by


PGP
c
(x)(r) = xP =


P∑


k=1


1Ωk
(r)


1


|Ωk|


∫


Ωk


x(r′) dr′


The orthogonal complement GP ⊥
c of GP


c is the subset of functions of L2
n(Ω) that have a


zero average in each Ωi, i = 1, · · · , P . The orthogonal projection operator PGP ⊥
c


is equal


to Id − PGP
c


. We also have


PGP ⊥
c


Mx = MPGP ⊥
c


x ∀x ∈ L2
n(Ω), M ∈ Mn×n (4.30)


Proof. The proof of this lemma is similar to the one of lemma 4.4.1.


We have the following theorem, corresponding to theorems 4.4.1 and 4.4.2.


Theorem 4.5.3. If W satisfies (4.26), a sufficient condition for the absolute stability


of a locally homogeneous solution to (4.6) (respectively (4.7)) is that the norm ‖g∗‖GP ⊥
c


(respectively ‖g‖GP ⊥
c


) of the restriction to GP ⊥
c of the compact operator g∗ (respectively


g) be less than (τmaxDSm)−1 for all t ∈ J.


Proof. The proof strictly follows the lines of the ones of theorems 4.4.1 and 4.4.2.


Note that the condition on the operator norm in theorems 4.3.1 and 4.3.2 is stronger


than the one of theorems 4.4.1 and 4.4.2 which is in turn stronger than the one of


theorem 4.5.3 therefore we have the following


Proposition 4.5.4. If the operator g satisfies the condition of theorem 4.3.1 or if g∗
(respectively g) satisfies the condition of theorem 4.4.1 (respectively of theorem 4.4.2),


then for every partition of Ω, corresponding locally homogeneous current, and W sat-


isfying (4.26), the locally homogeneous solution of (4.6) (respectively (4.7)) is absolutely


stable.


Proof. Since all spaces are contained in L2
n(Ω) the first part of the proposition is


proved. Next it is clear that Gc ⊂ GP
c , therefore GP ⊥


c ⊂ G⊥
c and ‖g∗‖GP ⊥


c
≤ ‖g∗‖G⊥


c


(respectively ‖g‖GP ⊥
c


≤ ‖g‖G⊥
c


).


Condition (4.26) depends on the partition of Ω. It is therefore unrealistic since one


expects this partition to change over time with the external currents. In this context


it is interesting to define the notion of pseudo locally homogeneous solution.


Definition 4.5.1. A pseudo locally homogeneous solution of equation (4.6) (respec-


tively (4.7)) corresponds to a locally homogeneous input current (verifying (4.25)) when


the connectivity function satisfies the condition of proposition 4.5.3 (existence and


uniqueness of a solution) but not necessarily conditions (4.26).
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How much a pseudo locally homogeneous solution differs from a locally homogeneous


solution obviously depends upon how poorly the connectivity function satisfies the


conditions (4.26). But since pseudo locally homogeneous solutions are solutions, they


enjoy the following property.


Proposition 4.5.5. If the operator g satisfies the condition of theorem 4.3.1, the


unique pseudo locally homogeneous solution of equations (4.6) (respectively of equa-


tions (4.7)) corresponding to a locally homogeneous input current, is absolutely stable.


A numerical example of pseudo locally homogeneous solution is given in section 4.6


(figures 4.16 and 4.17).


Complete local synchronization


The property of absolute stability of the solution that is characterized in theorem


4.5.3 can be seen as the ability for the neural masses in the continuum to synchronize


locally within each region Ωi, i = 1, . . . , P . By local synchronization we mean that the


state vectors at all points of each region Ωi converge to a unique state vector that is


a function only of the common input Ii
ext within Ωi and not of the initial states of the


neural masses. The state vector is the locally homogeneous solution of (4.6) and (4.7).


This effect is called complete local synchronization.


4.5.3 Higher order PSPs


We now show how the theory developed so far can be extended to accomodate more


complicated time variations of the postsynaptic potentials (PSPs) than the decaying


exponential that we adopted so far with the advantage that we only had to deal with a


first order differential equation. We only show how to proceed in the case of a second


order differential equation, going to a higher order does not bring in new difficulties.


We also treat only the case of the voltage-based model, the case of the activity-based


model being similar.


We therefore assume that, with the notations of section 4.1.1, we have PSPi(t) =
te−t/τiY (t) or equivalently that


d2PSPi(t)


dt2
+


2


τi


dPSPi(t)


dt
+


1


τ2
i


= δ(t)


The analog of equation (4.4) being


V′′ = −2LV′ − L2V + WS(V) + Iext. (4.31)


We rewrite this as a first order system of differential equation by introducing the


vector V =


[
V


V′


]
:


V
′ = −LV +


[
0


WS(V)


]
+


[
0


Iext


]
, L =


[
0 −Id
L2 2L


]


The dynamic system V
′ = −LV is globally asymptotically stable since all the eigen-


values of the 2n × 2n matrix L have a strictly positive real part, as can be easily


verified3. This has the following consequence [75, 102] that is used below and that


we cite without proof.


3In fact the eigenvalues of L are the ones of L, 1/τis, with multiplicity 2.
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Theorem 4.5.4 (Lyapunov). The symmetric positive definite matrix


M =


∫ ∞


0
e−L


T t e−Lt dt


satisfies


ML + L
T
M = Id2n, (4.32)


where Id2n is the 2n× 2n identity matrix.


The analog of equation (4.6) is readily found to be


V t(r, t) = −LV(r, t) +


[
0∫


Ω W(r, r′, t)S(V(r′, t)) dr′


]
+


[
0


Iext


]
(4.33)


The state is now 2n-dimensional, the corresponding functional space is L2
2n(Ω) and


the operator g is defined on the subspace L2
n(Ω) of L2


2n(Ω). It keeps all its previous


properties. All proofs of the existence and uniqueness of a solution to (4.6) extend


mutatis mutandis to this new setting.


Let us now examine the problem of the absolute stability of the solution, the ana-


log of theorem 4.3.1.


Theorem 4.5.5. A sufficient condition for the solution of (4.6) to be absolutely stable


is


2λmaxDSm ‖g‖L2
n(Ω) < 1,


where λmax is the largest eigenvalue of the 2n× 2n matrix M defined in theorem 4.5.4.


Proof. We consider the equation


V t(r, t) = −LV(r, t) +


[
0∫


Ω Wcm(r, r′, t)S(V(r′, t)) dr′


]
+


[
0


Iext


]
,


where V is the vector composed of the first n components of vector V (the same con-


vention will be used in the following for subvectors of U and X ). Let U be its unique


solution with initial condition U(0) = U0, an element of L2
2n(Ω). Let also V be the


unique solution of the same equation with different initial conditions V(0) = V0,


another element of L2
2n(Ω). We introduce the new function X = V −U which satisfies


X t(r, t) = −LX (r, t) +


[
0∫


Ω Wcm(r, r′, t)H(X,U)(r′, t) dr′


]
=


− LX (r, t) +


[
0


gm(H(X,U))(r, t)


]
(4.34)


where the vector H(X,U) is given by H(X,U)(r, t) = S(V(r, t)) − S(U(r, t)) =
S(X(r, t) + U(r, t)) − S(U(r, t)). Consider now the functional


V (X ) =
1


2
〈X , MX 〉 ,


where the symmetric positive definite matrix M can be seen as defining a metric on


the state space. Its time derivative is 〈X , MX t 〉. We replace X t by its value from


(4.34) in this expression to obtain


dV (X )


dt
= −1


2


〈
X , (LT


M + ML)X
〉


+


〈
X , M


[
0


gm(H(X,U))


]〉
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Using the property (4.32) of M we obtain


dV (X )


dt
= −1


2
〈X , X 〉 +


〈
X , M


[
0


gm(H(X,U))


]〉


We consider the second term in the righthand side of this equation. Since M is


symmetric


∣∣∣
〈


X , M


[
0


gm(H(X,U))


]〉 ∣∣∣ =
∣∣∣
〈


MX ,


[
0


gm(H(X,U))


]〉 ∣∣∣


≤ ‖MX ‖2n,2 ‖gm(H(X,U))‖n,2 ≤ λmax‖X ‖2n,2 ‖gm(H(X,U))‖n,2


≤ λmax ‖X ‖2n,2 ‖gm‖L2
n
‖H(X,U)‖n,2 (4.35)


The inequality ‖MX‖2n,2 ≤ λmax‖X ‖2n,2 is obtained using the spectral properties of


the symmetric positive definite matrix M and lemma 4.3.4.


Using the idea in the proof of lemma 4.2.1, we write H(X,U) = DmX, where Dm


is a diagonal matrix whose diagonal elements are continuous functions with values


between 0 and 1. Hence, because of lemma 4.3.4


‖H(X,U)‖n,2 = ‖DmX‖n,2 ≤ ‖X‖n,2 ≤ ‖X ‖2n,2


We use this result and lemma 4.3.5 in (4.35) to obtain


∣∣∣∣∣


〈
X , M


[
0


gm(H(X,U))


]〉 ∣∣∣∣∣ ≤ λmaxDSm ‖g‖L2
n
‖X ‖2


2n,2,


and the conclusion follows.


All other theorems in sections 4.3, 4.4, 4.5 and in this section can be similarly ex-


tended to this more general setting. Complements on M and λmax can be found in


appendix C.


4.6 NUMERICAL EXAMPLES


We consider two (n = 2) one-dimensional (q = 1) populations of neurons,


population 1 being excitatory and population 2 inhibitory. The set Ω is the closed


interval [0, 1]. We note x the spatial variable and f the spatial frequency variable.


We consider Gaussian functions, noted Gij(x), i, j = 1, 2, from which we define the


connectivity functions. Hence we have Gij = G(0, σij). We consider three cases. In


the first case, section 4.6.1, we assume that the connectivity matrix is translation


invariant (see sections 4.3.2 and 4.4.2). In the second case, section 4.6.2, we relax


this assumption and study the stability of the homogeneous solutions. The third


case, finally, section 4.6.3, covers the case of the locally homogeneous solutions and


their stability. In this section we have S1(x) = S2(x) = 1/(1 + e−x). Therefore


DSm =


[
0 1


4
1
4 0


]
,


hence DSm = 1/4. We also choose τ1 = τ2 = 4, therefore τmax = 4, and the product


DSm τmax is equal to 1.
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4.6.1 The convolution case


We define Wij(x, x
′) = ±αij Gij(x − x′), where the αijs are positive weights and the


sign determines whether population j excites (+) or inhibits (−) population i. As


explained in section 4.3.2, W(r) is defined on the closed interval Ω̂ = [−1, 1]. For


simplicity we use the approach described in section 4.3.2 and approximate the Fourier


transform of 1bΩ(x)W(x) by that of W(x) for which we have an analytical formula.


This approximation is good as long as the σijs are small with respect to 1.


The connectivity functions and their Fourier transforms are then given by


Wij(x) = ± αij√
2πσ2


ij


e


−
x2


2σ2
ij W̃ij(f) = ±αije


−2π2f2σ2
ij


The matrices W(x) and W̃(f) can be written


W(x) =






α11√
2πσ2


11


e
−
x2


2σ2
11 − α12√


2πσ2
12


e
−
x2


2σ2
12


α21√
2πσ2


21


e
−
x2


2σ2
21 − α22√


2πσ2
22


e
−
x2


2σ2
22






W̃(f) =



 α11e


−2π2f2σ2
11 −α12e


−2π2f2σ2
12


α21e
−2π2f2σ2


21 −α22e
−2π2f2σ2


22






Therefore we have, with the notations of theorem 4.3.3


W̃∗(f)W̃(f)
def
= X(f) =


[
A C
C B


]
.


It can be easily verified that


A = τ1


(
α2


11τ1e
−4π2σ2


11f
2


+ α2
21τ2e


−4π2σ2
21f


2
)


B = τ2


(
α2


22τ2e
−4π2σ2


22f
2


+ α2
12τ1e


−4π2σ2
12f


2
)
,


and


C = −√
τ1τ2


(
α21α22τ2e


−2π2(σ2
21 + σ2


22)f
2


+ α12α11τ1e
−2π2(σ2


12 + σ2
11)f


2
)


By construction the eigenvalues of the matrix X are positive (it is Hermitian), the


largest one, λmax, being given by


λmax =
1


2


(
A+B +


√
(A−B)2 + 4C2


)


Introducing the parameters A1 = (τ1α11)
2, A2 = (τ2α22)


2, r = τ1/τ2, x1 = α21/α11,


x2 = α12/α22 we can rewrite A, B and C as follows


A = A1


(
e−4π2σ2


11f
2


+
x2


1


r
e−4π2σ2


21f
2
)


B = A2


(
e−4π2σ2


22f
2


+ rx2
2e


−4π2σ2
12f


2
)
,
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and


C = −
√
A1A2


(
x1√
r
e−2π2(σ2


21 + σ2
22)f


2
+ x2


√
re−2π2(σ2


12 + σ2
11)f


2
)


The necessary and sufficient condition that the two eigenvalues are less than 1 for all


f is therefore λmax < 1 or


c(f)
def
= 2 −A−B −


√
(A−B)2 + 4C2 > 0 ∀f (4.36)


The function c(f) depends on the spatial frequency f and the nine parameters A1, A2,


x1, x2, r, and σ, the 2 × 2 matrix σij , i, j = 1, 2.


We have solved equation (4.6) on Ω = [0, 1]. We have sampled the interval with 100


points corresponding to 100 neural masses. The input Iext is equal to [W1(t),W2(t)]
T ,


where where the Wi(t)s, i = 1, 2 are realizations of independent standard Brown-


ian/Wiener processes shown in figure 4.1. We know that the solution is not homoge-


W1(t)


W2(t)
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-1. 5
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-0. 5


0


0.5


1


10 20 30 40 50 60
t


Figure 4.1: The two coordinates of the input Iext(t) are realizations of independent


standard Brownian/Wiener processes. Time runs along the horizontal axis.


neous because W is translation invariant. This is illustrated in figure 4.2. The initial


conditions are homogeneous and equal to (0, 0) for all neural masses state vectors V.


Absolute stability of the solution


Let us now study the absolute stability of the solutions. According to theorem 4.3.3


and the previous analysis, a sufficient condition for absolute stability is that c(f) > 0
for all frequencies f . As shown in figure 4.3, the following choice of the parameters α


and σ produces a curve c(f) that is positive for all frequencies.


α =


[
2 1.414


1.414 2


]
σ =


[
1 0.1


0.1 1


]


We can check that this is indeed the case in figure 4.4 which shows the absolute


stability of the solution at the point of coordinate 0.5 of the interval [0, 1].


Loss of absolute stability


The following choice of the parameters α and σ produces a curve c(f) that is not


positive for all frequencies, see figure 4.5.
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V1(10,t) with V1(10,0)=0


V1(100,t) with V1(100,0)=0
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V2(10,t) with V2(10,0)=0


V2(100,t) with V2(100,0)=0
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Figure 4.2: An illustration of the fact that when the connectivity matrix is translation


invariant there does not exist in general a homogeneous solution: the state vectors of


different neural masses follow different trajectories even when the input and the initial


condition are homogeneous (independent of the location x). Left side graph: the time


variation of the first coordinate of the solution at points of coordinates 0.1 (continuous


line) and 1 (dotted line) of the interval [0, 1]. Right side graph: same for the second


coordinate. The initial condition is 0 in both cases.


c(f)
 


0.6


0.8


1


1.2


1.4


1.6


1.8


2


-10 -8 -6 -4 -2 0 2 4 6 8 10
f


Figure 4.3: The function c(f) defined in (4.36) is positive for all spatial frequencies f :


the system is absolutely stable.


α =


[
565.7 565.7
565.7 565.7


]
σ =


[
0.01 0.01
0.1 0.1


]


Therefore absolute stability is not guaranteed. We show in figure 4.6 that this is


indeed the case.


4.6.2 Homogeneous solutions


In the previous case the translation invariance of the connectivity matrix forbids the


existence of homogeneous solutions. We can obtain a connectivity matrix satisfying


condition (4.12) by defining


Wij(x, x
′) = ±ααij


Gij(x− x′)∫ 1
0 Gij(x− y) dy


i, j = 1, 2,
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V1(50,t) with V1(50,0)=0


V1(50,t) with V1(50,0)=1
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V2(50,t) with V2(50,0)=0


V2(50,t) with V2(50,0)=-1
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Figure 4.4: An illustration of the absolute stability of the solution: independently of


the choice of the initial condition, the trajectories of the state vector converge to a single


trajectory. Results are shown for the neural mass of spatial coordinate 0.5. Left: the


first coordinate of the state vector. Right: the second coordinate. Initial condition (0, 0),
continuous curves. Initial condition (1,−1), dotted line.
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Figure 4.5: The function c(f) defined in (4.36) is not positive for all spatial frequencies


f : the system may lose its absolute stability.


where α and the αijs are connectivity weights. These functions are well defined


since the denominator is never equal to 0 and the resulting connectivity matrix is


in L2
2×2([0, 1]× [0, 1]). It is shown in figure 4.7. The values of the parameters are given


in (4.37). Proposition 4.5.3 guarantees the existence and uniqueness of a homoge-


neous solution for an initial condition in L2
2(Ω). According to theorem 4.4.1 and our


choice for the values of τmax and DSm, a sufficient condition for this solution to be


absolutely stable is that ‖g∗‖G⊥
c
< 1.


Absolute stability


The following values of the parameters


α =


[
5.20 5.20
2.09 2.09


]
σ =


[
0.1 0.1
1 1


]
τ1 = τ2 = 1 α = 1/20 (4.37)
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V1(50,t) with V1(50,0)=0


V1(50,t) with V1(50,0)=1
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Figure 4.6: An illustration of the lack of absolute stability of the solution: different


initial conditions result in different trajectories of the state vectors. Results are shown


for the neural mass of spatial coordinate 0.5. Left: the first coordinate of the state


vector. Right: the second coordinate. Initial condition (0, 0), continuous curves. Initial


condition (1,−1), dotted curves.
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Figure 4.7: The four elements of the matrix W(x, y) in the homogeneous case. Upper


left: W11(x, y). Upper right: −W12(x, y). Lower left: W21(x, y). Lower right: −W22(x, y).


yield ‖g∗‖G⊥
c
≃ 0.01, hence the homogeneous solutions are absolutely stable. All oper-


ator norms have been computed using the method described in appendix C.


The initial conditions are drawn randomly and independently from the uniform


distribution on [−2, 2]. The input Iext(t) is equal to [W1(t),W2(t)]
T , where the Wi(t)s,
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i = 1, 2 are realizations of independent standard Brownian/Wiener processes shown


in figure 4.1.


We show in figure 4.8 the complete synchronization of four (numbers 10, 36, 63


and 90) of the hundred neural masses that results from the absolute stability of the


homogeneous solution.


V1(10,t)
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-1. 5


-1


-0. 5


0


0.5


1


5 10 15 20 25 30
t


V2(10,t)
V2(36,t)
V2(63,t)
V2(90,t)


 


-1. 5


-1


-0. 5


0


0.5


1


1.5


5 10 15 20 25 30
t


Figure 4.8: The absolute stability of the homogeneous solution results in the com-


plete synchronization of the neural masses. This is shown for four out of the hundred


(coordinates 0.1, 0.36, 0.63 and 0.9). The input is shown in figure 4.1. The initial con-


ditions are drawn independently from the uniform distribution on [−2, 2]. Left: The


first components of the four state vectors. Right: the second components.


Loss of absolute stability


If we increase the value of α it has the effect of increasing ‖g∗‖G⊥
c


. The sufficient


condition will eventually not be satisfied and we may lose the absolute stability of


the homogeneous solution and hence the complete synchronization of the solution.


Such a case is shown in figure 4.9 for α = 15 corresponding to an operator norm


‖g∗‖G⊥
c
≃ 2.62.


4.6.3 Locally homogeneous solutions


We partition Ω = [0, 1] into Ω1 = [0, 1/2[ and Ω2 = [1/2, 1], hence with the notations of


section 4.5.2, P = 2. We can obtain a connectivity matrix satisfying condition (4.26)


by defining


Wij(x, x
′) =







±ααij(x, x
′)


Gij(x− x′)∫ 1/2


0
Gij(x− y) dy


, x′ ∈ Ω1


±ααij(x, x
′)


Gij(x− x′)∫ 1


1/2
Gij(x− y) dy


, x′ ∈ Ω2


,


with αij(x, x
′) = αkl


ij , x ∈ Ωk, x
′ ∈ Ωl, k, l = 1, 2.


The resulting connectivity matrix is in L2
2×2([0, 1] × [0, 1]). It is shown in figure 4.10.


The input Iext(t) is equal to [W1(t),W2(t)]
T in Ω1 and to [W3(t),W4(t)]


T in Ω2, where


the Wi(t)s, i = 1, · · · , 4 are realizations of independent standard Brownian/Wiener
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Figure 4.9: The loss of the absolute stability of the homogeneous solution results in the


loss of the complete synchronization of neural masses when the sufficient condition of


theorem 4.4.1 is not satisfied. This is shown for four out of the hundred (coordinates


0.1, 0.36, 0.63 and 0.9). The input is the same as in the previous example. Top: The


first components of the four state vectors. Bottom left: The second components of the


four state vectors for 0 ≤ t ≤ 60s. Bottom right: Zoom on the second components of the


four state vectors for 10 ≤ t ≤ 60s.


processes shown in figure 4.11. Hence it is homogeneous in Ω1 (respectively in Ω2)


but not in Ω = Ω2 ∪ Ω2. According to proposition 4.5.3 there exists a unique solution


to (4.6) for a given initial condition in L2
2(Ω). This solution is locally homogeneous


if the initial condition is locally homogeneous (theorem 4.5.2) given the fact that the


input is locally homogeneous.


Absolute stability


The parameters


α11 =


[
5.21 0.23
0.23 5.21


]
α12 =


[
4.98 0.34
0.34 4.98


]


α21 =


[
4.75 0.45
0.45 4.75


]
α22 =


[
5.39 0.13
0.13 5.39


] σ =


[
0.05 0.075
0.1 0.03


]


result in an operator norm ‖g∗‖G2⊥
c


≃ 0.23. Therefore, according to theorem 4.5.3, the


locally homogeneous solutions are absolutely stable, resulting in the complete local


synchronization of the neural masses (within Ω1 and Ω2).
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Figure 4.10: The four elements of the matrix W(x, y) in the locally homogeneous case.


Upper left: W11(x, y). Upper right: −W12(x, y). Lower left: W21(x, y). Lower right:


−W22(x, y).
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Figure 4.11: The two coordinates of the input Iext(t) in Ω1 and Ω2 are realizations of


four independent Wiener processes (W1 and W2 are identical to those shown in figure


4.1).


We show in figure 4.12 (respectively figure 4.13) the complete synchronization of


two neural masses (numbers 10 and 36) in Ω1 (respectively two neural masses (num-


bers 63 and 90) in Ω2). The initial conditions are drawn randomly and independently


from the uniform distribution on [−10, 10] and [−2, 2] for Ω1 and on [−20, 20] and [−2, 2]
for Ω2.
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Figure 4.12: The complete synchronization of two neural masses in Ω1 of coordinates


0.1 and 0.36. The input is shown in figure 4.11. Left: the first components of the two


state vectors. Right: the second components of the two state vectors.
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Figure 4.13: The complete synchronization of two neural masses in Ω2 of coordinates


0.63 and 0.9. The input is shown in figure 4.11. Left: the first components of the two


state vectors. Right: the second components of the two state vectors.


Loss of absolute stability


If we increase the value of α, it has the effect of increasing ‖g∗‖
G2, ⊥


c
. The sufficient


condition for absolute stability will eventually not be satisfied and we may lose the


absolute stability of the locally homogeneous solution and hence the complete local


synchronization of the solution. This is shown in figures 4.14 and 4.15 for α = 10
corresponding to an operator norm ‖gL ∗


m ‖G2⊥
c


≃ 2.3.


4.6.4 Absolute stability of pseudo locally homogeneous solutions


As mentioned at the end of section 4.5.2, even if the connectivity function does not


satisfy condition (4.26) and the operator g∗ satifies only the condition of theorem


4.3.1 but not that of theorem 4.5.3 the existence of locally homogeneous solutions


is not guaranteed but the absolute stability of the solution is, because of proposition


4.5.4. As shown in figures 4.16 and 4.17 these solutions can be very close to being


locally homogeneous and thus enjoy the property of complete local synchronization.


This is potentially very interesting from the application viewpoint since one may say
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Figure 4.14: The loss of the absolute stability of the locally homogeneous solution


results in the loss of the complete local synchronization of neural masses when the


sufficient condition of theorem 4.5.3 is not satisfied. This is shown for two out of the


fifty (coordinates 0.1, 0.36) neural masses in Ω1. The input is the same as in the


previous example. Left: The first components of the two state vectors. Right: The


second components of the two state vectors.
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Figure 4.15: The loss of the absolute stability of the locally homogeneous solution


results in the loss of the complete local synchronization of neural masses when the


sufficient condition of theorem 4.5.3 is not satisfied. This is shown for two out of the


fifty (coordinates 0.63, 0.9) neural masses in Ω2. The input is the same as in the


previous example. Left: The first components of the two state vectors. Right: The


second components of the two state vectors.


that if the system admits homogeneous solutions and if they are absolutely stable it


can have locally homogeneous solutions without “knowing” the partition, and they


are absolutely stable. These results are illustrated by two animations (files pseudo-


local-homogeneous-synchro-1.gif and pseudo-local-homogeneous-synchro-2.gif of the


supplemental material). The axes are the same as previously.


4.7 CONCLUSION


We have studied the existence, uniqueness, and absolute stability of a so-


lution of two examples of nonlinear integro-differential equations that describe the


spatio-temporal activity of sets of neural masses. These equations involve space and
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Figure 4.16: The connectivity function satisfies condition (4.12) but not condition


(4.26) and the operator g∗ satifies the condition of theorem 4.4.1, not that of theo-


rem 4.5.3. The input is locally homogeneous, as in figures 4.12 and 4.13. The solution


is absolutely stable, because of theorem 4.4.1 and almost locally homogeneous. Some-


thing very close to complete local synchronization is observed. This is shown for two


out of the fifty (coordinates 0.1, 0.2) neural masses in Ω1. Left: The first components of


the two state vectors. Right: The second components of the two state vectors.
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Figure 4.17: Same as in figure 4.16. The complete local synchronization is shown for


two out of the fifty (coordinates 0.5, 0.6) neural masses in Ω2.
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time varying, possibly non-symmetric, intra-cortical connectivity kernels. The time


dependency of the connectivity kernels opens the door to the study, in this framework,


of plasticity and learning. Contributions from white matter afferents are represented


by external inputs. Sigmoidal nonlinearities arise from the relation between average


membrane potentials and instantaneous firing rates. The intra-cortical connectivity


functions have been shown to naturally define compact operators of the functional


space of interest. Using methods of functional analysis, we have given sufficient con-


ditions for the existence and uniqueness of a solution of these equations for general,


homogeneous (i.e. independent of the spatial variable), and locally homogeneous in-


puts. In all cases we have provided sufficient conditions for the solutions to be abso-


lutely stable, that is to say independent of the initial state of the neural field. These


conditions involve the connectivity functions, the maximum slopes of the sigmoids, as


well as the time constants used to described the time variation of the postsynaptic po-


tentials. They are very relevant to neuroscience where dynamical neuronal systems


that “recognize” a given input regardless of their initial state are quite common. To


our knowledge this is the first time that such a complete analysis of the problem of


the existence and uniqueness of a solution of these equations has been obtained. An


important contribution also is the analysis of the absolute stability of these solutions


which had been considered as much more difficult to perform than the linear stability


analysis which it implies. This application may not be limited to the specific topic of


this chapter.


The reason why we have been able to complete this work programme is our use of


the functional analysis framework and the theory of compact operators in a Hilbert


space with the effect of providing simple mathematical answers to some of the ques-


tions raised by modellers in neuroscience. For example, the issue of bump solutions


in such bounded neural fields has been tackled in the technical report [35], which has


been accepted for publication in Neural Computation.


In the last part of this thesis, we use neural fields to model optical imaging experi-


ments.
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Part III


Biophysical neural fields for


VSD optical imaging modeling
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CHAPTER 5


A NEURAL FIELD MODEL FOR


VSD OPTICAL IMAGING SIGNALS


OVERVIEW


In this chapter we propose a solution to the direct problem of VSD optical imaging


based on a neural field model of a cortical area. We first present a biophysical ap-


proach to neural fields and show that these easily integrate the biological knowledge


on cortical structure, especially horizontal and vertical connectivity patterns. Then


we introduce the reader to VSD optical imaging. Finally, we propose a biophysical


formula expressing the optical imaging signal in terms of the activity of the field.


This chapter and the following are part of the research report [47] (2007) and the


corresponding paper is in preparation.
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5.1 NEURAL FIELD MODEL OF A CORTICAL AREA


In mammals brain, gray matter (intracortical) projections almost exclusively


connect neurons within the same area and white matter projections mostly connect


neurons from different areas [97]. In the following, we will see a cortical area as


an autonomous intracortical network, described by a neural field equation, including


several layers and receiving distributed sensory input from white matter afferents


(see figure 5.1).


Figure 5.1: Left. Simplified representation of the brain that we assume in our mod-


eling of a cortical area: areas are defined as autonomous structures receiving input


from other parts of the brain. The central ovoid form represents the thalamus, the


other brown regions being cortical areas. Black curves account for white matter con-


nections. Right. Focus on a single area. We see it as a layered intracortical network


receiving sensory input via white matter projections.


In this section, we want to show that neural field models parameters and variables


can naturally be related to well-known biological facts.


We start from classical neural field models and analyze them from a biophysical view-


point.


V̇(r, t) = −LV(r, t) +


∫


Ω
W(r, r′)S(V(r′, t)) dr′ + Iext(r, t), (5.1)


and


Ȧ(r, t) = −LA(r, t) + S


(∫


Ω
W(r, r′)A(r′, t)) dr′ + Iext(r, t)


)
1. (5.2)


Ω is the spatial domain defining the area, a compact subdomain of R
2 (e.g. a square or


a disk). For each spatial position r ∈ Ω, the underlying cortical column is described, at


time t, by anN -dimensional vector V(r, t) or A(r, t). V(r, t) contains the average soma


membrane potentials of the different neural masses present in the column. So, N is


the number of neuronal types considered in every column. Each neuronal type can


be thought of as belonging to a particular cortical layer, the layer the corresponding


somata belong to. A(r, t) contains the average activities of the masses.


Ai = PSPi ∗ νi,


where ∗ represents the temporal convolution, νi the average firing rate of mass i and


PSPi the normalized2 postsynaptic potential induced by mass i on its postsynaptic


1These equations are particular cases of equations (4.6) and (4.7).
2Normalized in the sense that it does not include the strength and sign of connections from mass i to


its postsynaptic partner.
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targets. So Ai is the potential quantity of post-synaptic potential induced by mass i
on the dendrites of all its postsynaptic partners. The actual quantity depends on the


strength and sign (excitatory or inhibitory) of the projections.


Here it is assumed that postsynaptic potentials have a decreasing exponential form,


completely characterized by their time constant (up to the sign and intensity of con-


nections, see figure 5.2):


PSPi(t) =


{
e−t/τi , t > 0
0, t ≤ 0


.
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Figure 5.2: Form of a normalized postsynaptic potential that we assume in our mod-


els. As τ gets bigger, PSP gets broader.


L is an N × N diagonal matrix containing the synaptic decay time constants τi of


the postsynaptic potentials PSPi(t) for the different neuronal types. As we have seen


before, in the voltage case, the time constants only depend on the postsynaptic pop-


ulation, while in the activity case they only depend on the presynaptic one. In real


neurons these constants actually depend on both populations and on their current


electrophysiological state (in terms of ionic channels openings), what allows to ex-


plain such phenomena as shunting inhibition. However among the two presented


models, the activity-based model is the most realistic. Indeed, the characteristic time


constant of a postsynaptic potential more likely depends on the neurotransmitter that


triggered it, and so, on the presynaptic neuron.


Iext(r, t) is an input term to the system, corresponding to projections that arise from


white matter. For example in V1, it would correspond to the input from the lateral


geniculate nucleus (LGN, the thalamic relay from the retina to the cortex) and feed-


backs from the secondary visual cortex, V2 (see figure 5.3).


The input can be seen as a current (voltage case) or an electric potential (activity


case) on the dendrites of thalamo-recipient cells. The main problem concerning the


input term is that few is currently known about the coding of sensory information by


sensory organs and their thalamic relays to the cortex.


In equations (5.1) and (5.2), the integral terms summate the contributions from


columns at different locations on the field to the dynamics of the column located


at point r. They feature an intracortical connectivity kernel W representing the


weights of connections between columns located at different positions on the field


and a nonlinear function S : R
N → R


N . S has N components. Each of them is a
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Figure 5.3: External inputs to V1, arising from white matter fibers: feedforward


projections from the LGN and feedback projections from V2.


static sigmoidal (nonlinear) transformation converting, for a given neuronal type, the


average soma potential of a neural mass into its average firing rate. This sigmoidal


shape (see figure 2.3) is in agreement with studies made by Walter Freeman in


the olfactory bulb. He showed that the mapping between the average membrane


potential of a neural mass and its average firing rate was a sigmoidal “wave-to-pulse”


transform, by comparing the amplitude of EEG signals produced by neural masses


with their firing probabilities [39]. The abscissa of the sigmoid’s inflection point can


be thought of as the average excitability or firing threshold of the corresponding


neuronal population, and the limit of the sigmoid at infinity, as its maximal firing


rate.


W is an N ×N matrix. The terms Wij represent the strength of projections from neu-


rons of type j to neurons of type i. But what does “strength” mean? Each connectivity


term can be seen as the product of three quantities:


Wij = Nj kij wij ,


where Nj is the number of neurons of type j in one column, kij the gain of an average


postsynaptic potential caused by a neuron of type j on a neuron of type i, and wij , the


average number of synaptic contacts that a neuron of type j makes on a neuron of


type i. It can also be seen as the probability of synaptic contact between the axon of


a neuron of type j and the postsynaptic compartments of a neuron of type i.
So in first approximation we can think of W as a wiring diagram such as the one


shown in figure 5.4, where the matrix components Wij are represented by arrows


linking neuronal types. Figure 5.4 is of course very similar to figure 1.20, which


contains the information on the kijs and the wijs.


However, a diagram such as figure 5.4 only provides information on the “vertical”


intracolumnar connectivity between neural masses. Horizontal intercolumnar con-


nections are also included in W. Each Wij is actually a function depending on two


positions on the field andWij(r, r
′) indicates the strength of projections from the mass
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L5-E


L4-E


L5-I


L4-I


L2/3-I


Figure 5.4: A example of simplified model of cortical interactions based on six neu-


ronal populations. It features three layers corresponding to cortical layers II/III, IV


and V, and two types of neurons (excitatory ones in black and inhibitory ones in red).


The size of the arrows gives an idea of the strength of the connectivity between popula-


tions (adapted from [49]).
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of type j, in column r′ to the mass of type i, in column r. The vertical connectivity


information for column r can be found in W(r, r). Wij(·, r′) is the spatial horizontal


distribution of projections from the mass (j, r′) to masses of type i, which depends on


the horizontal spread of both the axonal arborization of mass (j, r′) and the dendrites


of masses of type i (see figure 5.5).


space
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W12( . ,r)


W32( . ,r)


1


2 r’


r


space


Figure 5.5: Left. Example featuring three neuronal types (1, 2 and 3). The mass (2, r)
shows different spatial patterns of horizontal projections, depending on the type of the


postsynaptic targets. Right. The axonal arbour of mass (1, r) (in red) does not reach r′


but since the dendritic tree of (2, r′) (in green) is wide enough, W21(r
′, r) 6= 0.


Horizontal connectivity patterns play a major functional role and widely vary from


an area to another. We will see examples of these patterns in the next chapter for


two different cortices: the primary visual cortex of a wide range of mammals and the


rat barrel cortex.


So, we have seen that neural fields can be suitable mesoscopic models of cortical ar-


eas. Their parameters can be tuned in agreement with well-known biophysical quan-


tities and account for the complex structure of an area in terms of layers, horizontal


and vertical connectivity.


In the following we will focus on the activity-based model, because it is more realis-


tic than the voltage-based model as concerns synaptic integration and facilitate the


description of the optical imaging signals that we will propose later.


5.2 PRINCIPLE OF VSD OPTICAL IMAGING


VSD optical imaging3 (VSDOI) is a recent and popular functional imaging


technique that uses fluorescent voltage-sensitive dyes (VSDs) to reveal population


activity of cortical neurons in behaving animals [48], with high spatial resolution


(∼0.5µm for single cell recordings and ∼50µm for population recordings) and a tem-


poral precision inferior to the millisecond. This invasive technique requires an open-


ing in the skull to have direct access to the cortex (see figure 5.6, lower panel). Hence,


it has mostly been used in non-human mammals, like monkeys, cats and rodents.


As the cortex is stained with VSD, the dye molecules bind to the plasmic membrane of


3Also known as extrinsic optical imaging.
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all types of cells present in the cortex. These include glial cells and all compartments


of neurons. VSD molecules are polarized, because of the electric potential at the level


of neurons membranes, and emit light with an intensity proportional to this polariza-


tion (see figure 5.6, upper right panel). Glial cells are known to have a minimal contri-


bution to VSD signals because of their lower electrical activity compared to neurons.


So light patterns emitted from the cortex and recorded by the camera of the optical


imaging device (figure 5.6, upper left panel) are mostly due to the electrical activity of


neurons. VSDOI signals show a remarkable match with intracellular recordings. Ac-


tually, at the level of a single cell, the amplitude of VSD signals is linearly correlated


with both the membrane potential and the area of stained neuronal membranes. In


neuronal population imaging, a pixel contains the blurred images of various neuronal


compartments. How strongly do the different compartments contribute to the VSD


signal? The surface of somata is several orders of magnitude smaller than the sur-


face of axons and dendrites. So somata make a minor contribution to the VSD signal.


Dendrites are more confined, horizontally, than axonal arbours, and spikes traveling


down the axons are too brief events to be well integrated in the population VSD sig-


nal. So, the optical signal is mainly due to the subthreshold, dendritic activity of the


underlying population of neurons (see the comparison of the optical signal with an


intracellular recording on figure 5.6).


Figure 5.6: Principle of VSDOI. An opening in the skull of a behaving monkey gives


access to its cortex stained with VSD. A camera records the fluorescence caused by


polarized VSD molecules bound to the plasmic membrane of cortical neurons, and


after appropriate processing, a movie of the distributed population activity is obtained,


with high spatial and temporal resolutions. The optical signal (in red on the right


central panel) remarkably matches the subthreshold dynamics of neurons obtained by


intracellular recordings (in blue; truncated spikes are represented by small blue dots


overlying the subthreshold signal) (From [48]).


The integration of the optical signal across the depth of the cortex is subject to a


double gradient. First, VSD molecules mostly diffuse in the superficial layers and
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few of them deeply penetrate the cortex. In [70], the authors show that most of the


dye molecules4 lie in layers I-III (70%) (see figure 5.7).


Second, the light emitted by deep VSD molecules undergoes stronger diffusive


effects, traveling back to the surface across cortical cells. Hence activity in layers


IV-VI poorly contributes to the signal.


We now propose a model for VSDOI signals produced by a cortical area, grounded in


the above facts, and based on a neural field description of the spatially distributed


activity of neural masses in the area.


5.3 MODEL OF THE OI SIGNAL


In this section we write a formula involving the variables and parameters of a


neural field model to solve the direct problem of VSDOI.


To that purpose we start from the whole signal and decompose it, step by step, into


elementary contributors until we reach the cellular membrane level, where the opti-


cal signal is simply proportional to the membrane potential. Firstly, the signal is a


weighted sum of the signals arising from the different layers. We note the whole sig-


nal OI, and the unattenuated signal from layer l, OI l. Here, “unattenuated” means


that we suppose that no superimposed layer would hamper the propagation of light


towards the camera. We then have the following


OI(r, t) =
∑


l∈{layers}


alOI
l(r, t),


where al is a positive attenuation coefficient due absorption and diffusion of the light


emitted by layer l through its superimposed layers. Naturally, al decreases as the


depth of the layer increases. Then it is natural to sum these attenuated light contri-


butions in virtue of the linearity of Maxwell equations.


The propagation of light through the cortical tissue is not well-known, but diffusion


and absorption of light by gray matter probably would be more suitably modeled by a


spatial blurring of the signals produced by a layer. Hence the previous formula would


become


OI(r, t) =
∑


l∈{layers}


al Gl ⊗OI l(r, t),


where Gl is a two-dimensional Gaussian distribution whose standard deviation in-


creases with the depth of layer l, and ⊗ denotes the spatial convolution (see fig-


ure 5.8).


Now, what is the local instantaneous quantity of light OI l(r, t) produced by layer l?


OI l =


N∑


i=1


OI l
i ,


where N is the number of neuronal types considered in the neural field and OI l
i the


contribution of dendrites belonging to neurons of type i and lying in layer l5 to the


unattenuated layer signal (see figure 5.9).


4They used the blue dye RH1691, developed by Amiram Grinvald’s group, in the cortex of the rat.
5From now on, we will designate dendritic trees by a doublet (l, i) indicating the layer and the neu-


ronal type it belongs to.
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Figure 5.7: A. Left. Visible light image of a stained cortical slice. Middle. Corre-


sponding fluorescence image showing the density distribution of VSD molecules across


the layers. Right. Corresponding fluorescence intensity (red) and integrated intensity


(blue). We observe that about 30% of the staining dye molecules are located in layer I


and about 70% in layers I-III. B. Stained brain section. Arrows indicate the borders of


the previously opened cranial window. Broken line indicates the border between gray


and white matter. The staining can be seen by eye in blue (From [70]).
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Figure 5.8: Two models of light absorption/diffusion in superficial layers. A. The


fluorescence produced in layer l at the level of one neural mass is simply attenuated by


absorption in superficial layers, keeping its initial spatial focus. B. In this model, the


same focused emission of light in layer l is attenuated by absorption and horizontally


diffused by multiple scattering in the cortical cellular network. This phenomenon can


be accounted for by a convolution of the signal with a Gaussian distribution. It results,


at the exit of the cortex, in a blurred emission of light.
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Figure 5.9: The emission of light at the level of a layer (here layer 2), forgetting the


attenuation due to superimposed layers (like layer 1, in light color), is the sum of the


contributions from neurons which project part of their dendritic trees in the emitting


layer, no matter where their somata are located.
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Note that the somata of neurons of type i do not need lie in layer l so that part of


their dendritic trees do, and hence contribute to the layer signal. For example deep


layers pyramidal cells have several dendritic arbors and some of them reach the


most superficial cortical layers (see figure 1.14).


Now we focus on OI l
i(r, t), the local unattenuated contribution of the dendritic tree


(l, i).


OI l
i(r, t) = cNi s


l
i nl P


l
i (r, t),


where P l
i is the membrane potential of (l, i), nl the number of VSD molecules per


membrane surface unit in layer l, sl
i the average dendritic surface due to one neuron of


type i in layer l andNi the number of neurons of type i in a cortical column. So, Ni s
l
i nl


is the total number of dye molecules, in the extent of one cortical column, on the


dendritic tree (l, i). Finally, c is the coefficient of the linear transformation converting


the local membrane potential into the optical imaging signal (see figure 5.10).


layer lPi
l


i


OI i
l


si
l nl


Figure 5.10: The optical imaging signal (yellow) is locally linearly correlated to the


dendritic membrane potential (green), the concentration of VSD molecules (blue) and


the dendritic surface (red).


Now, how can we express the dendritic membrane potentials P l
i (r, t) in a model with-


out any specific attention paid to neuronal compartments and where a neural mass


is a simple point of the field?


Instead of trying to infer the dendritic potential P l
i (r, t) from the knowledge of the


activity vector of column r, A(r, t), we consider all projections to column r. We note


PSP l
ij(r, t) the total postsynaptic potential caused at time t on the dendritic tree (l, i)


of column r by all masses of type j across the area. Then assuming a linear summa-


tion of postsynaptic potentials as we did in neural field models, we have


P l
i (r, t) =


N∑


j=1


PSP l
ij(r, t),
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with


PSP l
ij(r, t) = αl


ij


∫


Ω
Wij(r, r


′)Aj(r
′, t) dr′.


αl
ij ∈ [0, 1] is the fraction of synapses masses of type j make on dendrites of type i at


the level of layer l, i.e. the number of synapses made by neurons of type j on (l, i)
divided by the total number of synapses made by neurons of type j on neurons of


type i6. Hence in general
∑


l α
l
ij ≤ 1. If neurons of type j exclusively target dendrites,


then
∑


l α
l
ij = 1. If in the opposite case they only target somata,


∑
l α


l
ij = 0.


Now, we are ready to summate all elementary terms to obtain a formula for the direct


problem of VSDOI:


OI(r, t) =


N∑


i,j=1


Cij


∫


Ω
wij(r, r


′)Aj(r
′, t) dr′, (5.3)


with


Cij = cNiNj kij


∑


l∈{layers}


sl
i α


l
ij al nl.


If we assume a more realistic, Gaussian diffusion, we have


OI(·, t) =
N∑


i,j=1


Cij ⊗
∫


Ω
wij(·, r′)Aj(r


′, t) dr′, (5.4)


with


Cij = cNiNj kij


∑


l∈{layers}


sl
i α


l
ij nl alGl.


Formulas (5.3) and (5.4) are equivalent to


OI(r, t) =


N∑


j=1


∫


Ω
w̃j(r, r


′)Aj(r
′, t) dr′, (5.5)


with


w̃j(r, r
′) =


N∑


i=1


Cij wij(r, r
′),


or


w̃j(r, r
′) =


N∑


i=1


∫


Ω
Cij(r − r′′)wij(r


′′, r′) dr′′.


We see from (5.3), (5.4) and (5.5) that the horizontal distribution patterns of intra-


cortical connectivity play a primary role in shaping the optical signal.


So, assuming a linear summation of postsynaptic potentials on cellular membranes,


we have expressed the direct problem of VSDOI as a time-invariant linear operator


providing at each time instant the instantaneous optical signal from the knowledge


6Here we implicitly assumed, for simplicity, that αl
ij does not depend on the relative horizontal posi-


tion of masses.
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of the instantaneous activity of the field. If we note this operator T, formulas (5.3),


(5.4) and (5.5) reduce to


OI(·, t) = TA(·, t), ∀t ≥ 0.


Moreover, T : L2(Ω,RN ) → L2(Ω,R) is obviously compact, as a sum of Hilbert-Schmidt


operators.


As concerns the inverse problem, it is most probably ill-posed (due to the higher di-


mensionality of the activity space compared to the signal space) and is not treated


here.


Now that we have a model of cortical activity and a formula for VSDOI signals, we


are ready to apply them to the simulation of real optical imaging experiments.
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CHAPTER 6


SIMULATIONS OF OPTICAL


SIGNALS IN THE VISUAL AND


BARREL CORTICES


OVERVIEW


In this chapter, we simulate optical signals that have been observed by experimen-


talists. We have chosen two experimental sets: the line-motion illusion in the visual


cortex of mammals [57] and the spread of activity in the rat barrel cortex [89]. We


begin with a structural description of both areas, with a focus on horizontal connec-


tivity. Then we simulate the corresponding neural field equations and extract the


optical signal using the direct problem formula developed in the last chapter. We


have been able to reproduce the main experimental results. This chapter, as well as


the previous one, is part of the research report [47] (2007) and a corresponding paper


is in preparation.


Contents


6.1 Horizontal connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 140


6.1.1 Mammals visual cortex . . . . . . . . . . . . . . . . . . . . . . . 140


6.1.2 Barrel cortex of the rat . . . . . . . . . . . . . . . . . . . . . . . 142


6.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144


6.2.1 Visual cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144


6.2.2 Barrel cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152


6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155


139







In this chapter, we try to reproduce the results of optical imaging experimental


paradigms found in the literature, by simulating adequate neural fields and extract-


ing the optical signals thanks to the formula developed in the previous chapter. We


have seen that horizontal connectivity patterns play a major role in shaping VSDOI


signals. So, we start with a description of the horizontal connectivity of both cortices


we focus on: the primary visual cortex and the barrel cortex. Then, we include the


main features of these connectivities in neural field models and perform simulations.


6.1 HORIZONTAL CONNECTIVITY


Horizontal trans-columnar connectivity has an important functional role in


the cortex and expresses through different arborization patterns. Two features must


be retained as fundamental: a strong intracolumnar connectivity and a global hori-


zontal decrease of connection intensity with the distance separating neural masses.


Neurons axonal trees ramify horizontally and connect to more or less distant post-


synaptic targets. Axon collaterals (branches of the axonal tree emerging from the


main axon of a neuron) can even make intracortical horizontal projections up to sev-


eral millimeters. Most interneurones (including spiny stellate cells) essentially make


local projections in their column of origin, while pyramidal cells and large basket cells


also form extensive trans-columnar projections. The connection strength between


two neurons generally decreases with the distance separating the somata. However,


strong selective long-range projections, called patches, may exist in certain cortices.


Two particular structures have received considerable attention from neuroscientists:


the lateral distribution of connections in mammals visual cortex [19, 63, 64, 65, 105,


115, 116] and the barrel organization of rats sensory cortex [2, 16, 37, 44, 73, 98, 99].


6.1.1 Mammals visual cortex


The primary visual cortex of certain mammals (including monkeys and cats, but not


rats) can be divided into orientation preference columns [54]. This means that cortical


columns in the visual cortex preferentially respond to certain oriented visual stimuli


(vertical, horizontal, oblique bars). So, each column can be labeled with a preferred


orientation and orientation preference maps of the visual cortex can be reconstructed


thanks to different functional imaging techniques (see figure 1.8). The main feature


of horizontal connectivity in the primary visual areas of such mammals is the patchy,


orientation-preference-biased structure of pyramidal cells long-range projections (see


figures 6.1 and 6.2).


In [19], the authors examine the relationship between excitatory lateral connections


and orientation maps in the cat primary visual cortex. Thanks to tracer injections


they were able to track the axonal projections issued from a small cortical site. They


showed that most proximal projections do not discriminate their target in terms of


orientation preference while distal patches usually do (figure 6.2). Actually, the re-


gions underlying distal patches tend to have the same orientation preference as the


region from which the projections originate. This tendency, which has been observed


for projections originating from a localized cluster of cells (i.e. a neural mass), is


however not clear when tracking the targets of single cells. Indeed their long-range


projections are not necessarily patchy nor orientation selective (see figure 6.3).


So, patchy functional projections made by PC clusters are consistent with our


mesoscopic neural mass approach, but they are too coarse to embrace the complexity


of the precise functional network.


140







Figure 6.1: Reconstruction of axonal boutons distibution (red) from a pool of biocytin-


injected pyramidal neurons in layer II/III of the tree shrew visual cortex (green central


patch). Strongly marked black and white stripes indicate V1 (black stripes are active


areas for a 90◦ stimulus). A central patch of radius ∼500µm is observed, surrounded


by smaller patches extending over several millimeters (From [14]).


Figure 6.2: Reconstruction of axonal boutons distibution (black) from a pool of


biocytin-injected pyramidal neurons (white crosses) in layer II/III of the tree shrew


visual cortex. A central patch of radius ∼500µm is observed, that shows no orienta-


tion selectivity. Surrounding smaller patches more acutely match areas with similar


orientation preference to the preferred orientation of the injection site. The white bar at


the corner of each image indicates the preferred orientation of the injected site (From


[14]).
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Figure 6.3: Projections originating from a single layer III PC. They do not show


particularly patchy nor selective characteristics (the white arrow shows the lateral


direction) (From [19]).


One last striking feature in PCs long-range projections is the anisotropy observed in


the spatial distribution of patches. It appears that the main direction of this distri-


bution is orthogonal to the preferred orientation of the injected site (see figure 6.2).


Large basket cells also make trans-columnar projections, up to one or two millime-


ters, but these are not patchy and have a lesser, 2-3 times smaller spatial extent than


projections from excitatory cells (see figure 6.4) [65].


However, these projections show distance-dependent selectivity according to orien-


tation as well as direction preference. In [64] the authors observe that specificity


expresses in two features of the axonal arbour of a large basket cell. The proximal


and distal parts of the arbour have distinct orientation and direction selectivities.


While local projections show similar preferences to that of the parent soma, distal


ones terminate most frequently in regions of non-preferred orientation and opposite


preferred direction. Moreover, the axonal arbour of large basket cells can be dissected


into two main trees bifurcating near the soma of the cell, which show different orien-


tation selectivity in their distal parts.


So, inhibitory horizontal projections would mainly have two functional roles: distally


supressing non-preferred responses, and proximally helping to sharpen orientation


and direction tunings because of their looser selectivity compared to excitatory pro-


jections.


6.1.2 Barrel cortex of the rat


The barrel cortex of the rat has a striking columnar organization in layer IV (see


figure 1.7). This layer can be divided into two main regions: the barrels, that soma-


totopically correspond to whiskers, and the septa, made of the neurons lying between


the barrels. Evidence has been shown that barrel- and septum-related pathways are


partially segregated. Barrels and septa receive sensory input from different subcor-


tical pathways, and in layer IV, septum cells preferentially innervate other septum


cells while barrel cells mostly innervate neurons in the same barrel. This segregation


extends to layer II/III because of the focused vertical projections from layer IV spiny


cells [16, 62]. We now focus on the connectivity among barrel-related columns defined
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Figure 6.4: Comparative distributions of bouton density for pyramidal (up) and bas-


ket cells (down). PCs axonal projections form long-range clusters (white crosses) while


basket cells ones do not and are less widely spread (From [65]).
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by the width of barrels in layer IV and spanning the whole depth of the cortex.


Layer IV neurons are basically limited to processing information that originates from


the associated whisker and form the predominant source of excitatory inputs to layer


II/III, that occur on the basal dendrites of PCs in the same column. On the contrary,


layer II/III exhibits both intra- and trans-columnar interactions. So, it appears that


this circuitry ensures the segregation of specific tactile stimuli (in layer IV) as well


as the transfer of information to neighbouring columns (in layer II/III).


Projections from layer II/III are spatially biased. In this layer, the activity of a sin-


gle barrel can spread laterally in an oval pattern, preferentially along the rows of


the barrel field (corresponding to horizontal rows of whiskers on the rat’s muzzle), as


anatomically suggested by the bias of elongation in the direction of barrel rows ob-


served in apical dendrites and axonal arborizations of layer II/III PCs (see figure 6.5


and 1.12). This elongation is also observed in the dendritic trees of deep layers PCs.


Figure 6.5: A. Coronal view of rat barrel cortex (barrels in layer IV are delineated by


light blue lines, showing three rows, C, D and E, and three arcs, 1, 2 and 3) showing the


preferred elongation of axonal and dendritic trees of layer II/III PCs in the direction


of rows. B-C. Corresponding side views (From [89]).


6.2 SIMULATIONS


6.2.1 Visual cortex


The line-motion illusion


The line-motion illusion illustrates a well-known Gestalt principle: non-moving stim-


uli can induce illusory motion perception. A movie displays a static square for a short


period of time, followed by a very short period with no stimulus, and then displays a


static bar (rectangle). So the movie is a simple square-blank-bar sequence of static


stimuli (see figure 6.6-a). The visual impression is different: it feels like the square


is growing into the bar (see figure 6.6-b). Recent experimental findings report that a


correlate of the line-motion illusion has been observed, by VSDOI techniques, in the


visual cortex of anaesthetized cats [57].


The experimental paradigm is the following. Cats have been shown several stimuli


while their cortical activity was simultaneously monitored by VSDOI and extracellu-


lar recordings: a static square stimulus, corresponding to the line-motion paradigm


where the part displaying the bar has been truncated (see figure 6.6-c), a static bar
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Figure 6.6: Line-motion illusion and its cortical correlates. (a) Stimulus of the line-


motion paradigm. (b) Corresponding illusory motion percept. (c-f) Optical signals


recorded for different stimuli (c: flashed small square, d: flashed bar, e: moving small


square, f: line-motion paradigm). Stimuli are indicated on the left, their duration


at the bottom of optical sequences and time after stimulus onset (in milliseconds), at


the top of the panels. Yellow dotted contours approximate retinotopic representation


of the stimuli; colored circles indicate extracellular recording sites; white contours de-


limit low-amplitude activity and black contours, high-amplitude activity. Color scale


indicates averaged fractional changes (i.e. normalized with ongoing activity without


stimulation) in fluorescence intensity. The cortical area imaged is shown in the upper


right panel. Scale bar: 1 mm, P: posterior, M: medial. (From [57]).
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stimulus, corresponding to the line-motion paradigm where the part displaying the


square has been truncated (see figure 6.6-d), a moving square stimulus (see figure 6.6-


e) and the line-motion paradigm (see figure 6.6-f). Results are shown in figure 6.6. In


the line-motion paradigm, the optical pattern induced by the square (compare to fig-


ure 6.6-c) grows into the optical pattern induced by the bar (compare to figure 6.6-d).


The propagation of the neuronal activity has been confirmed by the simultaneous ex-


tracellular recordings, showing that the propagation is not due to a property of optical


imaging signals. Moreover, the optical signal obtained in the line-motion paradigm


is similar to the signal obtained with a moving stimulus (compare e and f). These


results suggest that the line-motion illusion has a correlate in terms of neuronal ac-


tivity in V1.


Parametrization


We try to reproduce the optical signals presented in figure 6.6.


To that purpose we simulate the activity-based neural field (5.2) with the following


parameters:


• Populations. We use the populations proposed in [49] (N = 6): three layers


(II/III, IV and V) with excitatory and inhibitory neurons in each.


• Field Ω. Square domain [0, 1] × [0, 1] with a side length of 1cm, discretized in


100 × 100 units. No orientation preference consideration is made.


• Time. We integrate the equation over 80 time steps of 2.5ms, corresponding to a


total duration of 200ms.


• Synaptic time constants L. Two synaptic time constants: τe = 100ms, used for all


excitatory neurons, and τi = 200ms for all inhibitory neurons. Inhibitory post-


synaptic potentials are indeed slower than excitatory ones. The time constant


of real EPSPs is around 10ms and the one of GABA-mediated IPSPs around


100ms [97]. However we choose slower synaptic characteristic times to ensure


the stability of the numeric scheme we have used for simulations.


• Wave-to-pulse transforms S. Two transforms: Se (for all types of excitatory cells)


and Si (for all types of inhibitory cells), of the form


Sx(v) =
νx


1 + exp(rx (vx
0 − v))


, x ∈ {e, i},


with maximal firing rates νe = νi = 7.5Hz, gains re = ri = 0.5mV −1, and


excitability thresholds ve
0 = 3mV and vi


0 = 6mV . Inhibitory neurons are indeed


less excitable than excitatory ones. However, their maximal firing rates are


usually higher than the ones of excitatory cells, which has not been taken into


account here.


• Connectivity W. We choose translation-invariant connectivity kernels Wij(r −
r′), defined on Ω̂ = [−1, 1] × [−1, 1], and define global weights as


W ij =


∫


bΩ
Wij(r) dr.
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Vertical connectivity is defined by the global weights and horizontal connectiv-


ity, by normalized connectivity kernels


Ŵij(r) = Wij(r)/W ij , r ∈ Ω̂,


so that ∫


bΩ
Ŵij(r) dr = 1.


The global weights are set in agreement with the six population model proposed


in [49] (see figure 1.20). They are scaled by kij , wij and Nj . kij and wij , the


average synaptic gains and connection probabilities, are given in figure 1.20.


As concerns Nj , we consider columns with 160 excitatory neurons and 40 in-


hibitory neurons (in agreement with proportions reported for mammals cortex),


and distribute them equally among layers (this choice is supported by recent


experimental findings [12]). A color-coded version of the vertical connectivity


matrix W is given in figure 6.7.


Figure 6.7: Color-coded vertical connectivity matrix (connection strength W ij is ex-


pressed in mV ). Green squares indicate intralaminar connections. Well-identified


pathways are also mentioned: excitatory forward (FW) and feedback (FB) interlami-


nar pathways, as well as connections involved in disynaptic inhibition (DI). The feed-


back arising from layer V PCs and connections corresponding to disynaptic inhibition


are probably underestimated in this model, due to a lack of available connectivity


data.


The form of the Ŵijs mostly depends on the horizontal spread of the axonal
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arbors of neurons of type j1, and on whether they make patches or not. Lo-


cal projections from inhibitory neurons are modeled by a circularly symmetric


Gaussian distribution with a standard deviation (SD) of 0.7mm. Projections


from layer IV excitatory cells, among which spiny stellate excitatory interneu-


rons are largely represented, are also modeled by a unique local patch, but with


a larger extent (SD = 0.8mm) to account for longer range projections made by


layer IV PCs (see figure 6.8).


Figure 6.8: . Form of the non-patchy projections made by inhibitory neurons (left) and


layer IV spiny cells (right), represented on a subdomain of Ω̂ (abscissas are expressed


in cm).


Finally, projections from PCs in layers II/III and V (see figure 6.9) are modeled


by a central local patch Ŵ c
ij (SD = 0.4mm) surrounded by six satellite patches


of the same extent, forming the component Ŵ sat
ij . Hence


Ŵij = Ŵ c
ij + Ŵ sat


ij .


The distance between the center of the central patch and the centers of the


satellite patches is set to 1.25mm. Actually, most projections corresponding to


satellite patches do not stand for local projections in the sense of local connec-


tivity studies, because they outreach the extent of a cortical column. Hence


the global weight obtained from local connectivity studies for PCs projections


should be mainly attributed to the central patch. So as j corresponds to a PC


population, we choose


∫


bΩ
Ŵ c


ij(r) dr = 1 and


∫


bΩ
Ŵ sat


ij (r) dr = 1,


so that ∫


bΩ
Ŵij(r) dr = 2.


This choice is in good agreement with biological data, since in [19], the authors


report a number of axonal boutons in the central patch equivalent to the number


of boutons in all satellite patches.


1Here we neglect the extent of the dendritic trees of neurons of type i.
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Figure 6.9: Form of the patchy projections made by PCs from layers II/III and V,


represented on a subdomain of Ω̂ (abscissas are expressed in cm).


• Input Iext. The input terms correspond to the various paradigms we want to


simulate, modified by a spatiotemporal regularization accounting for the effect


of the retino-cortical pathway. So to obtain Iext the stimulus is first convoluted


with a Gaussian spatial kernel (SD = 0.35mm), modeling the horizontal spread


of afferent thalamic fibers in layer IV.


Then a temporal kernel T (t) of the form


T (t) =


{
e−t/τ/τ t ≥ 0
0 t < 0


, τ = 35ms


moderates the signal, accounting for both retino-thalamic persistence and adap-


tation to the visual input [1]. This kernel acts as follows. Any newly activated


pixel in the stimulus sequence will follow the time course of T , regardless of


whether the pixels continues to be activated or not. Hence transiently activated


pixels will persist at the level of the thalamo-cortical input and persistently


activated pixels will undergo adaptation. This retino-thalamic temporal regu-


larization, as suggested in [95], is crucial in the moving square case.


A delay of 40ms for visual input arrival to the cortex is modeled by giving Iext an


initial 40ms of blank, followed by the stimulus. In stimuli, the background is set


to zero and light patterns (square or bar) to one. Stimuli project exclusively on


layer IV, with an equal repartition between excitatory and inhibitory neurons.


The stimuli and the corresponding inputs to the cortex are shown in figure 6.10.


• Optical signal. Since dendritic trees lying in layer I-III are the main contribu-


tors to the optical signal, we choose to neglect contributions from other layers


(nI-III = 1 and other nls set to zero). Layer I-III mostly contains dendrites be-


longing to all types of neurons from layers II/III and PCs from layer V (see
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Figure 6.10: Stimuli and corresponding cortical inputs obtained after spatio-temporal


regularization and time translation. They are presented on a subdomain of Ω
([0.35, 0.65] × [0.25, 0.75]). A-B: square, C-D: bar, E-F: moving square, G-H: line-motion


paradigm.
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figure 1.14). Hence, up to a multiplicative constant, the optical signal is


N∑


j=1


∫


Ω


(
3∑


i=1


Ni s
I-III
i αI-III


ij W1j(r, r
′)


)
Aj(r


′, t) dr′,


where i = 1, 2 and 3 are, respectively, the indices of layer II/III PCs, layer V PCs


and superficial layers interneurons. Now, for clarity, we choose to normalize


the coefficients Ni s
I-III
i αI-III


ij by N1 s
I-III
1 αI-III


1j . We consider that sI-III
1 ≈ sI-III


2 and


that N1 = N2 (as assumed in the model). PCs from layer II/III receive all their


inputs at the level of layers I-III (αI-III
1j = 1) and we assume that PCs from layer


V receive half of all their inputs on their superficial dendrites (αI-III
2j = 1/2).


Hence the normalized coefficient for layer II/III PCs is 1 and the one for layer V


PCs, 1/2. The diameter and total length of interneurons dendrites are inferior


to the ones of PCs [12, 13]. Hence the normalized coefficient of inhibitory cells


is less than N2/N1. We choose it to be 1/10. So we end up with


OI(r, t) ≈
N∑


j=1


∫


Ω


(
W1j(r, r


′) +
1


2
W2j(r, r


′) +
1


10
W3j(r, r


′)


)
Aj(r


′, t) dr′.


Results


Figure 6.11 shows the optical imaging sequences obtained from the simulation of


the neural field with different stimuli (the observation window is a rectangle of side


lengths 3mm and 5mm). The corresponding movies (square.avi, bar.avi, moving.avi


and linemotion.avi) can be found in the supplemental material. As in [57], we have


normalized the results with blanks (i.e. simulations of a field receiving no input). The


intensity of the signal is then expressed as a percentage.


We have been able to reproduce the main features of the optical signals from fig-


ure 6.6.


• The optical signals corresponding to the moving square and the line-motion


paradigm have similar temporal sequences.


• In both cases, the activity pattern induced by a square stimulus progressively


grows into the pattern induced by a bar stimulus2.


• In the case of the line-motion paradigm, the spatial propagation of activity is


obtained with a static input.


• The cortical input corresponding to a growing square stimulus (featuring a


square growing into a bar) is exactly the same as the one corresponding to the


moving square, as an effect of the spatio-temporal regularization. Hence, the


optical activity induced by this stimulus is identical to the one obtained for the


moving square. This is in good agreement with the results of [57], where the


authors observe a very good match between the optical signals recorded for the


growing square, the moving square and the line-motion paradigm.


• High activity is maintained for the duration of the simulation, even in the ab-


sence of a strong input, for all stimuli but the square.


2In the moving square case, a bleeding input has been necessary to keep a homogeneous level of


signal on the whole extent of the bar pattern.
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Figure 6.11: Simulated optical sequences obtained for different stimuli and reproduc-


ing the main features of experimental results (see text). White lines delineate low-level


activity (OI < 0.002%) and black lines, high-level activity (OI > 0.25%).


6.2.2 Barrel cortex


Now we try to reproduce the spread of activity in the barrels of the rat’s sensory cortex


as one whisker is stimulated with different intensities. The results of this experimen-


tal paradigm are shown in figure 1.12 [89]. A weak stimulation of a single whisker


induces a low, transient activation of the corresponding barrel. As the stimulation


strength is increased, cortical activity propagates to the row of the excited barrel. As


the stimulation gets strong enough, the activity propagates to the whole barrel field.


Parametrization


For this simulation we use the same neuronal populations, neural field equation,


synaptic time constants, wave-to-pulse transforms and optical signal as for the visual


cortex case. Changes in parametrization are given below.


• Field Ω. Square domain with a side length of 1mm, discretized in 100×100 units.


Barrels and septa regions are segregated (see figure 6.12).


• Time. We integrate the equation over 50 time steps of 1ms, corresponding to a


total duration of 50ms.


• Connectivity W. Vertical connectivity is the same as in the visual cortex case.


Horizontal connectivity depends on barrels and septa and on the involved types


of neurons. We consider two two-dimensional Gaussian distributionsG1 andG2.


G1 is isotropic and has a small standard deviation SD = 80µm. G2 is elongated
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Figure 6.12: The field Ω is separated into two regions: barrels (in white) and septa (in


black). The red contour delineates the observation window on which we will display


the results of the simulations.


in the direction of barrel rows and is defined by two standard deviations corre-


sponding to its principal axes: SD = 80µm and SD′ = 400µm (see figure 6.13).


Figure 6.13: Gaussian connectivity kernels. G1 (left) is isotropic and has a standard


deviation SD = 80µm. G2 (right) is elongated in the direction of barrel rows (SD′ =
400µm).


If the presynaptic neurons belong to a column of the septum, Ŵij = G1 for all


couples (i, j). Hence, septum masses mostly innervate other septum masses in


their immediate neighborhood. If the presynaptic neurons belong to a barrel


and are not layer II/III PCs, we also have Ŵij = G1. Hence they mostly target


neurons from the same barrel. When presynaptic neurons are layer II/III PCs


belonging to a barrel, they can reach more distant postsynaptic targets: neurons


in the same layer, via their elongated axonal projections, and layer V PCs, whose


basal dendritic trees are also elongated. So Ŵij = G2 if i is the index of layer


II/III PCs, layer II/III inhibitory cells, or layer V PCs. Otherwise, Ŵij = G1.


• Input Iext. The stimuli are brief and spatially focused stimulations with no bias
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of elongation in the direction of rows or arcs. The conversion of the stimuli


into proper cortical inputs is made by spatiotemporal regularization. We use a


temporal kernel T ′ of the form


T ′(t) =


{
t e−t/τ/τ2 t ≥ 0
0 t < 0


, τ = 20ms,


and Gaussian spatial kernels that depend on the strength of the stimulus.


Indeed stimuli differ by both acceleration and angle, so that we considered


that larger deflection angles induced broader stimulations of the central barrel.


Hence, although inputs remain confined to the central barrel, we use spatial


kernels with different widths to model the different deflection angles used in


[89] (see figure 6.14). As in the visual cortex case, we added a delay (10ms) for


the arrival of the stimuli to layer IV.


Figure 6.14: Form of the single whisker stimulations used in the simulations, repre-


sented on the observation window domain. All of these stimuli are restricted to the


excited barrel and are obtained from isotropic Gaussian kernels. On the upper left


panel, a narrow, low intensity input corresponds to a weak stimulation. On the upper


right panel, a stronger and wider input accounts for moderate stimulation. The input


corresponding to a strong stimulation is represented on the lower panel and shows


larger horizontal extent and intensity.


Results


The results of the simulations are given in figure 6.15. The corresponding movies


(rat weak.avi, rat moderate.avi and rat strong.avi) can be found in the supplemental
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material.


Figure 6.15: Simulated optical sequences obtained for different intensities of single


whisker stimulation. They reproduce the main features of the experimental results


presented in [89]. A weak stimulation induces a weak and transient activation of a


single barrel (upper panel). As the stimulation intensity increases, the activity prop-


agates to a whole barrel row (middle panel). For strong stimulations, the activation


spans the whole barrel field (lower panel).


The simulations reproduce the main features of the experimental results reported in


[89]. For a weak stimulation, we observe a low, transient and isotropic activation of


the central barrel. For a moderate stimulation, we first observe an isotropic activity


pattern which progressively gets elongated in the direction of the barrel row. The


activation fails to propagate efficiently to other rows and remains confined in the row


of the stimulated whisker. If the stimulation is strong and wide enough, excitation


propagates to other rows, leading to a rapid activation of the whole barrel field.


6.3 DISCUSSION


Starting from biophysical neural field models of sensory cortices and using


the direct problem formula developed in the previous chapter, we have been able to


reproduce realistic optical imaging sequences from various experimental settings.


No sophisticated parameter tuning method (like least square optimization) has


been used in this study, showing that the phenomena reproduced here are reliably


accounted for by neural field models.
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The simulations that we have presented in this chapter mainly involved two phe-


nomena: propagation and persistence of cortical activity.


Propagation of the signal is chiefly a matter of horizontal connectivity: wide hori-


zontal connectivity kernels guarantee a good horizontal propagation. A bias in the


direction of propagation can be induced by a bias in the form of the kernels (case


of the rat barrel cortex) or by a moving thalamic stimulation (case of the moving


square). In the line-motion paradigm, the field is fed by static stimuli and propa-


gation is a nonlinear effect caused by simultaneous contributions from horizontal


projections and thalamic inputs: a thalamic stimulation in the neighborhood of an


active domain of the field induces a propagation of the activity to the stimulated


area. In a linear model, the activation pattern caused by the appearance of the bar in


the line-motion stimulus would not induce a propagation of the square pattern to the


bar pattern, but a progressive, spatially homogeneous activation of the bar pattern.


The neural field model naturally shows persistence, even in the absence of thalamic


stimulation, thanks to the finite speed of dendritic processes. However, a stronger


persistence effect is needed in the moving square case. The determining parameter


for this phenomenon is the latency of the retino-thalamic pathway τ . τ has been


set long enough for the moving square activation to persist on the whole length of


the bar activity pattern, and short enough to avoid a strong, sustained thalamic


stimulation leading to inhomogeneities in the activation patterns. For example, in


the line-motion paradigm, a sustained, strong excitation during the square part of


the stimulus will make the subsequent activation due to the rest of the bar relatively


small, while we want an homogeneous activation of the pattern induced by the bar,


as a natural effect of adaptation.


Biophysical models are probably not necessary to reproduce the most basic features


of the optical signals and it would be interesting to develop minimal models for which


a rigorous mathematical explanation of the observed phenomena would be tractable.


For example, connectivity patches are not needed in the neural field corresponding


to the visual cortex for the model to reproduce experimentally observed phenomena.


The crown of satellite patches surrounding the central patch of excitatory kernels


could be replaced by an isotropic annulus. Although, the models should not be over-


simplified. Following the same example, if we replace the patchy connectivity kernels


by simple Gaussians, we will observe undesirably narrow or broad spreads of activity.


This is avoided in our simulations thanks to the predominance of inhibition between


the central excitatory patch and the satellite patches, preventing localized inputs to


provoke too broad activations and allowing extended inputs to induce extended acti-


vations, via long-range excitation (see figure 6.16).


So, although some aspects of the model could be simplified, the very general frame-


work of neural fields allowed us to integrate biologically plausible parameters and to


account for the organizing principles of different cortices within a relatively small set


of parameters.
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Figure 6.16: Unimodal vs multimodal excitation. Excitatory (resp. inhibitory) ker-


nels are represented in red (resp. green).Unimodal excitatory connectivity kernels can


have two effects on the horizontal propagation of activity. A wide unimodal excitatory


kernel that dominates inhibition (left) can induce too broad activations of the field.


On the contrary, a narrow unimodal excitatory kernel (center) does not allow broad


activations. Finally, a multimodal kernel moderates the spread of localized stimula-


tions thanks to middle-range inhibition, and allows widespread activations thanks to


long-range excitation.
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Conclusion and perspectives
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In this thesis, we have modeled cortical columns and cortical areas using neural


masses as elementary building blocks. We have seen that most of the biophysical


data needed to make biologically plausible models is available and can naturally be


integrated into mesoscopic models. Then we have been able to reproduce biophysical


columnar signals, like alpha rhythms or epileptic bursts, and explain their origin by a


theoretical study of the bifurcations of the model. As concerns neural fields, we have


mathematically characterized several interesting solutions, like bumps or homoge-


neous states corresponding to synchrony, and we have simulated VSDOI experiments


in different cortices, thanks to a biophysical formulation of the direct problem of op-


tical imaging. So, modeling the activity of cortical structures with mesoscopic models


based on differential and integro-differential equations allowed us to reproduce dif-


ferent cortical signals with an arbitrary temporal resolution and a spatial resolution


of the order of 100µm, corresponding to a cortical column or a pixel of population op-


tical imaging.


With respect to perspectives, we think that several leads could help to improve the


models and their understanding.


First, the development and validation of neural field models through the use of optical


imaging experiments should be continued. For example, it would be very interesting


to integrate orientation preference in a neural field model of the visual cortex, and in-


stead of only reproducing optical experiments, to be able to predict their results with


the models. This would provide a better validation of neural field models and make


them serious candidates for the resolution of the inverse problem of optical imaging.


Second it would be interesting to validate the mesoscopic models equations mathe-


matically. Starting from a network of individual neurons and using mean field tech-


niques, we could infer new equations for the dynamics of the average membrane


potential or average firing rate of different neuronal populations forming a cortical


column or a neural field. Furthermore, this framework would make it possible to


study the fluctuations of the signal around its mean through a variance equation,


hence opening the door to smaller spatial scales.


Finally, the development of recent experimental techniques will probably allow us


to refine these mesoscopic models and integrate them in larger scale models of the


sensory pathways. For example, Calcium imaging is already used to understand fine


columnar mechanisms by providing single cell precision recordings of cortical activ-


ity, and progress in diffusion MRI could in the next few years give precise insights on


white matter connections between cortical areas.
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APPENDIX A


FIRING PATTERNS OF CORTICAL


NEURONS


Cortical neurons exhibit numerous firing patterns, i.e. characteristic trains of ac-


tion potentials in response to stimulation by current injections (usually depolarizing


pulses).


We first introduce a few basic notions that will be useful for a further description of


firing patterns (see figure A.1).


Figure A.1: Various firing behaviours in response to a sustained depolarizing pulse.


Upper panel. Phasic patterns (B,D), tonic patterns (A,C), spiking patterns (A,B) and


bursting patterns (C,D). Lower panel. Accommodation of the discharge pattern: inter-


spike intervals increase (From [56]).


• Tonic and phasic spiking: Tonically spiking cells fire continuous trains of action


potentials for the duration of the depolarizing pulse of injected current (see fig-


ure A.1-B/D). On the contrary, phasically spiking cells respond to a sustained


depolarizing current pulse with a very brief train of action potentials followed


by no further firing (see figure A.1-A/C).


• Bursting: Sometimes neurons use rapid clusters of two or more action poten-
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tials, called bursts, as basic signaling events instead of simple spikes (see fig-


ure A.1-C/D).


• Accommodation: Neurons sometimes show spike frequency adaptation, i.e. a


decrease of firing frequency in response to a sustained depolarizing pulse. They


are said to be accommodating (see figure A.1). In contrast, non-accomodating


neurons keep a constant discharge frequency to such current injections.


As explained in [56], cortical neurons exhibit six major discharge patterns.


• Regular spiking (RS) is a tonic spiking with adapting frequency in response to


a sustained depolarizing pulse. This firing pattern is the most spread among


excitatory neurons (see figure A.2).


• Chattering (CH) corresponds to high frequency bursts with a relatively short


interburst period. This behaviour has mainly been observed in layer III PCs


but also concerns excitatory cells in layers II and IV (see figure A.2).


Figure A.2: Regular spiking (left) and chattering (right) in response to sustained de-


polarizing pulses of various amplitudes (shown at the bottom of the recordings) (From


[56]).


• Intrinsically bursting (IB) neurons respond with bursts of action potential at


the beginning of a strong depolarizing injection, followed by tonic spiking. The


main representatives of this firing pattern are found among layer V PCs (see


figure A.3).


• Fast spiking (FS) is a high frequency tonic spiking with little adaptation, ob-


served in inhibitory cells (mostly basket and chandelier cells). Fast spiking cells


show irregular spiking when injected with weak currents (see figure A.4).


• Low-threshold spiking (LTS) neurons have a tonic firing pattern with strong ac-


commodation. Their name comes from their tendency to exhibit post inhibitory


rebounds (spontaneous emission of spikes consecutive to an hyperpolarizing


current injection). They can show low frequency firing and phasic responses


to weak stimulations (see figure A.4). LTS neurons are inhibitory interneurons


(mostly Martinotti, double bouquet and bitufted cells).


• Late spiking (LS) neurons respond to a depolarizing pulse with a slow increase


of membrane potential followed, after a delay possibly as long as one second,


by low frequency tonic spiking. Late spiking mainly concerns neurogliaform


inhibitory interneurons (see figure A.4).
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Figure A.3: Intrinsic bursting in response to a sustained depolarizing pulse. Initial


bursting is followed by tonic spiking (From [56]).


Figure A.4: Fast spiking (left), low-threshold spiking (center) and late spiking (right)


in response to sustained depolarizing pulses of various amplitudes (From [56]).
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It appears from the above description that excitatory and inhibitory cells can both be


divided into three electrophysiological classes (RS, CH and IB for excitatory neurons,


and FS, LTS and LS for inhibitory interneurons). Actually, the firing patterns dis-


played by inhibitory cells are way more diversified and an alternative classification


has been proposed for them.


In [78], the authors propose the following electrophysiological classes and subclasses


to characterize interneurons firing patterns (see figure A.5 and 1.18).


• Non-accomodating (NAC) neurons show tonic firing without spike frequency


adaptation in response to a wide range of depolarizing current injections. Many


FS and LS neurons exhibit this behaviour. This class of discharge patterns has


three subclasses: c (classic discharge), b (discharge with initial burst) and d


(discharge with initial delay).


• Accommodating (AC) neurons fire tonically with spike adaptation. Hence they


do not reach as high discharge frequencies as NAC cells do. While FS and LS


interneurons can exhibit this behaviour, most cells of this type are LTS neurons.


This class admits the same subclasses as NAC discharges (c,b and d).


• Stuttering (STUT) can be displayed by some FS and LS cells. It consists in the


firing of high frequency clusters of spikes (which are not bursts) separated by


unpredictable periods of quiescence. The three subclasses c, b and d are also


represented in stuttering patterns.


• Large basket cells are the only interneurons using bursting (BST) as their main


signaling event. They fire bursts of spikes after a slow depolarizing wave, fol-


lowed by strong slow hyperpolarization. This class has three subclasses: i (ini-


tial burst followed by regular spike emissions) , r (repetitive bursting) and t


(transient, i.e. phasic burst).


• Irregular spiking (IS) cells fire single spikes, in a random fashion, and show


strong accomodation. c and b subclasses are represented among irregular firing


patterns.
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Figure A.5: The five electrophysiological classes of interneurons (top to bottom) with


their subclasses (left to right, see text). In the dashed-lined square at the bottom right


corner of the table, examples of regular spiking from excitatory cells are shown for


comparison (From [78]).
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APPENDIX B


NOTATIONS AND BACKGROUND


MATERIAL


B.1 INTRODUCTION


A useful viewpoint that is used here is to consider the state vector of the


neural field as a mapping from a closed time interval J containing the origin 0 into


one of the spaces discussed in the previous section. We note C(J;Cn(Ω)) the set of


continuous mappings from J to the Banach space Cn(Ω) and C(J;L2
n(Ω)) the set of


continuous mappings from J to the Hilbert (hence Banach) space L2
n(Ω), see, e.g.,


[32].


B.2 MATRIX NORMS AND SPACES OF FUNCTIONS


We note Mn×n the set of n× n real matrices. We consider the matrix norm,


‖M‖∞ = max
i


∑


j


|Mij |


We note Cn×n(Ω) the set of continuous functions from Ω to Mn×n with the infinity


norm. This is a Banach space for the norm induced by the infinity norm on Mn×n.


Let M be an element of Cn×n(Ω), we note and define ‖M‖n×n,∞ as


‖M‖n×n,∞ = sup
r∈Ω


max
i


∑


j


|Mij(r)| = max
i


sup
r∈Ω


∑


j


|Mij(r)|


We also note Cn(Ω) the set of continuous functions from Ω to R
n with the infinity


norm. This is also a Banach space for the norm induced by the infinity norm of R
n.


Let x be an element of Cn(Ω), we note and define ‖x‖n,∞ as


‖x‖n,∞ = sup
r∈Ω


max
i


|xi(r)| = max
i


sup
r∈Ω


|xi(r)|


We can similarly define the norm ‖.‖n×n,∞ (resp. ‖.‖n,∞) for the space Cn×n(Ω × Ω)
(resp. Cn(Ω × Ω)).


We have the following


Lemma B.2.1. Given x ∈ Cn(Ω) and M ∈ Cn×n(Ω) we have


‖Mx‖n,∞ ≤ ‖M‖n×n,∞ ‖x‖n,∞
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More precisely, we have for all r ∈ Ω


‖M(r)x(r)‖∞ ≤ ‖M(r)‖∞‖x(r)‖∞
The same results hold for Ω × Ω instead of Ω.


Proof. Let y = Mx, we have


yi(r) =
∑


j


Mij(r)xj(r)


and therefore


|yi(r)| ≤
∑


j


|Mij(r)| |xj(r)| ≤
∑


j


|Mij(r)| ‖x(r)‖∞,


so, taking the maxi


‖y(r)‖∞ ≤ ‖M(r)‖∞ ‖x(r)‖∞
from which the first statement easily comes.


We also consider the Frobenius norm on Mn×n


‖M‖F =


√√√√
n∑


i,j=1


M2
ij ,


and consider the space L2
n×n(Ω×Ω) of the functions from Ω×Ω to Mn×n whose Frobe-


nius norm is in L2(Ω×Ω). If W ∈ L2
n×n(Ω×Ω) we note ‖W‖2


F =
∫
Ω×Ω ‖W(r, r′)‖2


F dr dr
′.


Note that this implies that each element wij , i, j = 1, · · · , n is in L2(Ω × Ω). We note


L2
n(Ω) the set of square-integrable mappings from Ω to R


n and ‖x‖n,2 = (
∑


j ‖xj‖2
2)


1/2


the corresponding norm. We have the following


Lemma B.2.2. Given x ∈ L2
n(Ω) and W ∈ L2


n×n(Ω × Ω), we define y(r) =∫
Ω W(r, r′)x(r′) dr′. This integral is well defined for almost all r, y is in L2


n(Ω) and


we have


‖y‖n,2 ≤ ‖W‖F ‖x‖n,2.


Proof. Since each wij is in L2(Ω×Ω), wij(r, .) is in L2(Ω) for almost all r, thanks to


Fubini’s theorem. So wij(r, .)xj(.) is integrable for almost all r from what we deduce


that y is well-defined for almost all r. Next we have


|yi(r)| ≤
∑


j


∣∣∣∣
∫


Ω
wij(r, r


′)xj(r
′) dr′


∣∣∣∣


and (Cauchy-Schwarz):


|yi(r)| ≤
∑


j


(∫


Ω
w2


ij(r, r
′) dr′


)1/2


‖xj‖2,


from where it follows that (Cauchy-Schwarz again, discrete version):


|yi(r)| ≤



∑


j


‖xj‖2
2






1/2 
∑


j


∫


Ω
w2


ij(r, r
′) dr′






1/2


= ‖x‖n,2



∑


j


∫


Ω
w2


ij(r, r
′) dr′






1/2


,


from what it follows that y is in L2
n(Ω) (thanks again to Fubini’s theorem) and


‖y‖2
n,2 ≤ ‖x‖2


n,2


∑


i,j


∫


Ω×Ω
w2


ij(r, r
′) dr′ dr = ‖x‖2


n,2 ‖W‖2
F .
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B.3 SUMMARY OF IMPORTANT NOTATIONS


Table B.1 summarizes some notations which are introduced in chapter 4


and are used in several places.


Matrix Definition Where defined Operators


functions (if applicable) (if applicable)


L diagonal matrix equation 4.4


of the inverse synaptic


time constants


τmax largest time constant definition 4.1.2


DSm definition 4.1.1


W equations (4.9), fv, fa, gv


(4.10), (4.11)


Wcm WDSm definition 4.3.1 gm


Wmc DSmW definition 4.3.1 hm


Table B.1: Summary of some important definitions.
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APPENDIX C


COMPLEMENTS TO THE


FUNCTIONAL ANALYSIS OF


NEURAL FIELD MODELS


C.1 GLOBAL EXISTENCE OF SOLUTIONS


We complete the proof of proposition (4.2.3) by computing the constant τ > 0
such that for any initial condition (t0,V0) ∈ R × F , the existence and uniqueness of


the solution V is guaranteed on the closed interval [t0 − τ, t0 + τ ].
We refer to [6] and exploit the


Theorem C.1.1. Let F be a Banach space and c > 0. We consider the initial value


problem: {
V′(t) = f(t,V(t))
V(t0) = V0


for |t− t0| < c where V0 is an element of F and f : [t0− c, t0 + c]×F → F is continuous.


Let b > 0. We define the set Qb,c ≡ {(t,X) ∈ R × F , |t − t0| ≤ c and ‖X − V0‖ ≤ b}.


Assume the function f : Qb,c → F is continuous and uniformly Lipschitz continuous


with respect to its second argument, ie


‖f(t,X) − f(t,Y)‖ ≤ Kb,c‖X − Y‖,


where Kb,c is a constant independent of t.
Let Mb,c = supQb,c


‖f(t,X)‖ and τb,c = min{b/Mb,c, c}.


Then the initial value problem has a unique continuously differentiable solution V(.)
defined on the interval [t0 − τb,c, t0 + τb,c].


In our case, f = fv and all the hypotheses of the theorem hold, thanks to proposition


4.2.1 and the hypotheses of proposition 4.2.3, with


Kb,c = ‖L‖∞ + |Ω|DSm sup
|t−t0|≤c


‖W(·, ·, t)‖n×n,∞,


where the sup is well defined (continuous function on a compact domain).


We have


Mb,c ≤ ‖L‖∞ (‖V0‖n,∞ + b) + |Ω|SmW + I,
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where W = sup|t−t0|≤c ‖W(·, ·, t)‖n×n,∞ and I = sup|t−t0|≤c ‖Iext(·, t)‖n,∞.


So


b/Mb,c ≥
1


‖L‖∞ +
‖L‖∞ ‖V0‖n,∞+|Ω|Sm W+I


b


.


Hence, for c ≥ 1
2‖L‖∞


and b big enough, we have τb,c ≥ 1
2‖L‖∞


and we can set τ = 1
2‖L‖∞


.


A similar proof applies to the case f = fa and the one of proposition 4.5.3.


C.2 COMPUTATION OF OPERATOR NORMS


We give a method to compute the norms ‖g‖G and ‖g∗‖G⊥
c


for an operator g
of the form


g(x)(r) =


∫


Ω
W(r, r′)x(r′) dr′.


Since G (respectively G⊥
c ) is dense in the Hilbert space L2(Ω) (respectively L2


0(Ω), the


subspace of L2(Ω) of functions with zero mean), we have ‖g‖G=‖g‖L2 and ‖g∗‖G⊥
c


=
‖g∗‖L2


0


. We consider the compact self-adjoint operators


G = g∗g : L2 → L2


and


G⊥
c = g∗Pg : L2


0 → L2
0,


where P is the orthogonal projection on L2
0. We compute the norms of the two self-


adjoint positive operators G and G⊥
c , and use the relations


‖G‖L2 = ‖g‖2
L2 ,


and


‖G⊥
c ‖L2


0


= ‖g∗P∗Pg‖L2


0


= ‖g∗P∗‖2
L2


0


= ‖g∗‖2
L2


0


.


Let T be a compact self-adjoint positive operator on a Hilbert space H. Its largest


eigenvalue is λ = ‖T‖H. Let x ∈ H. If x /∈ Ker(λId− T )⊥, then, according to, e.g., [30],


lim
n→∞


‖T nx‖H/‖T n−1x‖H = λ.


This method can be applied to gL
m and hL


m, and generalized to the computation of the


‖.‖GP ⊥
c


norm.


C.3 COMPLEMENTS TO THE STUDY OF HIGHER ORDER


PSPS


Expressing the exponential as a power series in the definition of M and computing


the powers of the block matrix L, we easily find a block expression of M depending


on L


M =


(
L/4 + 5L−1/4 L−2/2


L−2/2 L−1/4 + L−3/4


)
.


M is diagonalizable, as a symmetric positive definite matrix, and has at most 2n
distinct eigenvalues. More precisely, these eigenvalues are the roots of the second


order polynomials


λ2 −
(


1


4 τi
+


3 τi
2


+
τ3
i


4


)
λ+


1


16
+


3 τ2
i


8
+
τ4
i


16
, 1 ≤ i ≤ n.
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The largest eigenvalue of each of these polynomials is


λ(τi) =
1


8 τi


(
1 + 6 τ2


i + τ4
i +


√
1 + 8 τ2


i + 14 τ4
i + 8 τ6


i + τ8
i


)
,


so that λmax is simply maxi λ(τi). Note that since the function λ(τ) is not monotonous,


λmax is not necessarily equal to λ(τmax).
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Glossary


CC cortico-cortical. 40, 41


CT cortico-thalamic. 40, 41


EEG electroencephalography. 50, 53, 55, 60, 65, 128


GABA gamma aminobutyric acid. 41


IB intrinsically bursting. 40


LTS low-threshold spiking. 44–46


PC pyramidal cell. 35, 38–41, 43–45, 140, 142, 144, 147–149, 151, 153


RS regular spiking. 40


SSC spiny stellate cell. 35, 38, 39, 42


V1 primary visual cortex. 31, 35, 127, 128, 141, 146


VSD voltage-sensitive dye. 130–133, 135
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