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Abstract. Neural fields are an interesting option for modelling macroscopic parts of the cortex
involving several populations of neurons, like cortical areas. Two classes of neural field equations are
considered: voltage and activity based. The spatio-temporal behaviour of these fields is described
by nonlinear integro-differential equations. The integral term, computed over a compact subset of
R

q, q = 1, 2, 3, involves space and time varying, possibly non-symmetric, intra-cortical connectivity
kernels. Contributions from white matter afferents are represented as external input. Sigmoidal
nonlinearities arise from the relation between average membrane potentials and instantaneous firing
rates. Using methods of functional analysis, we characterize the existence and uniqueness of a solution
of these equations for general, homogeneous (i.e. independent of the spatial variable), and spatially
locally homogeneous inputs. In all cases we give sufficient conditions on the connectivity functions
for the solutions to be absolutely stable, that is to say asymptotically independent of the initial state
of the field. These conditions bear on some compact operators defined from the connectivity kernels,
the maximal slope of the sigmoids, and the time constants used in describing the temporal shape
of the post-synaptic potentials. Numerical experiments are presented to illustrate the theory. To
our knowledge this is the first time that such a complete analysis of the problem of the existence
and uniqueness of a solution of these equations has been obtained. Another important contribution
is the analysis of the absolute stability of these solutions, more difficult but more general than the
linear stability analysis which it implies. The reason why we have been able to complete this work
programme is our use of the functional analysis framework and the theory of compact operators in a
Hilbert space which has allowed us to provide simple mathematical answers to some of the questions
raised by modellers in neuroscience.

Key words. neural fields, integro-differential equations, compact operators, Hilbert space,
absolute stability, complete synchronization, Lyapunov function, neural masses, cortical columns.

AMS subject classifications. 34G20, 34L30, 47B15, 47G10, 47G20, 47J05, 82C32, 92B20,
92C20

1. Introduction. We model neural fields as continuous networks of cortical
units, and investigate the ability of these units to completely synchronize, i.e. to
produce the same output when receiving the same input independently of their initial
state. We therefore emphasize the dynamics and the spatio-temporal behaviour of
these networks.
Cortical units are built from a local description of the dynamics of a number of in-
teracting neuron populations, called neural masses [14], where the spatial structure
of the connections is neglected. These “vertically” built units can be thought of as
cortical columns [28, 29, 3]. Probably the most well-known neural mass based column
model is that of Jansen and Rit [20] based on the original work of Lopes Da Silva, Van
Rotterdam and colleagues [24, 25, 37]. A complete analysis of the bifurcations of this
model can be found in [16]. More realistic models can be derived from experimental
connectivity studies, such as the one shown in figure 1.1. This figure, adapted from
[18], is based on the work of Alex Thomson and colleagues [36]. It shows the local
connectivity graph of six populations of neurons and can be thought of as a model of
a column comprising six interacting neural masses.

Such columns are then assembled spatially to form the neural field, which is meant
to represent a macroscopic part of the neocortex, e.g. a visual area such as V1. Con-
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Figure 1.1. A simplified model of local cortical interactions based on six neuron populations.
This local connectivity graph can be seen as a model of a cortical column composed of six interacting
neural masses. There are three layers corresponding to cortical layers II/III, IV and V, and two
types of neurons (excitatory ones in black and inhibitory ones in red) in each of these layers. The
size of the arrows gives an idea of the average strength of the postsynaptic potentials elicited by the
presynaptic neurons, see section 2.1.1. This figure is adapted from [18].

nections between columns are intra-cortical (gray matter) connections. Connections
made via white matter with, e.g., such visual areas as the LGN or V2 are also con-
sidered in our models, but are treated as input/output quantities.

There are at least three reasons why we think this is the relevant granularity to
do modelling

• Realistic modelling of a macroscopic part of the brain at the scale of the neu-
ron is still difficult for obvious complexity reasons. Starting from mesoscopic
building blocks like neural masses, described by the average activity of their
neurons, is therefore a reasonable choice.

• While MEG and scalp EEG recordings mostly give a bulk signal of a cortical
area, multi-electrode recordings, in vitro experiments on pharmacologically
treated brain slices and new imaging techniques like extrinsic optical imaging
can provide a spatially detailed description of neural masses dynamics in a
macroscopic part of the brain like an area.

• The column/area scales correspond to available local connectivity data. In-
deed, these are obtained by averaging over local populations of neurons we
can think of as neural masses. Besides, local (intracolumnar) connectivity is
supposed to be spatially invariant within an area.

We now present a general mathematical framework for neural field modelling that
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agrees with the ideas of using average descriptions of neuronal activity and spatial
invariance of the local connectivity across the field. This framework uses the elegant
tools of functional analysis with the advantage of providing simple characterizations
of some important properties of neural field equations.

In section 2 we describe the local and spatial models of neural masses and derive
the equations that govern their spatio-temporal variations. In section 3 we analyze
the problem of the existence and uniqueness of the smooth general and homogeneous
solutions of these equations. In section 4 we study the absolute stability of these
solutions, i.e. their robustness to arbitrary perturbations caused by changes of the
initial conditions. In section 5 we extend this analysis to the absolute stability of the
homogeneous, i.e. independent of space, solutions when they exist. A consequence
of the absolute stability is the ability of the network to completely synchronize. In
section 6 we revisit the functional framework of our analysis and extend our results to
non-smooth functions with the effect that we can discuss the existence and absolute
stability of locally homogeneous solutions. We also propose another extension of the
model by generalizing the previous results to higher order synaptic responses. In
section 7 we present a number of numerical experiments to illustrate the theory and
conclude in section 8.

2. The models. We discuss local and spatial models.

2.1. The local models. We consider n interacting populations of neurons such
as those shown in figure 1.1. The following derivation is built after Ermentrout’s
review [10]. We consider that each neural population i is described by its average
membrane potential Vi(t) or by its average instantaneous firing rate νi(t), the relation
between the two quantities being of the form νi(t) = Si(Vi(t)) [15, 8], where Si is
sigmoidal. The functions Si, i = 1, · · · , n satisfy the following properties introduced
in the

Definition 2.1. For all i = 1, · · · , n, Si and S′
i are positive and bounded (S′

i

is the derivative of the function Si). We note Sim = supx Si(x), Sm = maxi Sim,
S′

im = supx S
′
i(x) and DSm = maxi S

′
im. Finally, we define DSm as the diagonal

matrix diag(S′
im).

Neurons in population j are connected to neurons in population i. A single action
potential from neurons in population j is seen as a post-synaptic potential PSPij(t−s)
by neurons in population i, where s is the time of the spike hitting the synapse and
t the time after the spike. We neglect the delays due to the distance travelled down
the axon by the spikes.

Assuming that the post-synaptic potentials sum linearly, the average membrane
potential of population i is

Vi(t) =
∑

j,k

PSPij(t− tk)

where the sum is taken over the arrival times of the spikes produced by the neurons in
population j. The number of spikes arriving between t and t+dt is νj(t)dt. Therefore
we have

Vi(t) =
∑

j

∫ t

t0

PSPij(t− s)νj(s) ds =
∑

j

∫ t

t0

PSPij(t− s)Sj(Vj(s)) ds,
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or, equivalently

νi(t) = Si


∑

j

∫ t

t0

PSPij(t− s)νj(s) ds


 (2.1)

The PSPijs can depend on several variables in order to account for adaptation, learn-
ing, etc . . .
There are two main simplifying assumptions that appear in the literature [10] and
yield two different models.

2.1.1. The voltage-based model. The assumption, made in [19], is that the
post-synaptic potential has the same shape no matter which presynaptic population
caused it, the sign and amplitude may vary though. This leads to the relation

PSPij(t) = WijPSPi(t).

PSPi represents the unweighted shape of the postsynaptic potentials and Wij is the
average strength of the postsynaptic potentials elicited by neurons of type j on neurons
of type i. In biophysical connectivity models, like the one presented in figure 1.1, the
Wijs should be chosen proportional to the number of presynaptic cells, the average
amplitude of postsynaptic potentials and the probability of connection between the
considered neuron species [17]. In particular, if Wij > 0 the population j excites
population i whereas it inhibits it when Wij < 0.

Finally, if we assume that PSPi(t) = e−t/τiY (t) (where Y is the Heaviside distri-
bution), or equivalently that

τi
dPSPi(t)

dt
+ PSPi(t) = τiδ(t), (2.2)

we end up with the following system of ordinary first order differential equations

dVi(t)

dt
+
Vi(t)

τi
=
∑

j

WijSj(Vj(t)) + Ii
ext(t), (2.3)

that describes the dynamic behaviour of a cortical column. We have added an external
current Iext(t) to model the non-local connections of population i.

The approach developed in this article generalizes easily to the case of more sophis-
ticated postsynaptic potentials models resulting in higher order differential equations,
as shown in section 6.3.

We introduce the n×n matrix W = (Wij)i,j , and the function S: R
n → R

n such

that S(x) is the vector of coordinates Si(xi). We rewrite (2.3) in vector form and
obtain the following system of n ordinary differential equations

V′ = −LV + WS(V) + Iext, (2.4)

where L is the diagonal matrix L = diag(1/τi).

2.1.2. The activity-based model. The assumption is that the shape of a PSP
depends only on the nature of the presynaptic cell, that is

PSPij(t) = WijPSPj(t).
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As above we suppose that PSPi(t) satisfies the differential equation (2.2) and define
the activity to be

Aj(t) =

∫ t

t0

PSPj(t− s)νj(s) ds.

A similar derivation yields the following set of n ordinary differential equations

dAi(t)

dt
+
Ai(t)

τi
= Si


∑

j

WijAj(t) + Ii
ext(t)


 , i = 1, · · · , n.

We rewrite this in vector form as

A′ = −LA + S(WA + Iext), (2.5)

We introduce the following
Definition 2.2. We note τmax the maximum of the decay time constants τi,

i = 1, · · · , n:

τmax = max
i
τi.

2.2. Neural fields models. We now combine these local models to form a
continuum of columns, e.g., in the case of a model of a significant part Ω of the
cortex. From now on we consider a compact subset Ω of R

q, q = 1, 2, 3. This
encompasses several cases of interest.

When q = 1 we deal with one-dimensional neural fields. Even though this appears
to be of limited biological interest, it is one of the most widely studied cases because
of its relative mathematical simplicity and because of the insights one can gain of the
more realistic situations.

When q = 2 we discuss properties of two-dimensional neural fields. This is per-
haps more interesting from a biological point of view since Ω can be viewed as a
piece of cortex where the third dimension, its thickness, is neglected. This case has
received by far less attention than the previous one, probably because of the increased
mathematical difficulty.

Finally q = 3 allows us to discuss properties of volumes of neural masses, e.g.
cortical sheets where their thickness is taken into account [21, 4].

The results that are presented in this paper are independent of q. Nevertheless,
we have a good first approximation of a real cortical area with q = 2, and cortical
depth given by the index i = 1, · · · , n of the considered cortical population, following
the idea of a field composed of columns, or equivalently, of interconnected cortical
layers.

We note V(r, t) (respectively A(r, t)) the n-dimensional state vector at the point
r of the continuum and at time t. We introduce the n×n matrix function W(r, r′, t)
which describes how the neural mass at point r′ influences that at point r at time t.
More precisely, Wij(r, r

′, t) describes how population j at point r′ influences popula-
tion i at point r at time t. We call W the connectivity matrix function. Neglecting,
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as in the local case above, the delays due to the distance between the neural masses,
we extend equation (2.4) to

Vt(r, t) = −LV(r, t) +

∫

Ω

W(r, r′, t)S(V(r′, t)) dr′ + Iext(r, t), (2.6)

and equation (2.5) to

At(r, t) = −LA(r, t) + S

(∫

Ω

W(r, r′, t)A(r′, t)) dr′ + Iext(r, t)

)
. (2.7)

Vt (resp. At) stands for the partial derivative of the multivariate vector V (resp. A)
with respect to the time variable t. A special case which will be considered later is
when W is translation invariant, W(r, r′, t) = W(r − r′, t). We give below sufficient
conditions on W and Iext for equations (2.6) and (2.7) to be well-defined and study
their solutions.

3. Existence and uniqueness of a solution. In this section we deal with the
problem of the existence and uniqueness of a solution to (2.6) and (2.7) for a given
set of initial conditions. Unlike previous authors [12, 5, 27] we consider the case of
a neural field with the effect that we have to use the tools of functional analysis to
characterize their properties.

We start with the assumption that the state vectors V and A are differentiable
(respectively continuous) functions of the time (respectively the space) variable. This
is certainly reasonable in terms of the temporal variations because we are essentially
modeling large populations of neurons and do not expect to be able to represent time
transients. It is far less reasonable in terms of the spatial dependency since one should
allow neural masses activity to be spatially distributed in a locally non-smooth fash-
ion with areas of homogeneous cortical activity separated by smooth boundaries. A
more general assumption is proposed in section 6. But it turns out that most of the
groundwork can be done in the setting of continuous functions.

Let F be the set Cn(Ω) of the continuous functions from Ω to R
n. This is a

Banach space for the norm ‖V‖n,∞ = max1≤i≤n supr∈Ω |Vi(r)|, see appendix A.1.
We denote by J a closed interval of the real line containing 0.

We will several times need the following
Lemma 3.1. We have the following inequalities for all x, y ∈ F and r′ ∈ Ω

‖S(x(r′))−S(y(r′))‖∞ ≤ DSm‖x(r′)−y(r′)‖∞ and ‖S(x)−S(y)‖n,∞ ≤ DSm‖x−y‖n,∞.

Proof. S is smooth so we can perform a zeroth-order Taylor expansion with
integral remainder, [9], and write

S(x(r′)) − S(y(r′)) =

(∫ 1

0

DS(y(r′) + ζ(x(r′) − y(r′))) dζ

)
(x(r′) − y(r′)),

and, because of lemma A.1 and definition 2.1

‖S(x(r′))−S(y(r′))‖∞ ≤
∫ 1

0

‖DS(y(r′)+ζ(x(r′)−y(r′)))‖∞ dζ ‖x(r′)−y(r′)‖∞ ≤

DSm‖x(r′) − y(r′)‖∞.

This proves the first inequality. The second follows immediately.
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3.1. General solution. A function V(t) is thought of as a mapping V : J → F .
This means that V(t) is now a function defined in Ω. Equations (2.6) and (2.7) are
formally recast as an initial value problem, see, e.g. [11]:

{
V′(t) = f(t,V(t))
V(0) = V0

(3.1)

where V0 is an element of F and the function f from J×F is equal to fv defined by
the righthand side of (2.6):

fv(t,x)(r) = −Lx(r) +

∫

Ω

W(r, r′, t)S(x(r′)) dr′ + Iext(r, t) ∀x ∈ F , (3.2)

or to fa defined by the righthand side of (2.7):

fa(t,x)(r) = −Lx(r) + S

(∫

Ω

W(r, r′, t)x(r′) dr′ + Iext(r, t)

)
∀x ∈ F . (3.3)

We have the
Proposition 3.2. If the following two hypotheses are satisfied
1. The connectivity function W is in C(J;Cn×n(Ω × Ω)) (see Appendix A.2),
2. The external current Iext is in C(J;Cn(Ω)),

then the mappings fv and fa are from J×F to F , continuous, and Lipschitz continuous
with respect to their second argument, uniformly with respect to the first (Cn×n(Ω×Ω)
and Cn(Ω) are defined in Appendix A.1).

Proof. Let t ∈ J and x ∈ F . We introduce the mapping

Fv : (t,x) → Fv(t,x) such that Fv(t,x)(r) =

∫

Ω

W(r, r′, t)S(x(r′)) dr′ (3.4)

Fv(t,x) is well defined for all r ∈ Ω because, thanks to the first hypothesis, it is the
integral of the continuous function W(r, ., t)S(x(.)) on a compact domain. For all
r′ ∈ Ω, W(., r′, t)S(x(r′)) is continuous (first hypothesis again) and we have (lemma
A.1)

‖W(r, r′, t)S(x(r′))‖∞ ≤ ‖W(., ., t)‖n×n,∞‖S(x(r′))‖∞.

Since ‖S(x(.))‖∞ is bounded, it is integrable in Ω and we conclude that Fv(t,x) is
continuous on Ω. Then it is easy to see that fv(t,x) is well defined and belongs to F .

Let us prove that fv is continuous.

fv(t,x) − fv(s,y) = −L(x − y) +

∫

Ω

(W(·, r′, t)S(x(r′)) − W(·, r′, s)S(y(r′))) dr′

+ Iext(·, t) − Iext(·, s)

= −L(x − y) +

∫

Ω

(W(·, r′, t) − W(·, r′, s))S(x(r′)) dr′

+

∫

Ω

W(·, r′, s)(S(x(r′)) − S(y(r′)) dr′ + Iext(·, t) − Iext(·, s)

It follows from lemma 3.1 that

‖fv(t,x)−fv(s,y)‖n,∞ ≤ ‖L‖∞ ‖x−y‖n,∞ + |Ω|Sm‖W(·, ·, t)−W(·, ·, s)‖n×n,∞+

|Ω| ‖W(·, ·, s)‖n×n,∞DSm ‖x− y‖n,∞ + ‖Iext(·, t) − Iext(·, s)‖n,∞.
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Because of the hypotheses we can choose |t − s| small enough so that ‖W(·, ·, t) −
W(·, ·, s)‖n×n,∞ and ‖Iext(·, t)−Iext(·, s)‖n,∞ are arbitrarily small. Similarly, since W

is continuous on the compact interval J, it is bounded there and ‖W(·, ·, s)‖n×n,∞ ≤
w > 0 for all s ∈ J. This proves the continuity of fv.

It follows from the previous inequality that

‖fv(t,x) − fv(t,y)‖n,∞ ≤ ‖L‖∞ ‖x− y‖n,∞ + |Ω| ‖W(·, ·, t)‖n×n,∞DSm ‖x− y‖n,∞,

and because ‖W(·, ·, t)‖n×n,∞ ≤ w > 0 for all ts in J, this proves the Lipschitz
continuity of fv with respect to its second argument, uniformly with respect to the
first.
A very similar proof applies to fa.
We continue with the proof that there exists a unique solution to the abstract initial
value problem (3.1) in the two cases of interest.

Proposition 3.3. Subject to the hypotheses of proposition 3.2 for any element
V0 (resp. A0) of F there is a unique solution V (resp. A), defined on a subinterval
of J containing 0 and continuously differentiable, of the abstract initial value problem
(3.1) for f = fv (resp. f = fa).

Proof. All conditions of the Picard-Lindelöf theorem on differential equations in
Banach spaces [9, 2] are satisfied, hence the proposition.
This solution, defined on the subinterval J of R can in fact be extended to the whole
real line and we have the

Proposition 3.4. If the following two hypotheses are satisfied
1. The connectivity function W is in C(R;Cn×n(Ω × Ω)),
2. The external current Iext is in C(R;Cn(Ω)),

then for any function V0 (resp. A0) in F there is a unique solution V (resp. A),
defined on R and continuously differentiable, of the abstract initial value problem (3.1)
for f = fv (resp. f = fa).

Proof. In theorem B.1 of appendix B, we prove the existence of a constant τ > 0
such that for any initial condition (t0,V0) ∈ R×F , there is a unique solution defined
on the closed interval [t0−τ, t0+τ ]. We can then cover the real line with such intervals
and finally obtain the global existence and uniqueness of the solution of the initial
value problem.

3.2. Homogeneous solution. A homogeneous solution to (2.6) or (2.7) is a
solution U that does not depend upon the space variable r, for a given homogeneous
input Iext(t) and a constant initial condition U0. If such a solution U(t) exists, then
it satisfies the following equation

U′(t) = −LU(t) +

∫

Ω

W(r, r′, t)S(U(t)) dr′ + Iext(t),

in the case of (2.6) and

U′(t) = −LU(t) + S

(∫

Ω

W(r, r′, t)U(t) dr′ + Iext(t)

)
,

in the case of (2.7). The integral
∫
Ω

W(r, r′, t)S(U(t)) dr′ is equal to(∫
Ω W(r, r′, t) dr′

)
S(U(t)). The integral

∫
Ω W(r, r′, t)U(t) dr′ is equal to(∫

Ω W(r, r′, t) dr′
)

U(t). They must be independent of the position r. Hence a nec-
essary condition for the existence of a homogeneous solution is that

∫

Ω

W(r, r′, t) dr′ = W(t), (3.5)
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where the n× n matrix W(t) does not depend on the spatial coordinate r.
In the special case where W(r, r′, t) is translation invariant, W(r, r′, t) ≡ W(r−

r′, t), the condition is not satisfied in general because of the border of Ω. In all cases,
the homogeneous solutions satisfy the differential equation

U′(t) = −LU(t) + W(t)S(U(t)) + Iext(t), (3.6)

for (2.6) and

U′(t) = −LU(t) + S
(
W(t)U(t)) + Iext(t)

)
, (3.7)

for (2.7), with initial condition U(0) = U0, a vector of R
n. The following proposition

gives a sufficient condition for the existence of a homogeneous solution.
Theorem 3.5. If the external current Iext(t) and the connectivity matrix W(t)

are continuous on some closed interval J containing 0, then for all vector U0 of R
n,

there exists a unique solution U(t) of (3.6) or (3.7) defined on a subinterval J0 of J
containing 0 such that U(0) = U0.

Proof. The proof is an application of Cauchy’s theorem on differential equations.
Consider the mapping fhv : R

n × J → R
n defined by

fhv(x, t) = −Lx + W(t)S(x) + Iext(t)

We have

‖fhv(x, t) − fhv(y, t)‖∞ ≤ ‖L‖∞‖x− y‖∞ + ‖W(t)‖∞‖S(x) − S(y)‖∞

It follows from lemma 3.1 that ‖S(x) − S(y)‖∞ ≤ DSm‖x − y‖∞ and, since W is
continuous on the compact interval J, it is bounded there by w > 0 and

‖fhv(x, t) − fhv(y, t)‖∞ ≤ (‖L‖∞ + wDSm)‖x− y‖∞

for all x, y of R
n and all t ∈ J. A similar proof applies to (3.7) and the conclusion of

the proposition follows.
As in proposition 3.4, this existence and uniqueness result extends to the whole time
real line if I and W are continuous on R.

This homogeneous solution can be seen as describing a state where the columns
of the continuum are synchronized: they receive the same input Iext(t) and produce
the same output U(t).

3.3. Some remarks about the case Ω = R
q. A significant amount of work

has been done on equations of the type (2.6) or (2.7) in the case of a one-dimensional
infinite continuum, Ω = R, or a two-dimensional infinite continuum, Ω = R

2. The
reader is referred to the review papers by Ermentrout [10] and by Coombes [6] as well
as to [32, 13, 34].

Beside the fact that an infinite cortex is unrealistic, the case Ω = R
q raises some

mathematical questions. Indeed, the choice of the functional space F is problematic.
A natural idea would be to choose F = L2

n(Rq), the space of square-integrable func-
tions with values in R

n, see Appendix A.1. If we make this choice we immediately
encounter the problem that the homogeneous solutions (constant with respect to the
space variable) do not belong to that space. A further difficulty is that S(x) does not
in general belong to F if x does. As shown in this article, these difficulties vanish if
Ω is compact.
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4. Absolute stability of the general solution. We investigate the absolute
stability of a solution to (2.6) and (2.7) for a given input Iext. Proposition 3.4 guar-
antees that for a given initial condition there exists a unique solution to (2.6) or (2.7)
defined for all times.

In order to investigate its absolute stability we choose a different initial condition,
which is a way to perturb the solution, in effect the only way because of the existence
uniqueness proposition 3.4, and look for sufficient conditions for the new solution to
converge toward the original one. Absolute stability implies linear stability which is
studied by perturbing the solution by adding to it a small function, and performing a
first-order Taylor expansion of the equations thereby obtaining a perturbed equation.
One then usually has to make some assumptions about the spatio-temporal form of
the perturbation, e.g. that it is separable in time and space, ending up with a non-
trivial eigenvalue problem which has to be solved in order to find sufficient conditions
for the perturbation to converge to 0, up to first-order [6, 10, 12, 13, 27, 32, 33, 23, 34].
This is also the case of [1] and [7] who study the convolution case for n = q = 1 but
incorporate propagation delays. Linear stability is local because it is derived for a
particular solution. The functional analysis approach that we use in this paper allows
us to find simple sufficient conditions for the absolute stability of the system, hence
for all its solutions, regardless of the initial condition or input. In this sense it is a
global approach. This is achieved by constructing a Lyapunov function measuring
some distance between two state vectors at each time instant. This function has a
single minimum corresponding to the equality of the states. One then finds sufficient
conditions for the time derivative of this function to be strictly negative thereby
guaranteeing the asymptotic equality of the states. This approach has been followed
by much fewer people. In [22] the authors study the case where W(r, r′) is symmetric
in with respect to the space variables r and r′ for n = q = 1 for a finite interval and
add the translation invariance assumption when the interval is infinite. They do not
study the case of general time-varying input currents.

Absolute stability is a relevant concept for systems of neurons. Indeed, absolutely
stable systems forget their initial state exponentially fast, but do not forget their
input. Hence such systems can differentiate distinct stimuli by converging to the
corresponding states without being influenced by their initial state. This property is
desirable for example in modelling visual perception: different forms elicit different
percepts but the percepts should not depend on the initial state of the visual system.
We first look at the general case then at the convolution case.

4.1. The general case. We define a number of matrices and linear operators
that are useful in the sequel

Definition 4.1. Let

Wcm = WDSm Wmc = DSmW

Consider also the linear operators, noted g, gm, and hm defined on F :

g(x)(r, t) =

∫

Ω

W(r, r′, t)x(r′) dr′ ∀x ∈ F ,

gm(x)(r, t) =

∫

Ω

Wcm(r, r′, t)x(r′) dr′ ∀x ∈ F ,

and

hm(x)(r, t) =

∫

Ω

Wmc(r, r
′, t)x(r′) dr′ ∀x ∈ F .
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We start with a lemma.
Lemma 4.2. With the hypotheses of proposition 3.2, the operators g, gm, and hm

are compact operators from F to F for each time t ∈ J.
Proof. This is a direct application of the theory of Fredholm’s integral equations

[9]. We prove it for g.
Because of the hypothesis 1 in proposition 3.2, at each time instant t in J, W is

continuous on the compact set Ω×Ω, therefore it is uniformly continuous. Hence, for
each ε > 0 there exists η(t) > 0 such that ‖r1−r2‖ ≤ η(t) implies that ‖W(r1, r

′, t)−
W(r2, r

′, t)‖∞ ≤ ε for all r′ ∈ Ω, and, for all x ∈ F

‖g(x)(r1, t) − g(x)(r2, t)‖∞ ≤ ε|Ω|‖x‖n,∞

This shows that the image g(B) of any bounded subset B of F is equicontinuous.
Similarly, if we setw(t) = ‖W(., ., t)‖n×n,∞, we have ‖g(x)(r, t)‖∞ ≤ w(t)|Ω|‖x‖n,∞.

This shows that for every r ∈ Ω, the set {y(r),y ∈ g(B)}, is bounded in R
n, hence

relatively compact. From the Arzelà-Ascoli theorem, we conclude that the subset
g(B) of F is relatively compact for all t ∈ J. And so the operator is compact.

The same proof applies to gm and hm.
To study the absolute stability of the solutions of (2.6) and (2.7) it is convenient to
use an inner product on F . It turns out that the natural inner-product will pave the
ground for the generalization in section 6. We therefore consider the pre-Hilbert space
G defined on F by the usual inner product

〈x, y〉 =

∫

Ω

x(r)T y(r) dr

We note ‖x‖n,2 the corresponding norm to distinguish it from ‖x‖n,∞, see Appendix
A.1. It is easy to show that all previously defined operators are also compact operators
from G to G. We have the

Lemma 4.3. g, gm and hm are compact operators from G to G for each time
t ∈ J.

Proof. We give the proof for g.
The identity mapping x → x from F to G is continuous since ‖x‖n,2 ≤

√
n|Ω| ‖x‖n,∞.

Consider now g as a mapping from G to F . As in the proof of lemma 4.2, for each ε > 0
there exists η(t) > 0 such that ‖r1−r2‖ ≤ η(t) implies ‖W(r1, r

′, t)−W(r2, r
′, t)‖∞ ≤

ε for all r′ ∈ Ω. Therefore the ith coordinate gi(x)(r1, t) − gi(x)(r2, t) satisfies
(Cauchy-Schwarz’ inequalities):

|gi(x)(r1, t) − gi(x)(r2, t)| ≤
∑

j

∫

Ω

|Wij(r1, r
′, t) −Wij(r2, r

′, t)| |xj(r
′)| dr′ ≤

ε
∑

j

∫

Ω

|xj(r
′)| dr′ ≤ ε

√
|Ω|
∑

j

(∫

Ω

|xj(r
′)|2 dr′

)1/2

≤ ε
√
n |Ω|‖x‖n,2,

and the image g(B) of any bounded set B of G is equicontinuous. Similarly, if we set
w(t) = ‖W(., ., t)‖n×n,∞ in Ω × Ω, we have |gi(x)(r, t)| ≤ w(t)

√
n |Ω| ‖x‖n,2. The

same reasoning as in lemma 4.2 shows that the operator x → g(x) from G to F is
compact and since the identity from F to G is continuous, x → g(x) is compact from
G to G.

The same proof applies to gm and hm.
We then proceed with the following
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Lemma 4.4. The adjoint g∗ of the operator g of G is the operator defined by

g∗(x)(r, t) =

∫

Ω

WT (r′, r, t)x(r′) dr′

It is a compact operator. Similar results apply to g∗m and h∗m.
Proof. The adjoint, if it exists, is defined by the condition 〈g(x), y〉 = 〈x, g∗(y)〉

for all x, y in G. We have

〈g(x), y〉 =

∫

Ω

y(r)T

(∫

Ω

W(r, r′, t)x(r′) dr′
)
dr =

∫

Ω

x(r′)T

(∫

Ω

WT (r, r′, t)y(r) dr

)
dr′,

from which the conclusion follows. Since G is not a Hilbert space the adjoint of a
compact operator is not necessarily compact. But the proof of compactness of g in
lemma 4.3 extends easily to g∗.
We finally prove two useful lemmas that will complete our toolbox for the proof of
the main results of this section.

Lemma 4.5. Given a diagonal matrix D = diag(d1, ..., dn), with d1, ..., dn ∈
L∞(Ω) and a function x ∈ G, we have

‖Dx‖n,2 ≤ max
i

(‖di‖∞)‖x‖n,2.

Proof.

‖Dx‖2
n,2 =

∫

Ω

x(r)T D2(r)x(r) dr =
∑

i

∫

Ω

d2
i (r)x

2
i (r) dr ≤

∑

i

‖di‖2
∞

∫

Ω

x2
i (r) dr,

from which the result follows.
Lemma 4.6. ‖g‖G, ‖gm‖G, and ‖hm‖G satisfy the following inequalities

‖gm‖G ≤ DSm ‖g‖G and ‖hm‖G ≤ DSm ‖g‖G ,

where DSm is defined in definition 2.1.
Proof. By definition

‖gm‖G = sup
‖x‖n,2≤1

‖gm(x)‖n,2

‖x‖n,2
= sup

‖x‖n,2≤1

‖g(DSmx)‖n,2

‖x‖n,2
.

Let y = DSmx. Since {x ∈ G, ‖x‖n,2 ≤ 1} ⊂ {x ∈ G, ‖DSmx‖n,2 ≤ DSm} (lemma
4.5),

‖gm‖G ≤ sup
‖y‖n,2≤DSm

‖g(y)‖n,2

‖DS−1
m y‖n,2

= sup
‖y‖n,2≤1

‖g(y)‖n,2

‖DS−1
m y‖n,2

≤

sup
‖y‖n,2≤1

‖g(y)‖n,2

‖y‖n,2
· sup
‖y‖n,2≤1

‖y‖n,2

‖DS−1
m y‖n,2

≤ ‖g‖G DSm

The last inequality is also obtained from lemma 4.5, which is used again to prove the
inequality for hm: hm = DSmg and ‖DSmg(x)‖n,2 ≤ DSm‖g(x)‖n,2, for all x ∈ G,
from which the result follows.
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We show in appendix D a table summarizing the main notations introduced so far for
future reference.
We now state an important result of this section.

Theorem 4.7. A sufficient condition for the absolute stability of a solution to
(2.6) is

DSmτmax ‖g‖G < 1 (4.1)

where ‖.‖G is the operator norm.
Proof. Let us note S the function DS−1

m S and rewrite equation (2.6) as follows

Vt(r, t) = −LV(r, t) +

∫

Ω

Wcm(r, r′, t)S(V(r′, t)) dr′ + Iext(r, t).

Let U be its unique solution with initial conditions U(0) = U0, an element of G. Let
also V be the unique solution of the same equation with different initial conditions
V(0) = V0, another element of G. We introduce the new function X = V−U which
satisfies

Xt(r, t) = −LX(r, t) +

∫

Ω

Wcm(r, r′, t)H(X,U)(r′, t) dr′ =

− LX(r, t) + gm(H(X,U))(r, t) (4.2)

where the vector H(X,U) is given by H(X,U)(r, t)) = S(V(r, t)) − S(U(r, t)) =
S(X(r, t) + U(r, t)) − S(U(r, t)). Consider now the functional (Lyapunov function)

V (X) =
1

2

〈
X, L−1X

〉
,

where the symmetric positive definite matrix L can be seen as defining a metric on
the state space. Its time derivative is

〈
X, L−1Xt

〉
. We replace Xt by its value from

(4.2) in this expression to obtain

dV (X)

dt
= −〈X, X 〉 +

〈
X, L−1gm(H(X,U))

〉

We consider the second term in the righthand side of this equation:

|
〈
X, L−1gm(H(X,U))

〉
|≤ ‖X‖n,2 ‖L−1gm(H(X,U))‖n,2 ≤

τmax‖X‖n,2 ‖gm(H(X,U))‖n,2 ≤ τmax‖X‖n,2 ‖gm‖G‖H(X,U)‖n,2 (4.3)

Using a zeroth-order Taylor expansion with integral remainder, as in the proof of
lemma 3.1, we write H(X,U) = DmX, where Dm is a diagonal matrix whose diagonal
elements are continuous functions with values between 0 and 1:

Dm(r, t) =

∫ 1

0

DS(U(r, t) + ζ(V(r, t) − U(r, t))) dζ.

Hence, according to lemma 4.5,

‖H(X,U)‖n,2 = ‖DmX‖n,2 ≤ ‖X‖n,2

We use this result and lemma 4.6 in equation (4.3) to obtain

|
〈
X, L−1gm(H(X,U))

〉
|≤ τmaxDSm ‖g‖G ‖X‖2

n,2,
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and the conclusion follows.
An identical sufficient condition holds for the stability of a solution to (2.7).

Theorem 4.8. A sufficient condition for the absolute stability of a solution to
(2.7) is

DSmτmax ‖g‖G < 1

Proof. Let U be the unique solution of (2.7) with an external current Iext(r, t)
and initial conditions U(0) = U0. As in the proof of theorem 4.7 we introduce the
new function X = V − U, where V is the unique solution of the same equation with
different initial conditions. We have

Xt(r, t) = −LX(r, t) + S

(∫

Ω

W(r, r′, t)V(r′, t) dr′ + Iext(r, t)

)
−

S

(∫

Ω

W(r, r′, t)U(r′, t) dr′ + Iext(r, t)

)
(4.4)

Using a zeroth-order Taylor expansion, as in the proof of lemma 3.1, this equation
can be rewritten as

Xt(r, t) = −LX(r, t) +

(∫ 1

0

DS
(∫

Ω

W(r, r′, t)U(r′t) dr′ + Iext(r, t)+

ζ

∫

Ω

W(r, r′, t)X(r′, t) dr′
)
dζ

)(∫

Ω

W(r, r′, t)X(r′, t) dr′
)

We use the same functional as in the proof of theorem 4.7

V (X) =
1

2

〈
X, L−1X

〉
.

Its time derivative is readily obtained with the help of equation (4.4)

dV (X)

dt
= −〈X, X 〉 +

〈
X, L−1Dmhm(X)

〉
, (4.5)

where Dm is defined by

Dm(U,X, r, t) =
∫ 1

0

DS
( ∫

Ω

W(r, r′, t)U(t) dr′ + Iext(r, t) + ζ

∫

Ω

W(r, r′, t)X(r′, t) dr′
)
DS−1

m dζ,

a diagonal matrix whose diagonal elements are continuous functions with values be-
tween 0 and 1. We consider the second term in the righthand side of equation (4.5)
and use the property of matrix Dm and lemma 4.6 to obtain

|
〈
X, L−1Dmhm(X)

〉
|≤ ‖X‖n,2‖L−1Dmhm(X)‖n,2

≤ τmax‖X‖n,2 ‖hm(X)‖n,2 ≤ τmaxDSm ‖g‖G ‖X‖2
n,2,

from which the result follows.
Note that ‖g‖G = ‖g‖L2 by density of G in L2 (see section 6). In appendix A, we
show how to compute such operator norms.
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4.2. The convolution case. In the case where W is translation invariant we
can obtain a slightly easier to exploit sufficient condition for the stability of the so-
lutions than in the theorems 4.7 and 4.8. We first consider the case of a general
compact Ω and then the case where Ω is an interval. Translation invariance means
that W(r + a, r′ + a, t) = W(r, r′, t) for all a such that a + r ∈ Ω and a + r′ ∈ Ω,
so we can write W(r, r′, t) = W(r − r′, t). Hence W(r, t) must be defined for all

r ∈ Ω̂ = {r− r′, with r, r′ ∈ Ω} and we suppose it continuous on Ω̂ for each t. Ω̂ is a
symmetric with respect to the origin, compact subset of R

q.

4.2.1. General Ω. We note 1A the characteristic function of the subset A of R
q

and M∗ = M
T

the conjugate transpose of the complex matrix M.

We prove the following

Theorem 4.9. If the eigenvalues of the Hermitian matrix

W̃∗(f , t)W̃(f , t) (4.6)

are strictly less than (τmaxDSm)−2 for almost all f ∈ R
q and t ∈ J, then the system

(2.6) is absolutely stable1. W̃(f , t) is the Fourier transform with respect to the space
variable r of 1bΩ(r)W(r, t),

W̃(f , t) =

∫

bΩ

W(r, t)e−2iπr·f dr

Proof. We recall that

‖g‖2
G = sup

‖x‖n,2≤1

‖g(x)‖2
n,2

‖x‖2
n,2

.

We then note that, by definition

‖g(x)‖n,2 = ‖(1bΩW) ⊗ (1Ωx)‖Rq, n, 2,

where ⊗ indicates the convolution over R
q. Parseval’s theorem gives

‖(1bΩW) ⊗ (1Ωx)‖2
Rq, n, 2 =

∫

Rq

x̃∗(f , t)W̃∗(f , t)W̃(f , t)x̃(f , t) df ,

where x̃ is the Fourier transform of 1Ωx.
As an Hermitian matrix, W̃∗(f , t)W̃(f , t) can be rewritten as U∗(f , t)D(f , t)U(f , t),
with U∗U = Idn and D real and diagonal. In particular, U preserves length (‖Uv‖2 =

‖v‖2). Besides, W̃∗W̃ is positive because for any complex vector v,

v∗W̃∗W̃v = ‖W̃v‖2
2 ≥ 0.

So, all values of D are positive and if the hypothesis of the theorem is satisfied, lemma
4.5 yields

1Remark that since fW is continuous with respect to f , some eigenvalues of the Hermitian matrix
may be equal to (τmaxDSm)−2 on a zero measure domain.
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∫

Rq

x̃∗(f , t)W̃∗(f , t)W̃(f , t)x̃(f , t) df = ‖
√

DUx̃‖2
Rq, n, 2 ≤

(τmaxDSm)−2‖Ux̃‖2
Rq, n, 2 = (τmaxDSm)−2‖x̃‖2

Rq, n, 2 = (τmaxDSm)−2‖x‖2
n,2,

hence ‖g‖G < (τmaxDSm)−1 and theorem 4.7 applies.

Since the sufficient condition for the absolute stability of the solution of the activation-
based model is identical, we have the

Theorem 4.10. If the eigenvalues of the Hermitian matrix

W̃∗(f , t)W̃(f , t)

are strictly less than (τmaxDSm)−2 for almost all f and t ∈ J then the system (2.7)

is absolutely stable. W̃(f , t) is the Fourier transform of 1bΩ(r)W(r, t) with respect to
the space variable r.

These two theorems are somewhat unsatisfactory since they replace a condition that
must be satisfied over a countable set, the spectrum of a compact operator, as in
theorems 4.7 and 4.8, by a condition that must be satisfied over a continuum, i.e. R

q.
Nonetheless one may consider that the computation of the Fourier transforms of the
matrix W, extended by zeros outside Ω̂, is easier than that of the spectrum of the
operator g, for which a method is given in section A.3.

4.2.2. Ω is an interval. In the case where Ω is an interval, i.e. an interval of
R (q = 1), a parallelogram (q = 2), or a parallelepiped (q = 3), we can state different
sufficient conditions. We can always assume that Ω is the q-dimensional interval
[0, 1]q by applying an affine change of coordinates. The connectivity matrix W is
defined on J × [−1, 1]q and extended to a q-periodic function of periods 2 on J × R

q,
reflecting periodic boundary conditions. Similarly, the state vectors V and A as well
as the external current Iext defined on J× [0, 1]q are extended to q-periodic functions
of the same periods over J × R

q by padding them with zeros in the complement in
the interval [−1, 1]q of the interval [0, 1]q. G is now the space L2

n(2) of the square
integrable q-periodic functions of periods 2 with values in R

n.
We define the functions ψm(r) ≡ e−πi(r1m1+···+rqmq), for m ∈ Z

q and consider the

matrix W̃(m, t) whose elements are given by

W̃ij(m, t) =

∫

[0,2]q
Wij(r, t)ψm(r) dr 1 ≤ i, j ≤ n.

We recall the

Definition 4.11. The matrix W̃(m) is the mth element of the Fourier series of
the periodic matrix function W(r). The theorems 4.9 and 4.10 can be stated in this
framework.

Theorem 4.12. If the eigenvalues of the Hermitian matrix

W̃∗(m, t)W̃(m, t) (4.7)

are strictly less than (τmaxDSm)−2 for all m ∈ Z
q and all t ∈ J, then the system (2.6)

(resp. (2.7)) is absolutely stable. W̃(m, t) is the mth element of the Fourier series of
the q-periodic matrix function W(r, t) with periods 2 at time t.
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5. Absolute stability of the homogeneous solution. We next investigate
the absolute stability of a homogeneous solution to (2.6) and (2.7). As in the previous
section we distinguish the general and convolution cases.

5.1. The general case. The homogeneous solutions are characterized by the
fact that they are spatially constant at each time instant. We consider the subspace
Gc of G of the constant functions. We have the following

Lemma 5.1. Gc is a complete linear subspace of G. The orthogonal projection
operator PGc

from G to Gc is defined by

PGc
(x) = x =

1

|Ω|

∫

Ω

x(r) dr

The orthogonal complement G⊥
c of Gc is the subset of functions of G that have a zero

average. The orthogonal projection2 operator PG⊥
c

is equal to Id−PGc
. We also have

PG⊥
c
Mx = MPG⊥

c
x ∀x ∈ G, M ∈ Mn×n (5.1)

Proof. The constant functions are clearly in G. Any Cauchy sequence of constants
is converging to a constant hence Gc is closed in the pre-Hilbert space G. Therefore
there exists an orthogonal projection operator from G to Gc which is linear, continuous,
of unit norm, positive and self-adjoint. PGc

(x) is the minimum with respect to the
constant vector a of the integral

∫
Ω ‖x(r)−a‖2 dr. Taking the derivative with respect

to a, we obtain the necessary condition
∫

Ω

(x(r) − a) dr = 0

and hence amin = x. Conversely, x − amin is orthogonal to Gc since
∫
Ω(x(r) −

amin)b dr = 0 for all b ∈ Gc.
Let y ∈ G,

∫
Ω xy(r) dr = x

∫
Ω y(r) dr = 0 for all x ∈ Gc if and only if y ∈ G⊥

c .
Finally

PG⊥
c
Mx = Mx− Mx = Mx− Mx = M(x − x) = MPG⊥

c
x

We are now ready to prove the theorem on the absolute stability of the homogeneous
solutions to (2.6).

Theorem 5.2. If W satisfies (3.5), a sufficient condition for the absolute stability
of a homogeneous solution to (2.6) is that the norm ‖g∗‖G⊥

c
of the restriction to G⊥

c

of the compact operator g∗ be less than (τmaxDSm)−1 for all t ∈ J.
Proof. This proof is inspired by [30]. Note that G⊥

c is invariant by g∗ and hence
by g∗m. Indeed, from lemma 4.4 and equation (3.5) we have

g∗(x) = WT (t)x = 0 ∀x ∈ G⊥
c

Let Vp be the unique solution of (2.6) with homogeneous input Iext(t) and initial
conditions Vp(0) = Vp0 ∈ G, and consider the initial value problem:

{
X′(t) = PG⊥

c

(
fv(t,PG⊥

c
X + PGc

Vp)
)

X(0) = X0
(5.2)

2To be accurate, this is the projection on the closure of G⊥
c in the closure of G which is the

Hilbert space L2
n(Ω).
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X = PG⊥
c
Vp is a solution with initial condition X0 = PG⊥

c
Vp0, since P2

G⊥
c

= PG⊥
c

,

and PG⊥
c
Vp + PGc

Vp = Vp. But X = 0 is also a solution with initial condition
X0 = 0. Indeed Gc is flow-invariant because of (3.5), that is fv(t,Gc) ⊂ Gc, and hence
PG⊥

c
(fv(t,Gc)) = 0. We therefore look for a sufficient condition for the system (5.2)

to be absolutely stable at X = 0.
We consider again the functional V (X) = 1

2

〈
X, L−1X

〉
with time derivative

dV (X)
dt =

〈
X, L−1Xt

〉
. We substitute Xt with its value from (5.2) which can be

rewritten as

Xt = PG⊥
c

(
− L(PG⊥

c
X +PGc

Vp) +

∫

Ω

W(r, r′, t)S(PG⊥
c
X(r′, t) + PGc

Vp(r
′, t)) dr′

)

Because of lemma 5.1 this yields

Xt = −LPG⊥
c
X + PG⊥

c

(∫

Ω

Wcm(r, r′, t)S(PG⊥
c
X(r′, t) + PGc

Vp(r
′, t)) dr′

)

Using a zeroth-order Taylor expansion, as in the proof of lemma 3.1, we write

S(PG⊥
c
X + PGc

Vp) = S(PGc
Vp) +

(∫ 1

0

DS(PGc
Vp + ζPG⊥

c
X) dζ

)
PG⊥

c
X,

and since S(PGc
Vp) ∈ Gc, and because of (3.5)

PG⊥
c

(∫

Ω

Wcm(r, r′, t)S(PG⊥
c
X(r′, t) + PGc

Vp(r
′, t)) dr′

)
=

PG⊥
c

(∫

Ω

Wcm(r, r′, t)

(∫ 1

0

DS(PGc
Vp(r

′, t) + ζPG⊥
c
X(r′, t)) dζ

)
PG⊥

c
X(r′, t) dr′

)

We use (5.1) and the fact that PG⊥
c

is self-adjoint and idempotent to write

dV (X)

dt
= −〈PG⊥

c
X, PG⊥

c
X〉+

〈
PG⊥

c
X, L−1

∫

Ω

Wcm(r, r′, t)

(∫ 1

0

DS(PGc
Vp(r

′, t)+ζPG⊥
c
X(r′, t)) dζ

)
PG⊥

c
X(r′, t) dr′

〉

Let us denote by Dv(r′, t) the diagonal matrix
∫ 1

0
DS(PGc

Vp(r
′, t)+ζPG⊥

c
X(r′, t)) dζ.

Its diagonal elements are continuous functions with values between 0 and 1. Let-
ting Y = PG⊥

c
X we rewrite the previous equation in operator form, introducing the

operator gm (definition 4.1), as

dV (X)

dt
= −〈Y, Y〉 +

〈
Y, L−1gm(Dv Y)

〉

By definition of the adjoint

〈
Y, L−1gm(Dv Y)

〉
=
〈
g∗m
(
L−1Y

)
, Dv Y

〉

Using the Cauchy-Schwarz’ inequality and lemma 4.5

∣∣〈g∗m
(
L−1Y

)
, Dv Y

〉∣∣ ≤
∥∥g∗m

(
L−1Y

)∥∥
n,2

‖Dv Y‖n,2 ≤
∥∥g∗m

(
L−1Y

)∥∥
n,2

‖Y‖n,2 ,
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and since

∥∥g∗m
(
L−1Y

)∥∥
n,2

≤ ‖g∗m‖G⊥
c

∥∥L−1Y
∥∥

n,2
≤ τmaxDSm‖g∗‖G⊥

c
‖Y‖n,2 ,

the conclusion follows.
Note that ‖g∗‖G⊥

c
= ‖g∗‖L2

0

by density of G⊥
c in L2

0, where L2
0 is the subspace of L2

of zero mean functions. We show in appendix A how to compute this norm.
We prove a similar theorem in the case of (2.7).
Theorem 5.3. If W satisfies (3.5), a sufficient condition for the stability of a

homogeneous solution to (2.7) is that the norm ‖g‖G⊥
c

of the restriction to G⊥
c of the

compact operator g be less than (τmaxDSm)−1 for all t ∈ J.
Proof. The proof is similar to that of theorem 5.2. We consider Ap the unique

solution to (2.7) with homogeneous input Iext(t), initial conditions Ap(0) = Ap0, and
consider the initial value problem

{
A′(t) = PG⊥

c

(
fa(t,PG⊥

c
A + PGc

Ap)
)

A(0) = A0
(5.3)

A = PG⊥
c
Ap is a solution with initial conditions A0 = PG⊥

c
Ap0 since PG⊥

c
Ap +

PGc
Ap = Ap. But A = 0 is also a solution with initial conditions A0 = 0. Indeed Gc

is flow-invariant because of (3.5), that is fa(t,Gc) ⊂ Gc, and hence PG⊥
c

(fa(t,Gc)) = 0.
We therefore look for a sufficient condition for the system (5.3) to be absolutely stable
at A = 0.

Consider again the functional V (A) = 1
2

〈
A, L−1A

〉
with time derivative dV (A)

dt =〈
A, L−1At

〉
. We substitute At with its value from (5.3) which, using (3.5), can be

rewritten as

At =

PG⊥
c

(
−L(PG⊥

c
A+PGc

Ap)+S

(∫

Ω

W(r, r′, t)PG⊥
c
A(r′, t) dr′ + W(t)PGc

Ap + Iext(t)

))

We perform a first-order Taylor expansion with integral remainder of the S term and
introduce the operator hm (definition 4.1):

S

(∫

Ω

W(r, r′, t)PG⊥
c
A(r′, t) dr′ + W(t)PGc

Ap + Iext(t)

)
= S

(
W(t)PGc

Ap + Iext(t)
)
+

(∫ 1

0

DS
(
W(t)PGc

Ap+Iext(t)+ζ

∫

Ω

W(r, r′, t)PG⊥
c
A(r′, t) dr′

)
dζ

)
hm(PG⊥

c
A)(r, t)

Let us define

Da(r, t) =

∫ 1

0

DS
(
W(t)PGc

Ap + Iext(t) + ζ

∫

Ω

W(r, r′, t)PG⊥
c
A(r′, t) dr′

)
dζ,

a diagonal matrix whose diagonal elements are continuous functions with values be-
tween 0 and 1. Letting Y = PG⊥

c
A we write

dV (A)

dt
= −〈Y, Y〉 +

〈
Y, L−1Da hm(Y)

〉
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and the conclusion follows from the Cauchy-Schwarz’ inequality and lemmas 4.5 and
4.6

∣∣〈Y, L−1Da hm(Y)
〉∣∣ ≤ ‖Y‖n,2

∥∥L−1Da hm(Y)
∥∥

n,2
≤

τmax ‖Y‖n,2 ‖hm(Y)‖n,2 ≤ τmaxDSm ‖g‖G⊥
c

‖Y‖2
n,2

5.2. The convolution case. As W is translation invariant
∫
Ω

W(r − r′, t) dr′

is in general a function of r, unless Ω has no border. In our framework, this case only
occurs as Ω is an interval with periodic conditions and we have the following

Theorem 5.4. A sufficient condition for the stability of a homogeneous solution
to (2.6) (resp. (2.7)) is that the eigenvalues of the Hermitian matrices

W̃∗(m, t)W̃(m, t)

are strictly less than (τmaxDSm)−2 for all m 6= 0 ∈ Z
q and all t ∈ J. W̃(m, t) is

the mth element of the Fourier series of the q-periodic matrix function W(r, t) with
respect to the space variable r.
The only difference with theorem 4.12 is that there are no constraints on the Fourier
coefficient m = 0. This is due to the fact that we only “look” at the subspace of G of
functions with zero spatial average.

5.3. Complete synchronization. The property of absolute stability of the so-
lution that is characterized in theorems 5.2, 5.3 and 5.4 can be seen as the ability for
the neural masses in the continuum to synchronize. By synchronization we mean that
the state vectors at all points in the continuum converge to a unique state vector that
is a function only of the common input Iext and not of the initial states of the neural
masses. The state vector is the homogeneous solution of (2.6) and (2.7). This effect
is called complete synchronization [31].

6. Extending the theory. We have developed our analysis of (2.6) and (2.7) in
the Banach space F of continuous functions of the spatial coordinate r even though
we have used a structure of pre-Hilbert space G on top of it. But there remains
the fact that the solutions that we have been discussing are smooth, i.e., continuous
with respect to the space variable. It may be interesting to also consider non-smooth
solutions, e.g., piecewise continuous solutions that can be discontinuous along curves
of Ω. A natural setting, given the fact that we are interested in having a structure
of Hilbert space, is L2

n(Ω), the space of square-integrable functions from Ω to R
n, see

appendix A. It is a Hilbert space and G is a dense subspace: G = L2
n(Ω), where A

indicates the topological closure of the set A.

6.1. Existence, uniqueness and stability of a solution. The theory devel-
oped in the previous sections can be readily extended to L2

n(Ω): the analysis of the
stability of the general and homogeneous solutions has been done using the pre-Hilbert
space structure of G and all the operators that have been shown to be compact in G
are also compact in its closure L2

n(Ω) [9]. The only point that has to be re-worked
is the problem of existence and uniqueness of a solution addressed in propositions
3.2 and 3.3. This allows us to relax the rather stringent spatial smoothness hypothe-
ses imposed on the connectivity function W and the external current Iext, thereby
bringing in more flexibility to the model. We have the following

Proposition 6.1. If the following two hypotheses are satisfied
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1. The mapping W is in C(J;L2
n×n(Ω × Ω)),

2. The external current Iext is in C(J;L2
n(Ω)),

then the mappings fv and fa are from J×L2
n(Ω) to L2

n(Ω), continuous, and Lipschitz
continuous with respect to their second argument, uniformly with respect to the first.

Proof. Because of the first hypothesis, the fact that S(x) is in L2
n(Ω) for all

x ∈ L2
n(Ω), and lemma A.2, fv is well-defined. Let us prove that it is continuous. As

in the proof of proposition 3.2 we write

fv(t,x) − fv(s,y) = −L(x − y) +

∫

Ω

(W(·, r′, t) − W(·, r′, s))S(x(r′)) dr′+

∫

Ω

W(·, r′, s)(S(x(r′)) − S(y(r′)) dr′ + Iext(·, t) − Iext(·, s),

from which we obtain, using lemma A.2

‖fv(t,x) − fv(s,y)‖n,2 ≤ ‖L‖F ‖x− y‖n,2 +
√
n|Ω|Sm‖W(·, ·, t) − W(·, ·, s)‖F +

DSm‖W(·, ·, s)‖F ‖x− y‖n,2 + ‖Iext(·, t) − Iext(·, s)‖n,2,

and the continuity follows from the hypotheses. ‖ ‖F is the Frobenius norm, see
appendix A. Note that since W is continuous on the compact interval J, it is bounded
and ‖W(·, ·, t)‖F ≤ w for all t ∈ J for some positive constant w. The Lipschitz
continuity with respect to the second argument uniformly with respect to the first
one follows from the previous inequality by choosing s = t.

The proof for fa is similar.
From this proposition we deduce the existence and uniqueness of a solution over a
subinterval of R:

Proposition 6.2. Subject to the hypotheses of proposition 6.1 for any element
V0 of L2

n(Ω) there is a unique solution V, defined on a subinterval of J containing 0
and continuously differentiable, of the abstract initial value problem (3.1) for f = fv

and f = fa such that V(0) = V0.
Proof. All conditions of the Picard-Lindelöf theorem on differential equations in

Banach spaces (here a Hilbert space) [9, 2] are satisfied, hence the proposition.
We can also prove that this solution exists for all times, as in proposition 3.4:

Proposition 6.3. If the following two hypotheses are satisfied
1. The connectivity function W is in C(R;L2

n×n(Ω × Ω)),
2. The external current Iext is in C(R;L2

n(Ω)),
then for any function V0 in L2

n(Ω) there is a unique solution V, defined on R and
continuously differentiable, of the abstract initial value problem (3.1) for f = fv and
f = fa.

Proof. The proof is similar to the one of proposition 3.4.
The absolute stability of the solution can be studied exactly as in theorems 4.7 and
4.8. Since G is dense in L2

n(Ω) we have ‖g‖G = ‖g‖L2
n(Ω) and similar relations for all

the other operators. We have the following
Theorem 6.4. If the compact operator g satisfies the condition of theorem 4.7 the

solution of the abstract initial value problem (3.1) for f = fv and f = fa is absolutely
stable.

6.2. Locally homogeneous solutions. An application of the previous exten-
sion is the following. Consider a partition of Ω into P subregions Ωi, i = 1, · · · , P .
We assume that the Ωis are closed, hence compact, subsets of Ω intersecting along
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finitely many piecewise regular curves. These curves form a set of 0 Lebesgue measure
of Ω. We consider locally homogeneous input current functions

Iext(r, t) =

P∑

k=1

1Ωk
(r)Ik

ext(t), (6.1)

where the P functions Ik
ext(t) are continuous on some closed interval J containing 0.

On the border between two adjacent regions the value of Iext(r, t) is undefined. Since
this set of borders is of 0 measure, the functions defined by (6.1) are in L2

n(Ω) at each
time instant.

6.2.1. Existence and uniqueness. We are interested in the existence of solu-
tions to the abstract initial value problem (3.1) that are homogeneous in each subre-
gion Ωi, i = 1, · · · , P . We call them locally homogeneous solutions.

We assume that the connectivity matrix W satisfies the following conditions

∫

Ωk

W(r, r′, t) dr′ =

P∑

i=1

1Ωi
(r)Wik(t) k = 1, · · · , P. (6.2)

These conditions are analogous to (3.5). A locally homogeneous solution of (2.6) or
(2.7) can be written

V(r, t) =

P∑

i=1

1Ωi
(r)Vi(t),

where the functions Vi satisfy the following system of ordinary differential equations

V′
i(t) = −LVi(t) +

P∑

k=1

Wik(t)S(Vk(t)) + Ii
ext(t), (6.3)

for the voltage-based model and

V′
i(t) = −LVi(t) + S

(
P∑

k=1

Wik(t)Vk(t) + Ii
ext(t)

)
, (6.4)

for the activity-based model. The conditions for the existence and uniqueness of a
locally homogeneous solution are given in the following theorem, analog to theorem
3.5:

Theorem 6.5. If the external currents Ik
ext(t), k = 1, · · · , P and the connectivity

matrices Wik(t), i, k = 1, · · · , P are continuous on some closed interval J containing
0, then for all sets of P vectors Uk

0 , k = 1, · · · , P of R
n, there exists a unique solution

(U1(t), · · · ,UP (t)) of (6.3) or (6.4) defined on a subinterval J0 of J containing 0 such
that Uk(0) = Uk

0 , k = 1, · · · , P .
Proof. The system (6.3) can be written in the form

V ′(t) = −LV(t) + W(t)S(V(t)) + Iext(t), (6.5)

where V is the nP dimensional vector




V1

...
VP


, Iext =




I1
ext
...

IP
ext


, S(X ) =




S(X1)
...

S(XP )


,

W is the block matrix (Wik)i,k and L is the block diagonal matrix whose diagonal
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elements are all equal to L. Then we are dealing with a classical initial value problem
of dimension nP and the proof of existence and uniqueness is similar to the one of
theorem 3.5. A similar proof can be written in the case of system (6.4).

Again, if Iext and W are continuous on R, the existence and uniqueness result
extends to the whole time line R.

6.2.2. Absolute stability. Having proved the existence and uniqueness of a
locally homogeneous solution we consider the problem of characterizing its absolute
stability. The method is the same as in section 5. We consider the subset, noted GP

c ,

of the functions that are constant in the interior
◦

Ωi of each region Ωi, i = 1, · · · , P
(the interior

◦

A of a subset A is defined as the biggest open subset included in A). We
have the following lemma that echoes lemma 5.1

Lemma 6.6. GP
c is a complete linear subspace of L2

n(Ω). The orthogonal projec-
tion operator PGP

c
from L2

n(Ω) to GP
c is defined by

PGP
c
(x)(r) = xP =

P∑

k=1

1Ωk
(r)

1

|Ωk|

∫

Ωk

x(r′) dr′

The orthogonal complement GP ⊥
c of GP

c is the subset of functions of L2
n(Ω) that have

a zero average in each Ωi, i = 1, · · · , P . The orthogonal projection operator PGP ⊥
c

is
equal to Id − PGP

c
. We also have

PGP ⊥
c

Mx = MPGP ⊥
c

x ∀x ∈ L2
n(Ω), M ∈ Mn×n (6.6)

Proof. The proof of this lemma is similar to the one of lemma 5.1.
We have the following theorem, corresponding to theorems 5.2 and 5.3.

Theorem 6.7. If W satisfies (6.2), a sufficient condition for the absolute stability
of a locally homogeneous solution to (2.6) (respectively (2.7)) is that the norm ‖g∗‖GP ⊥

c

(respectively ‖g‖GP ⊥
c

) of the restriction to GP ⊥
c of the compact operator g∗ (respectively

g) be less than (τmaxDSm)−1 for all t ∈ J.
Proof. The proof strictly follows the lines of the ones of theorems 5.2 and 5.3.

Note that the condition on the operator norm in theorems 4.7 and 4.8 is stronger than
the one of theorems 5.2 and 5.3 which is in turn stronger than the one of theorem 6.7
therefore we have the following

Proposition 6.8. If the operator g satisfies the condition of theorem 4.7 or
if g∗ (respectively g) satisfies the condition of theorem 5.2 (respectively of theorem
5.3), then for every partition of Ω, corresponding locally homogeneous current, and
W satisfying (6.2), the locally homogeneous solution of (2.6) (respectively (2.7)) is
absolutely stable.

Proof. Since all spaces are contained in L2
n(Ω) the first part of the proposition is

proved. Next it is clear that Gc ⊂ GP
c , therefore GP ⊥

c ⊂ G⊥
c and ‖g∗‖GP ⊥

c
≤ ‖g∗‖G⊥

c

(respectively ‖g‖GP ⊥
c

≤ ‖g‖G⊥
c

).
Condition (6.2) depends on the partition of Ω. It is therefore unrealistic since one
expects this partition to change over time with the external currents. In this context
it is interesting to define the notion of pseudo locally homogeneous solution.

Definition 6.9. A pseudo locally homogeneous solution of equation (2.6) (re-
spectively (2.7)) corresponds to a locally homogeneous input current (verifying (6.1))
when the connectivity function satisfies the condition of proposition 6.3 (existence and
uniqueness of a solution) but not necessarily conditions (6.2).
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How much a pseudo locally homogeneous solution differs from a locally homogeneous
solution obviously depends upon how poorly the connectivity function satisfies the
conditions (6.2). But since pseudo locally homogeneous solutions are solutions, they
enjoy the following property.

Proposition 6.10. If the operator g satisfies the condition of theorem 4.7, the
unique pseudo locally homogeneous solution of equations (2.6) (respectively of equa-
tions (2.7)) corresponding to a locally homogeneous input current, is absolutely stable.
A numerical example of pseudo locally homogeneous solution is given in section 7
(figures 7.16 and 7.17).

6.2.3. Complete local synchronization. The property of absolute stability
of the solution that is characterized in theorem 6.7 can be seen as the ability for
the neural masses in the continuum to synchronize locally within each region Ωi,
i = 1, . . . , P . By local synchronization we mean that the state vectors at all points of
each region Ωi converge to a unique state vector that is a function only of the common
input Ii

ext within Ωi and not of the initial states of the neural masses. The state vector
is the locally homogeneous solution of (2.6) and (2.7). This effect is called complete
local synchronization.

6.3. Higher order PSPs. We now show how the theory developed so far can
be extended to accomodate more complicated time variations of the postsynaptic
potentials (PSPs) than the decaying exponential that we adopted so far with the
advantage that we only had to deal with a first order differential equation. We only
show how to proceed in the case of a second order differential equation, going to a
higher order does not bring in new difficulties. We also treat only the case of the
voltage-based model, the case of the activity-based model being similar.

We therefore assume that, with the notations of section 2.1.1, we have PSPi(t) =
te−t/τiY (t) or equivalently that

d2PSPi(t)

dt2
+

2

τi

dPSPi(t)

dt
+

1

τ2
i

= δ(t)

The analog of equation (2.4) being

V′′ = −2LV′ − L2V + WS(V) + Iext. (6.7)

We rewrite this as a first order system of differential equation by introducing the

vector V =

[
V

V′

]
:

V
′ = −LV +

[
0

WS(V)

]
+

[
0

Iext

]
, L =

[
0 −Id
L2 2L

]

The dynamic system V
′ = −LV is globally asymptotically stable since all the eigen-

values of the 2n × 2n matrix L have a strictly positive real part, as can be easily
verified3. This has the following consequence [35, 26] that is used below and that we
cite without proof.

Theorem 6.11 (Lyapunov). The symmetric positive definite matrix

M =

∫ ∞

0

e−L
T t e−Lt dt

3In fact the eigenvalues of L are the ones of L, 1/τis, with multiplicity 2.



STABILITY AND SYNCHRONIZATION IN NEURAL FIELDS 25

satisfies

ML + L
T
M = Id2n, (6.8)

where Id2n is the 2n× 2n identity matrix.
The analog of equation (2.6) is readily found to be

Vt(r, t) = −LV(r, t) +

[
0∫

Ω
W(r, r′, t)S(V(r′, t)) dr′

]
+

[
0

Iext

]
(6.9)

The state is now 2n-dimensional, the corresponding functional space is L2
2n(Ω) and

the operator g is defined on the subspace L2
n(Ω) of L2

2n(Ω). It keeps all its previous
properties. All proofs of the existence and uniqueness of a solution to (2.6) extend
mutatis mutandis to this new setting.

Let us now examine the problem of the absolute stability of the solution, the
analog of theorem 4.7.

Theorem 6.12. A sufficient condition for the solution of (2.6) to be absolutely
stable is

2λmaxDSm ‖g‖L2
n(Ω) < 1,

where λmax is the largest eigenvalue of the 2n × 2n matrix M defined in theorem
6.11.

Proof. We consider the equation

Vt(r, t) = −LV(r, t) +

[
0∫

Ω Wcm(r, r′, t)S(V(r′, t)) dr′

]
+

[
0

Iext

]
,

where V is the vector composed of the first n components of vector V (the same
convention will be used in the following for subvectors of U and X ). Let U be its
unique solution with initial condition U(0) = U0, an element of L2

2n(Ω). Let also V be
the unique solution of the same equation with different initial conditions V(0) = V0,
another element of L2

2n(Ω). We introduce the new function X = V−U which satisfies

X t(r, t) = −LX (r, t) +

[
0∫

Ω
Wcm(r, r′, t)H(X,U)(r′, t) dr′

]
=

− LX (r, t) +

[
0

gm(H(X,U))(r, t)

]
(6.10)

where the vector H(X,U) is given by H(X,U)(r, t) = S(V(r, t)) − S(U(r, t)) =
S(X(r, t) + U(r, t)) − S(U(r, t)). Consider now the functional

V (X ) =
1

2
〈X , MX 〉 ,

where the symmetric positive definite matrix M can be seen as defining a metric on
the state space. Its time derivative is 〈X , MX t 〉. We replace X t by its value from
(6.10) in this expression to obtain

dV (X )

dt
= −1

2

〈
X , (LT

M + ML)X
〉

+

〈
X , M

[
0

gm(H(X,U))

]〉
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Using the property (6.8) of M we obtain

dV (X )

dt
= −1

2
〈X , X 〉 +

〈
X , M

[
0

gm(H(X,U))

]〉

We consider the second term in the righthand side of this equation. Since M is
symmetric

∣∣∣
〈

X , M

[
0

gm(H(X,U))

]〉 ∣∣∣ =
∣∣∣
〈

MX ,

[
0

gm(H(X,U))

]〉 ∣∣∣

≤ ‖MX‖2n,2 ‖gm(H(X,U))‖n,2 ≤ λmax‖X‖2n,2 ‖gm(H(X,U))‖n,2

≤ λmax ‖X‖2n,2 ‖gm‖L2
n
‖H(X,U)‖n,2 (6.11)

The inequality ‖MX‖2n,2 ≤ λmax‖X‖2n,2 is obtained using the spectral properties
of the symmetric positive definite matrix M and lemma 4.5.
Using the idea in the proof of lemma 3.1, we write H(X,U) = DmX, where Dm

is a diagonal matrix whose diagonal elements are continuous functions with values
between 0 and 1. Hence, because of lemma 4.5

‖H(X,U)‖n,2 = ‖DmX‖n,2 ≤ ‖X‖n,2 ≤ ‖X‖2n,2

We use this result and lemma 4.6 in (6.11) to obtain

∣∣∣∣∣

〈
X , M

[
0

gm(H(X,U))

]〉 ∣∣∣∣∣ ≤ λmaxDSm ‖g‖L2
n
‖X‖2

2n,2,

and the conclusion follows.
All other theorems in sections 4, 5, 6 and in this section can be similarly extended to
this more general setting. Complements on M and λmax can be found in appendix C.

7. Numerical examples. We consider two (n = 2) one-dimensional (q = 1)
populations of neurons, population 1 being excitatory and population 2 inhibitory.
The set Ω is the closed interval [0, 1]. We note x the spatial variable and f the
spatial frequency variable. We consider Gaussian functions, noted Gij(x), i, j = 1, 2,
from which we define the connectivity functions. Hence we have Gij = G(0, σij). We
consider three cases. In the first case, section 7.1, we assume that the connectivity
matrix is translation invariant (see sections 4.2 and 5.2). In the second case, section
7.2, we relax this assumption and study the stability of the homogeneous solutions.
The third case, finally, section 7.3, covers the case of the locally homogeneous solutions
and their stability. In this section we have S1(x) = S2(x) = 1/(1 + e−x). Therefore

DSm =

[
0 1

4
1
4 0

]
,

hence DSm = 1/4. We also choose τ1 = τ2 = 4, therefore τmax = 4, and the product
DSm τmax is equal to 1.

7.1. The convolution case. We define Wij(x, x
′) = ±αij Gij(x−x′), where the

αijs are positive weights and the sign determines whether population j excites (+) or
inhibits (−) population i. As explained in section 4.2, W(r) is defined on the closed

interval Ω̂ = [−1, 1]. For simplicity we use the approach described in section 4.2.1
and approximate the Fourier transform of 1bΩ(x)W(x) by that of W(x) for which we
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have an analytical formula. This approximation is good as long as the σijs are small
with respect to 1.

The connectivity functions and their Fourier transforms are then given by

Wij(x) = ± αij√
2πσ2

ij

e
−
x2

2σ2
ij W̃ij(f) = ±αije

−2π2f2σ2
ij

The matrices W(x) and W̃(f) can be written

W(x) =




α11√
2πσ2

11

e
−
x2

2σ2
11 − α12√

2πσ2
12

e
−
x2

2σ2
12

α21√
2πσ2

21

e
−
x2

2σ2
21 − α22√

2πσ2
22

e
−
x2

2σ2
22




W̃(f) =

[
α11e

−2π2f2σ2
11 −α12e

−2π2f2σ2
12

α21e
−2π2f2σ2

21 −α22e
−2π2f2σ2

22

]

Therefore we have, with the notations of theorem 4.9

W̃∗(f)W̃(f)
def
= X(f) =

[
A C
C B

]
.

It can be easily verified that

A = τ1

(
α2

11τ1e
−4π2σ2

11f
2

+ α2
21τ2e

−4π2σ2
21f

2
)

B = τ2

(
α2

22τ2e
−4π2σ2

22f
2

+ α2
12τ1e

−4π2σ2
12f

2
)
,

and

C = −√
τ1τ2

(
α21α22τ2e

−2π2(σ2
21 + σ2

22)f
2

+ α12α11τ1e
−2π2(σ2

12 + σ2
11)f

2
)

By construction the eigenvalues of the matrix X are positive (it is Hermitian), the
largest one, λmax, being given by

λmax =
1

2

(
A+B +

√
(A−B)2 + 4C2

)

Introducing the parameters A1 = (τ1α11)
2, A2 = (τ2α22)

2, r = τ1/τ2, x1 = α21/α11,
x2 = α12/α22 we can rewrite A, B and C as follows

A = A1

(
e−4π2σ2

11f
2

+
x2

1

r
e−4π2σ2

21f
2
)

B = A2

(
e−4π2σ2

22f
2

+ rx2
2e

−4π2σ2
12f

2
)
,

and

C = −
√
A1A2

(
x1√
r
e−2π2(σ2

21 + σ2
22)f

2
+ x2

√
re−2π2(σ2

12 + σ2
11)f

2
)
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The necessary and sufficient condition that the two eigenvalues are less than 1 for all
f is therefore λmax < 1 or

c(f)
def
= 2 −A−B −

√
(A−B)2 + 4C2 > 0 ∀f (7.1)

The function c(f) depends on the spatial frequency f and the nine parameters A1,
A2, x1, x2, r, and σ, the 2 × 2 matrix σij , i, j = 1, 2.

We have solved equation (2.6) on Ω = [0, 1]. We have sampled the interval
with 100 points corresponding to 100 neural masses. The input Iext is equal to
[W1(t),W2(t)]

T , where where the Wi(t)s, i = 1, 2 are realizations of independent
standard Brownian/Wiener processes shown in figure 7.1. We know that the solution

W1(t)

W2(t)
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-1

-0. 5

0

0.5

1

10 20 30 40 50 60
t

Figure 7.1. The two coordinates of the input Iext(t) are realizations of independent standard
Brownian/Wiener processes. Time runs along the horizontal axis.

is not homogeneous because W is translation invariant. This is illustrated in figure
7.2. The initial conditions are homogeneous and equal to (0, 0) for all neural masses

V1(10,t) with V1(10,0)=0

V1(100,t) with V1(100,0)=0
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V2(10,t) with V2(10,0)=0

V2(100,t) with V2(100,0)=0
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Figure 7.2. An illustration of the fact that when the connectivity matrix is translation in-
variant there does not exist in general a homogeneous solution: the state vectors of different neural
masses follow different trajectories even when the input and the initial condition are homogeneous
(independent of the location x). Left side graph: the time variation of the first coordinate of the
solution at points of coordinates 0.1 (continuous line) and 1 (dotted line) of the interval [0, 1]. Right
side graph: same for the second coordinate. The initial condition is 0 in both cases.
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state vectors V.

7.1.1. Absolute stability of the solution. Let us now study the absolute
stability of the solutions. According to theorem 4.9 and the previous analysis, a
sufficient condition for absolute stability is that c(f) > 0 for all frequencies f . As
shown in figure 7.3, the following choice of the parameters α and σ produces a curve
c(f) that is positive for all frequencies.

α =

[
2 1.414

1.414 2

]
σ =

[
1 0.1

0.1 1

]

We can check that this is indeed the case in figure 7.4 which shows the absolute

c(f)
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1.8
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-10 -8 -6 -4 -2 0 2 4 6 8 10
f

Figure 7.3. The function c(f) defined in (7.1) is positive for all spatial frequencies f : the
system is absolutely stable.

stability of the solution at the point of coordinate 0.5 of the interval [0, 1].

V1(50,t) with V1(50,0)=0

V1(50,t) with V1(50,0)=1
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V2(50,t) with V2(50,0)=0

V2(50,t) with V2(50,0)=-1
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Figure 7.4. An illustration of the absolute stability of the solution: independently of the choice
of the initial condition, the trajectories of the state vector converge to a single trajectory. Results
are shown for the neural mass of spatial coordinate 0.5. Left: the first coordinate of the state vector.
Right: the second coordinate. Initial condition (0, 0), continuous curves. Initial condition (1,−1),
dotted line.
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c(f)
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Figure 7.5. The function c(f) defined in (7.1) is not positive for all spatial frequencies f : the
system may lose its absolute stability.

7.1.2. Loss of absolute stability. The following choice of the parameters α

and σ produces a curve c(f) that is not positive for all frequencies, see figure 7.5.

α =

[
565.7 565.7
565.7 565.7

]
σ =

[
0.01 0.01
0.1 0.1

]

Therefore absolute stability is not guaranteed. We show in figure 7.6 that this is
indeed the case.

V1(50,t) with V1(50,0)=0

V1(50,t) with V1(50,0)=1
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V2(50,t) with V2(50,0)=0

V2(50,t) with V2(50,0)=-1
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Figure 7.6. An illustration of the lack of absolute stability of the solution: different initial
conditions result in different trajectories of the state vectors. Results are shown for the neural mass
of spatial coordinate 0.5. Left: the first coordinate of the state vector. Right: the second coordinate.
Initial condition (0, 0), continuous curves. Initial condition (1,−1), dotted curves.

7.2. Homogeneous solutions. In the previous case the translation invariance
of the connectivity matrix forbids the existence of homogeneous solutions. We can
obtain a connectivity matrix satisfying condition (3.5) by defining

Wij(x, x
′) = ±ααij

Gij(x− x′)
∫ 1

0
Gij(x − y) dy

i, j = 1, 2,
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where α and the αijs are connectivity weights. These functions are well defined
since the denominator is never equal to 0 and the resulting connectivity matrix is in
L2

2×2([0, 1] × [0, 1]). It is shown in figure 7.7. The values of the parameters are given
in (7.2). Proposition 6.3 guarantees the existence and uniqueness of a homogeneous
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Figure 7.7. The four elements of the matrix W(x, y) in the homogeneous case. Upper left:
W11(x, y). Upper right: −W12(x, y). Lower left: W21(x, y). Lower right: −W22(x, y).

solution for an initial condition in L2
2(Ω). According to theorem 5.2 and our choice for

the values of τmax and DSm, a sufficient condition for this solution to be absolutely
stable is that ‖g∗‖G⊥

c
< 1.

7.2.1. Absolute stability. The following values of the parameters

α =

[
5.20 5.20
2.09 2.09

]
σ =

[
0.1 0.1
1 1

]
τ1 = τ2 = 1 α = 1/20 (7.2)

yield ‖g∗‖G⊥
c

≃ 0.01, hence the homogeneous solutions are absolutely stable. All
operator norms have been computed using the method described in appendix A.3.

The initial conditions are drawn randomly and independently from the uniform
distribution on [−2, 2]. The input Iext(t) is equal to [W1(t),W2(t)]

T , where the Wi(t)s,
i = 1, 2 are realizations of independent standard Brownian/Wiener processes shown
in figure 7.1.

We show in figure 7.8 the complete synchronization of four (numbers 10, 36, 63
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and 90) of the hundred neural masses that results from the absolute stability of the
homogeneous solution.

V1(10,t)
V1(36,t)
V1(63,t)
V1(90,t)

 

-1. 5

-1

-0. 5

0

0.5

1

5 10 15 20 25 30
t

V2(10,t)
V2(36,t)
V2(63,t)
V2(90,t)

 

-1. 5

-1

-0. 5

0

0.5

1

1.5

5 10 15 20 25 30
t

Figure 7.8. The absolute stability of the homogeneous solution results in the complete syn-
chronization of the neural masses. This is shown for four out of the hundred (coordinates 0.1, 0.36,
0.63 and 0.9). The input is shown in figure 7.1. The initial conditions are drawn independently
from the uniform distribution on [−2, 2]. Left: The first components of the four state vectors. Right:
the second components.

7.2.2. Loss of absolute stability. If we increase the value of α it has the
effect of increasing ‖g∗‖G⊥

c
. The sufficient condition will eventually not be satisfied

and we may lose the absolute stability of the homogeneous solution and hence the
complete synchronization of the solution. Such a case is shown in figure 7.9 for α = 15
corresponding to an operator norm ‖g∗‖G⊥

c
≃ 2.62.

7.3. Locally homogeneous solutions. We partition Ω = [0, 1] into Ω1 =
[0, 1/2[ and Ω2 = [1/2, 1], hence with the notations of section 6.2, P = 2. We can
obtain a connectivity matrix satisfying condition (6.2) by defining

Wij(x, x
′) =





±ααij(x, x
′)

Gij(x− x′)∫ 1/2

0

Gij(x− y) dy

, x′ ∈ Ω1

±ααij(x, x
′)

Gij(x− x′)∫ 1

1/2

Gij(x− y) dy

, x′ ∈ Ω2

,

with αij(x, x
′) = αkl

ij , x ∈ Ωk, x
′ ∈ Ωl, k, l = 1, 2.

The resulting connectivity matrix is in L2
2×2([0, 1]× [0, 1]). It is shown in figure 7.10.

The input Iext(t) is equal to [W1(t),W2(t)]
T in Ω1 and to [W3(t),W4(t)]

T in Ω2, where
the Wi(t)s, i = 1, · · · , 4 are realizations of independent standard Brownian/Wiener
processes shown in figure 7.11. Hence it is homogeneous in Ω1 (respectively in Ω2)
but not in Ω = Ω2 ∪ Ω2. According to proposition 6.3 there exists a unique solution
to (2.6) for a given initial condition in L2

2(Ω). This solution is locally homogeneous
if the initial condition is locally homogeneous (theorem 6.5) given the fact that the
input is locally homogeneous.
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V1(10,t)
V1(36,t)
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V1(90,t)
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Figure 7.9. The loss of the absolute stability of the homogeneous solution results in the loss
of the complete synchronization of neural masses when the sufficient condition of theorem 5.2 is
not satisfied. This is shown for four out of the hundred (coordinates 0.1, 0.36, 0.63 and 0.9). The
input is the same as in the previous example. Top: The first components of the four state vectors.
Bottom left: The second components of the four state vectors for 0 ≤ t ≤ 60s. Bottom right: Zoom
on the second components of the four state vectors for 10 ≤ t ≤ 60s.

7.3.1. Absolute stability. The parameters

α
11 =

[
5.21 0.23
0.23 5.21

]
α

12 =

[
4.98 0.34
0.34 4.98

]

α
21 =

[
4.75 0.45
0.45 4.75

]
α

22 =

[
5.39 0.13
0.13 5.39

] σ =

[
0.05 0.075
0.1 0.03

]

result in an operator norm ‖g∗‖G2⊥
c

≃ 0.23. Therefore, according to theorem 6.7, the
locally homogeneous solutions are absolutely stable, resulting in the complete local
synchronization of the neural masses (within Ω1 and Ω2).

We show in figure 7.12 (respectively figure 7.13) the complete synchronization of
two neural masses (numbers 10 and 36) in Ω1 (respectively two neural masses (num-
bers 63 and 90) in Ω2). The initial conditions are drawn randomly and independently
from the uniform distribution on [−10, 10] and [−2, 2] for Ω1 and on [−20, 20] and
[−2, 2] for Ω2.
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Figure 7.10. The four elements of the matrix W(x, y) in the locally homogeneous case. Upper
left: W11(x, y). Upper right: −W12(x, y). Lower left: W21(x, y). Lower right: −W22(x, y).
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Figure 7.11. The two coordinates of the input Iext(t) in Ω1 and Ω2 are realizations of four
independent Wiener processes (W1 and W2 are identical to those shown in figure 7.1).

7.3.2. Loss of absolute stability. If we increase the value of α, it has the effect
of increasing ‖g∗‖G2, ⊥

c
. The sufficient condition for absolute stability will eventually

not be satisfied and we may lose the absolute stability of the locally homogeneous
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Figure 7.12. The complete synchronization of two neural masses in Ω1 of coordinates 0.1 and
0.36. The input is shown in figure 7.11. Left: the first components of the two state vectors. Right:
the second components of the two state vectors.
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Figure 7.13. The complete synchronization of two neural masses in Ω2 of coordinates 0.63
and 0.9. The input is shown in figure 7.11. Left: the first components of the two state vectors.
Right: the second components of the two state vectors.

solution and hence the complete local synchronization of the solution. This is shown
in figures 7.14 and 7.15 for α = 10 corresponding to an operator norm ‖gL∗

m ‖G2⊥
c

≃ 2.3.

7.4. Pseudo locally homogeneous solutions and their absolute stability.

As mentioned at the end of section 6.2.2, even if the connectivity function does not
satisfy condition (6.2) and the operator g∗ satifies only the condition of theorem
4.7 but not that of theorem 6.7 the existence of locally homogeneous solutions is
not guaranteed but the absolute stability of the solution is, because of proposition
6.8. As shown in figures 7.16 and 7.17 these solutions can be very close to being
locally homogeneous and thus enjoy the property of complete local synchronization.
This is potentially very interesting from the application viewpoint since one may say
that if the system admits homogeneous solutions and if they are absolutely stable it
can have locally homogeneous solutions without “knowing” the partition, and they
are absolutely stable. These results are illustrated by two animations (files pseudo-
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Figure 7.14. The loss of the absolute stability of the locally homogeneous solution results in the
loss of the complete local synchronization of neural masses when the sufficient condition of theorem
6.7 is not satisfied. This is shown for two out of the fifty (coordinates 0.1, 0.36) neural masses in
Ω1. The input is the same as in the previous example. Left: The first components of the two state
vectors. Right: The second components of the two state vectors.
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Figure 7.15. The loss of the absolute stability of the locally homogeneous solution results in the
loss of the complete local synchronization of neural masses when the sufficient condition of theorem
6.7 is not satisfied. This is shown for two out of the fifty (coordinates 0.63, 0.9) neural masses in
Ω2. The input is the same as in the previous example. Left: The first components of the two state
vectors. Right: The second components of the two state vectors.

local-homogeneous-synchro-1.gif and pseudo-local-homogeneous-synchro-2.gif of the
supplemental material). The axes are the same as previously.

8. Conclusion. We have studied the existence, uniqueness, and absolute stabil-
ity of a solution of two examples of nonlinear integro-differential equations that de-
scribe the spatio-temporal activity of sets of neural masses. These equations involve
space and time varying, possibly non-symmetric, intra-cortical connectivity kernels.
The time dependency of the connectivity kernels opens the door to the study, in
this framework, of plasticity and learning. Contributions from white matter afferents
are represented by external inputs. Sigmoidal nonlinearities arise from the relation
between average membrane potentials and instantaneous firing rates.

The intra-cortical connectivity functions have been shown to naturally define
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Figure 7.16. The connectivity function satisfies condition (3.5) but not condition (6.2) and
the operator g∗ satifies the condition of theorem 5.2, not that of theorem 6.7. The input is locally
homogeneous, as in figures 7.12 and 7.13. The solution is absolutely stable, because of theorem 5.2
and almost locally homogeneous. Something very close to complete local synchronization is observed.
This is shown for two out of the fifty (coordinates 0.1, 0.2) neural masses in Ω1. Left: The first
components of the two state vectors. Right: The second components of the two state vectors.
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Figure 7.17. Same as in figure 7.16. The complete local synchronization is shown for two out
of the fifty (coordinates 0.5, 0.6) neural masses in Ω2.

compact operators of the functional space of interest. Using methods of functional
analysis, we have given sufficient conditions for the existence and uniqueness of a
solution of these equations for general, homogeneous (i.e. independent of the spatial
variable), and locally homogeneous inputs. In all cases we have provided sufficient
conditions for the solutions to be absolutely stable, that is to say independent of the
initial state of the neural field. These conditions involve the connectivity functions, the
maximum slopes of the sigmoids, as well as the time constants used to described the
time variation of the postsynaptic potentials. They are very relevant to neuroscience
where dynamical neuronal systems that “recognize” a given input regardless of their
initial state are quite common.

To our knowledge this is the first time that such a complete analysis of the problem
of the existence and uniqueness of a solution of these equations has been obtained. An
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important contribution also is the analysis of the absolute stability of these solutions
which had been considered as much more difficult to perform than the linear stability
analysis which it implies.

The reason why we have been able to complete this work programme is our
use of the functional analysis framework and the theory of compact operators in a
Hilbert space with the effect of providing simple mathematical answers to some of the
questions raised by modellers in neuroscience.

Future work includes adding delays to account for the distance travelled by the
spikes down the axons and taking into account specific forms of the time variation of
the connectivity matrixes in the context of neural plasticity.
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AB.
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Appendix A. Notations and background material.

A.1. Matrix norms and spaces of functions. We note Mn×n the set of n×n
real matrices. We consider the matrix norm,

‖M‖∞ = max
i

∑

j

|Mij |

We note Cn×n(Ω) the set of continuous functions from Ω to Mn×n with the infinity
norm. This is a Banach space for the norm induced by the infinity norm on Mn×n.
Let M be an element of Cn×n(Ω), we note and define ‖M‖n×n,∞ as

‖M‖n×n,∞ = sup
r∈Ω

max
i

∑

j

|Mij(r)| = max
i

sup
r∈Ω

∑

j

|Mij(r)|

We also note Cn(Ω) the set of continuous functions from Ω to R
n with the infinity

norm. This is also a Banach space for the norm induced by the infinity norm of R
n.

Let x be an element of Cn(Ω), we note and define ‖x‖n,∞ as

‖x‖n,∞ = sup
r∈Ω

‖x(r)‖∞ = sup
r∈Ω

max
i

|xi(r)| = max
i

sup
r∈Ω

|xi(r)|

We can similarly define the norm ‖.‖n×n,∞ (resp. ‖.‖n,∞) for the space Cn×n(Ω×Ω)
(resp. Cn(Ω × Ω)).
We have the following

Lemma A.1. Given x ∈ Cn(Ω) and M ∈ Cn×n(Ω) we have

‖Mx‖n,∞ ≤ ‖M‖n×n,∞ ‖x‖n,∞

More precisely, we have for all r ∈ Ω

‖M(r)x(r)‖∞ ≤ ‖M(r)‖∞‖x(r)‖∞

The same results hold for Ω × Ω instead of Ω.
Proof. Let y = Mx, we have

yi(r) =
∑

j

Mij(r)xj(r)

and therefore

|yi(r)| ≤
∑

j

|Mij(r)| |xj(r)| ≤
∑

j

|Mij(r)| ‖x(r)‖∞,

so, taking the maxi

‖y(r)‖∞ ≤ ‖M(r)‖∞ ‖x(r)‖∞

from which the first statement easily comes.
We also consider the Frobenius norm on Mn×n

‖M‖F =

√√√√
n∑

i,j=1

M2
ij ,
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and consider the space L2
n×n(Ω×Ω) of the functions from Ω×Ω to Mn×n whose Frobe-

nius norm is in L2(Ω×Ω). If W ∈ L2
n×n(Ω×Ω) we note ‖W‖2

F =
∫
Ω×Ω ‖W(r, r′)‖2

F dr dr
′.

Note that this implies that each element wij , i, j = 1, · · · , n is in L2(Ω×Ω). We note
L2

n(Ω) the set of square-integrable mappings from Ω to R
n and ‖x‖n,2 = (

∑
j ‖xj‖2

2)
1/2

the corresponding norm. We have the following
Lemma A.2. Given x ∈ L2

n(Ω) and W ∈ L2
n×n(Ω × Ω), we define y(r) =∫

Ω
W(r, r′)x(r′) dr′. This integral is well defined for almost all r, y is in L2

n(Ω) and
we have

‖y‖n,2 ≤ ‖W‖F ‖x‖n,2.

Proof. Since each wij is in L2(Ω×Ω), wij(r, .) is in L2(Ω) for almost all r, thanks
to Fubini’s theorem. So wij(r, .)xj(.) is integrable for almost all r from what we
deduce that y is well-defined for almost all r. Next we have

|yi(r)| ≤
∑

j

∣∣∣∣
∫

Ω

wij(r, r
′)xj(r

′) dr′
∣∣∣∣

and (Cauchy-Schwarz):

|yi(r)| ≤
∑

j

(∫

Ω

w2
ij(r, r

′) dr′
)1/2

‖xj‖2,

from where it follows that (Cauchy-Schwarz again, discrete version):

|yi(r)| ≤


∑

j

‖xj‖2
2




1/2 
∑

j

∫

Ω

w2
ij(r, r

′) dr′




1/2

= ‖x‖n,2


∑

j

∫

Ω

w2
ij(r, r

′) dr′




1/2

,

from what it follows that y is in L2
n(Ω) (thanks again to Fubini’s theorem) and

‖y‖2
n,2 ≤ ‖x‖2

n,2

∑

i,j

∫

Ω×Ω

w2
ij(r, r

′) dr′ dr = ‖x‖2
n,2 ‖W‖2

F .

A.2. Banach space-valued functions. A useful viewpoint that is used in this
article is to consider the state vector of the neural field as a mapping from a closed
time interval J containing the origin 0 into one of the spaces discussed in the previous
section. We note C(J;Cn(Ω)) the set of continuous mappings from J to the Banach
space Cn(Ω) and C(J;L2

n(Ω)) the set of continuous mappings from J to the Hilbert
(hence Banach) space L2

n(Ω), see, e.g., [11].

A.3. Computation of operator norms. We give a method to compute the
norms ‖g‖G and ‖g∗‖G⊥

c
for an operator g of the form

g(x)(r) =

∫

Ω

W(r, r′)x(r′) dr′.

Since G (respectively G⊥
c ) is dense in the Hilbert space L2(Ω) (respectively L2

0(Ω), the
subspace of L2(Ω) of functions with zero mean), we have ‖g‖G=‖g‖L2 and ‖g∗‖G⊥

c
=

‖g∗‖L2

0
. We consider the compact self-adjoint operators

G = g∗g : L2 → L2
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and

G⊥
c = g∗Pg : L2

0 → L2
0,

where P is the orthogonal projection on L2
0. We compute the norms of the two

self-adjoint positive operators G and G⊥
c , and use the relations

‖G‖L2 = ‖g‖2
L2,

and

‖G⊥
c ‖L2

0
= ‖g∗P∗Pg‖L2

0
= ‖g∗P∗‖2

L2

0

= ‖g∗‖2
L2

0

.

Let T be a compact self-adjoint positive operator on a Hilbert space H. Its largest
eigenvalue is λ = ‖T ‖H. Let x ∈ H. If x /∈ Ker(λId − T )⊥, then, according to, e.g.,
[9],

lim
n→∞

‖T nx‖H/‖T n−1x‖H = λ.

This method can be applied to gm and hm, and generalized to the computation of the
‖.‖GP ⊥

c
norm.

Appendix B. Global existence of solutions. In this appendix, we complete
the proof of proposition (3.4) by computing the constant τ > 0 such that for any
initial condition (t0,V0) ∈ R × F , the existence and uniqueness of the solution V is
guaranteed on the closed interval [t0 − τ, t0 + τ ].
We refer to [2] and exploit the

Theorem B.1. Let F be a Banach space and c > 0. We consider the initial
value problem:

{
V′(t) = f(t,V(t))
V(t0) = V0

for |t−t0| < c where V0 is an element of F and f : [t0−c, t0+c]×F → F is continuous.
Let b > 0. We define the set Qb,c ≡ {(t,X) ∈ R×F , |t−t0| ≤ c and ‖X−V0‖ ≤ b}.
Assume the function f : Qb,c → F is continuous and uniformly Lipschitz continuous
with respect to its second argument, ie

‖f(t,X) − f(t,Y)‖ ≤ Kb,c‖X− Y‖,

where Kb,c is a constant independent of t.
Let Mb,c = supQb,c

‖f(t,X)‖ and τb,c = min{b/Mb,c, c}.
Then the initial value problem has a unique continuously differentiable solution V(.)
defined on the interval [t0 − τb,c, t0 + τb,c].

In our case, f = fv and all the hypotheses of the theorem hold, thanks to propo-
sition 3.2 and the hypotheses of proposition 3.4, with

Kb,c = ‖L‖∞ + |Ω|DSm sup
|t−t0|≤c

‖W(·, ·, t)‖n×n,∞,

where the sup is well defined (continuous function on a compact domain).
We have

Mb,c ≤ ‖L‖∞ (‖V0‖n,∞ + b) + |Ω|SmW + I,
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where W = sup|t−t0|≤c ‖W(·, ·, t)‖n×n,∞ and I = sup|t−t0|≤c ‖Iext(·, t)‖n,∞.
So

b/Mb,c ≥
1

‖L‖∞ +
‖L‖∞ ‖V0‖n,∞+|Ω|Sm W+I

b

.

Hence, for c ≥ 1
2‖L‖∞

and b big enough, we have τb,c ≥ 1
2‖L‖∞

and we can set

τ = 1
2‖L‖∞

.

A similar proof applies to the case f = fa and the one of proposition 6.3.

Appendix C. Complements on M and λmax. Expressing the exponential as
a power series in the definition of M and computing the powers of the block matrix
L, we easily find a block expression of M depending on L

M =

(
L/4 + 5L−1/4 L−2/2

L−2/2 L−1/4 + L−3/4

)
.

M is diagonalizable, as a symmetric positive definite matrix, and has at most 2n
distinct eigenvalues. More precisely, these eigenvalues are the roots of the second
order polynomials

λ2 −
(

1

4 τi
+

3 τi
2

+
τ3
i

4

)
λ+

1

16
+

3 τ2
i

8
+
τ4
i

16
, 1 ≤ i ≤ n.

The largest eigenvalue of each of these polynomials is

λ(τi) =
1

8 τi

(
1 + 6 τ2

i + τ4
i +

√
1 + 8 τ2

i + 14 τ4
i + 8 τ6

i + τ8
i

)
,

so that λmax is simply maxi λ(τi). Note that since the function λ(τ) is not monotonous,
λmax is not necessarily equal to λ(τmax).

Appendix D. Summary of important notations. Table D.1 summarizes
some notations which are introduced in the article and are used in several places.

Matrix Definition Where defined Operators
functions (if applicable) (if applicable)

L diagonal matrix equation 2.4
of the inverse synaptic

time constants
τmax largest time constant definition 2.2
DSm definition 2.1
W equations (3.2), fv, fa, gv

(3.3), (3.4)
Wcm WDSm definition 4.1 gm

Wmc DSmW definition 4.1 hm

Table D.1

Summary of some important definitions.
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