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Thermal Event Recognition Applied to Protection
of Tokamak Plasma Facing Components

Vincent Martin, Jean-Marcel Travere, Victor Moncada, François Brémond, and Gwenaël Dunand

Abstract—Magnetic confinement fusion tokamaks are complex
devices where a large amount of power is required to make the
fusion reactions happen. In such experimental conditions,Plasma
Facing Components (PFC) are subjected to high heat fluxes which
can damage them. Machine protection functions must then be
developed to operate current and future devices like ITER in
the safest way. In current tokamaks like Tore Supra, infrared
thermographic diagnostics based on image analysis and feedback
control are used to measure and monitor the heating of the PFC
during plasma operation. The system consists in detecting high
increase of the IR luminance signal beyond fixed qualitativelevels
for a set of predefined Regions of Interest (ROI). The detection
of overheating regions is then fully dependent on the settings
of the ROI and of the qualitative thresholds. This ROI-based
approach must be improved to fit with ITER requirements and
operation where the infrared scene complexity (many components
monitored at the same time) will be a real challenge for the real-
time PFC protection. In this paper, we propose a new vision-
based approach for the automatic recognition of thermal events.
This ROI-free approach, relying on intelligent vision system
concepts, is composed of two main tasks: hot spot detection,and
thermal event recognition. We present results of our approach
for the recognition of one critical thermal event and compare its
performance with the previous system.

Index Terms—Infrared imaging diagnostics, tokamak, fusion
plasma, machine protection, ITER, image and video processing,
intelligent vision system

I. I NTRODUCTION

M AGNETIC confinement fusion is a more and more ac-
tive field of research since nuclear fusion is considered

as a promising approach for alternative energy production.One
issue to reach a sufficient power balance in future devices like
ITER is to rely on hot and long plasma produced and heated
to thermonuclear temperatures by injecting large amounts of
heating power (several MW or tens of MW). The goal is
to inject most of the available power while ensuring the
Plasma Facing Components (PFC) safety by limiting the power
load just below their operational limits. In the long pulse
experiments of Tore Supra, and in contrast with short pulse
experiments, the plasma facing components must be actively
cooled down by a fast water flow, close to the plasma surface,
in order to maintain their temperature sufficiently low to avoid
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melting and/or impurity pollution of the plasma (a unique
feature of Tore Supra among other tokamaks). Any failure can
lead to a water leak and time consuming repairs. To measure
and monitor the heating of the PFC during plasma operation,
the most efficient way is to collect true surface temperature
information using a network of infrared video cameras. This
is why Tore Supra, which is a carboneous device (emissivity
∼ 1), is equipped with a comprehensive infrared viewing
system [1] made of seven endoscopes bodies equipped so far
with eight infrared cameras (see figure 1). In the same way,
the current ITER optical design [2] envisages a network of
twelve infrared cameras distributed in four equatorial port-
plugs, covering up to 70% of the vacuum chamber.

The infrared camera array of Tore Supra is routinely used
as input of a feedback control system based on early detecting
local hot spots to control in real-time the heating power
sources. More details on this unique operational control system
can be found in [3].

[Fig. 1 about here.]

The image analysis part of the Tore Supra feedback control
consists in detecting high increase of the IR luminance signal
beyond fixed qualitative levels for a set of predefined Regions
of Interest (ROI) (see figure 2). The ROI are defined according
to the geometry of monitored objects (e.g. copper mouth,
lateral protection, etc.). It has been successfully applied to
the detection of some thermal events [4], as electrical arcing
discussed here.

[Fig. 2 about here.]

Due to increase of data volumes and scene complexity,
this ROI-based approach must be improved to fit with ITER
requirements and operation, as stated in [4]. Indeed, this
system has several drawbacks and limitations listed below:

1) working with true surface temperature values makes
the strong assumption that the infrared digital sensors
are always well calibrated and the optical transmission
factors as well as optical properties of observed materials
(e.g. emissivity) are well-known,

2) it requires an operator for: (1) editing the ROI each
time the PFC configuration changes or when the camera
field of view has been modified after a discharge, and
(2) tuning of the qualitative thresholds (time-consuming
tasks),

3) thermal events that occurs outside of the ROI cannot be
detected,

4) the sensitivity to false detection is high: the presence of
only one noisy or dead pixel in a ROI with a infrared
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luminance higher than the qualitative detection threshold
is enough to raise a false alarm,

5) different thermal events will not be discriminated if they
occur in the same ROI,

6) Extrapolated to wide-angle view systems as planned
for ITER, manual drawing of ROI should be extremely
difficult to operate routinely.

In summary, a need exists in both improvement of the infrared
video processing and better understanding and interpretation
of infrared images as, for instance, an accurate identification of
new heating zones (hot spots). In this paper, we propose a new
approach for the automatic detection of Thermal Events (TE)
inspired from a video understanding framework [5] widely
used in video surveillance applications.

The major advantages of such a framework compared to the
current system and its previously listed issues can be justified
as follows:

• this is a qualitative image analysis approach as described
in [6], relying on spatio-temporal pattern matching tech-
niques. The knowledge of precise optical properties of
monitored object (e.g. emissivity of metal) is then mini-
mized.

• this is a ROI-free approach: thea priori knowledge of a
TE is not inside the image but in the TE description model
used to specialize generic image processing operators.

The paper is organized as follows: we first detail in section II
the different steps of the proposed approach for the automatic
detection and recognition of thermal events in infrared videos.
As a first step to validate this new approach, we focus on
arcing event recognition in section III. Section IV reportsthe
recognition results on experimental data with a quantitative
performance evaluation and comparison with the current sys-
tem used at Tore Supra. Finally, conclusions as well as future
perspectives are discussed in section V.

II. T HERMAL EVENTS RECOGNITION

The goal of our video understanding framework is to
separate the expert knowledge of event modeling from the
image processing tasks dedicated to the extraction of low level
features from visual data. To this end, we follow a bottom-up
approach (from pixel to semantic interpretation) illustrated in
figure 3 where each of the two main vision tasks (i.e. hot
spot detection and thermal event recognition) is specialized
(e.g. parameter tuning) thanks to the formalized description
of observed TE. At the first stage (hot spot detection), we just
identify localized hot spots but still not characterize them. A
reasoning process is then necessary to recognize the thermal
phenomena called Thermal Events (TE).

[Fig. 3 about here.]

A. a priori knowledge of thermal events

The interpretation of observed hot spots mostly relies ona
posteriori physical analysis. The goal is to explain the origin
of these hot spots by the study of their temporal evolution and
their localization. Some representatives TE identified during a
plasma discharge are shown in figure 4 and correspond to:

• Local RF sheath effect: localized on the top left corner
of the Faraday screen (made of stainless steel withB4C

coating), this hot spot is suspected to be due to local
RF electrical field carrying an enhanced power onto the
antenna as explained in [7]. The deposited power causes
hot spots with risk of melting and bursts of metallic
impurities.

• Accelerated electronsfrom lower hybrid: localized on
the left side protection (made of graphite tiles), this hot
spot is suspected to be due to electrons accelerated in
the near field of the lower hybrid launcher which is
magnetically connected to the ICRH antenna as explained
in [8].

• Fast ion losses: localized both on the side protection
and the vertical edge of the Faraday screen, it might be
caused by fast ions losses created during ICRH hydrogen
minority heating scheme as explained in [9]. In Tore
Supra, these losses are an important cause of concern
for the long pulse capability at high RF power levels due
to high magnetic ripple (see [10]).

• B4C flakes: the hot spot has a small size and is localized
on the vertical edge of the Faraday screen. It is due to the
flaking of theB4C coating consequently to the heating
caused by fast ion losses as shown in [11]. Infrared
luminance may overpass the acceptable threshold without
apparent risk of damage.

• Electrical arcs: they are caused by a potential difference
between the two lateral shields of a heating antenna dur-
ing high power discharges, and can lead to the destruction
of sensitive parts like the copper mouth of the antenna.

• specular/diffusereflection area of the limiter on metallic
component (see [12]) that may induce false detection.

[Fig. 4 about here.]

B. a priori knowledge formalization

We use a formalized visual description of the thermal
events to detect as a support of reasoning mechanisms. This
description relies on a visual concept ontology composed
of generic spatio-temporal attributes such as geometric and
temporal cues introduced in [13]. The main advantage in using
such a symbolic description is its re-usability in different
experimental contexts. For instance, the description of a TE
does not change if the image acquisition system is modified.
Indeed, visual concepts are an intermediate level that helps
mapping low-level numerical values to a domain class descrip-
tion. We detail in figure 5 the TE class hierarchy that should
be considered as an extendable basis. This hierarchy as well
as the knowledge associated with each class have been defined
with physicists.

[Fig. 5 about here.]

III. A UTOMATIC ARCING EVENT RECOGNITION

A. Arcing event knowledge formalization

For the specific case of electrical arcing, physicists describe
them through their shape and their specific infrared luminance
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dynamic. Arc shape and luminance ranges are two discrimina-
tive characteristics that can be mapped into low level features
to be extracted from visual data. Corresponding knowledge
representation in terms of spatio-temporal attributes is given
in Figure 6. Range values associated with each attributes have
been manually learnt on a set of representative TE samples.

[Fig. 6 about here.]

The visual attributes have been chosen for their low com-
putational cost. The local contrast of a regionr is defined as
the ratio |µr−µnr |

(µr+µnr) whereµr is the mean value of the pixels
in regionr andµnr the mean value of the pixels surrounding
the regionr. The L gradient is the positive variation of the
infrared luminance∆L = Li−Li−1 between the time interval
∆t = ti − ti−1.

B. Transient hot spot detection

Motion is a particularly important cue for object detection
in image sequences. Indeed, a moving object is often referred
as an object of interest and can then be classified as fore-
ground. The simplest approach to detect moving pixel in image
sequences consist in subtracting the current frame from a
reference frame. Since background is rarely stationary, the key
issue for any background subtraction algorithm is to efficiently
model the background and update it according to the pixel vari-
ations. Many approaches have been proposed to background
modeling based on unimodal distribution, mixture of gaussians
or compressed models (see [14] for an overview). Here the
method of Butler et al. [15] is used. This algorithm has a
low computational cost and is adapted to multi-modal back-
grounds. The basic idea of this method is to maintain some
limited but important information about the history of each
pixel. To this end, the algorithm models each pixel in the frame
by a group ofclusters where each cluster consists of an average
pixel value called thecentroid with an associatedweight
representing the cluster proportion among the others. The
clusters are sorted in order of the likelihood that they model the
background and their weighs and centroids are adapted to deal
with background changes. An incoming pixel is then classified
into background/foreground pixel with regards to the weight
of the matched cluster. The algorithm depends on three main
free parameters: the number of clusters, the adaptation rate,
and the foreground classification threshold. The adaptation rate
is directly linked up to the thermal evolution of the thermal
event to detect. A small rate will be adapted to the detection
of slow thermal events whereas a high rate will be adapted
to the detection of transient thermal events such as electrical
arcing. Therefore the setting of this parameter depends directly
on thea priori knowledge given by the experts. In the same
way, the foreground classification threshold can be connected
to the infrared luminance attributes. Basically, the parameter
is set according to the local contrast attribute of the thermal
event. In the case of arcing events, we estimated this parameter
according to the average contrast value computed from a set
of identified arcing events. Concerning the number of clusters,
we observed only small detection differences while varying
the value (between 2 and 5), so we decided to set it to three

in order to maintain a good trade-off between sensitivity and
frame rate.

C. Arc pattern reconstruction

Electrical arcs are oriented horizontally (in the video camera
referential) with a strong infrared signature at the copper
mouth level. Nevertheless, it is very rare to observe the entire
pattern in the infrared images. Most of the time, only a
collection of pattern subparts are visible and detected in the
form of several blobs by the segmentation algorithm. This is
why a specific merging process is necessary to reconstruct the
whole arcing pattern.

[Fig. 7 about here.]

According to the symbols used in figure 7, we have defined a
blob merging criterionC as follows:

C = c1 ∧ c2 (1)

where,∀ i, j = 1, 2, i 6= j

c1 = {|yOi
− yOj

| < |yIi
− yOj

|} (2)

c2 = {w1 + w2 <
1

2
× |xOi

− xOj
|} (3)

This criterion favors the merge of blobs having the same
orientation (here horizontal for the arcs) and capable ofseeing
each other in this orientation. Two blobsB1 andB2 are defined
as visible for each other if the center ofB1 (resp.B2) is inside
the hatched zone formed byB2 (resp.B1) as seen in figure 7.
The visibility is proportional to the inverse of the distance, to
the sizes, and to the horizontal elongations of the two blobs
(parametersd, w, andh). This criterion prevents from merging
distant small blobs. Then, a new bounding box including the
two merged blobs is computed and the merging process is
repeated until no more merges are possible.

D. Arcing event recognition

Once each blob has been filtered/merged, the next task is to
look for evidence of given described events from the detected
transient hot spots. To this end, we also rely on thea priori
knowledge of figure 6. In a deep-first search procedure, each
hypothesis leading to the recognition of a TE is tested. The
goal is to traverse the domain class hierarchy from the most
abstract class (top of the tree) to the targeted TE. If the test
fails at one specific layer, the recognition procedure stopsat
the previous layer. For the specific case of arcing event (third
layer of our TE class hierarchy), we use three criteria for the
event recognition:

1) pattern duration (transient event layer)
2) pattern shape (electrical arcing layer)
3) pattern size (electrical arcing layer)

The recognition algorithm verifies that all attribute values
extracted from the merged blobs are within the corresponding
learned values. We observe that geometric attributes prevail,
most of the time, upon the other attributes (i.e. infrared lumi-
nance and temporal attributes) for the arcing event recognition.
In the same way, the discrimination between arc and residual
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arc (i.e. arcs lasting more than 300 milliseconds) is based on
arc pattern duration. To this end, arc patterns must be tracked
as explained in the next section.

E. Arcing event tracking

If a new electrical arcing pattern is recognized, an identifier
is associated with the corresponding bounding box and 2D
coordinates of the pattern is stored in a buffer. Then, at each
frame, newly detected arc patterns are matched with the ones
present in the buffer. The matching criterion is based on
a minimal vertical distance between the two centers of the
pattern matching candidates (here set at 10 pixels). Indeed,
we have observed that arc patterns often occur at specific
levels related to the geometry of the antenna mouth. Each
of these levels has a height of 20 pixels approximatively so
a distance criterion of 10 pixels prevents from merging arc
patterns located at two different levels. Once an arc pattern has
been recognized, we trigger the background model updating
of the detected pixels in the corresponding bounding box
so that a possibly residual arc pattern is not integrated into
the background model (cases of missed detection in [16]).
The trigger action consists in setting two parameters of the
background model update algorithm, namely the learning rate
and the matching threshold parameters, to lower values. The
parameters are automatically set to initial values when thearc
pattern disappears.

IV. RECOGNITION RESULTS

A. Performance Evaluation of the proposed approach

To assess the performance of our approach, we have com-
pared the results of the arcing event recognition with validation
data obtained from manual annotations of a pulse dataset.
The pulse dataset used for this evaluation is composed of 50
infrared films of two heating antenna views, corresponding to
a total plasma time of 1496 seconds with a discharge duration
between 5 and 62 seconds. The pulses have been chosen over
the overall database so as to represent all plasma scenarios
for which arcs are used to be observed. Only 9 pulses do not
contain any arcing events. A total of 197 arcing events have
been annotated by three human subjects trained to recognize
arcing events in infrared videos. Figure 8 presents qualitative
results for three representative cases.

[Fig. 8 about here.]

Counting results are reported in table I. A true positive
corresponds to a detected arc present in the annotation base. A
false negative corresponds to an arc not detected but present in
the annotation base. A false positive corresponds to a detected
arc not present in the annotation base.

[TABLE 1 about here.]

We have identified two sources of explanation for the false
negative results:

1) The annotation is sometime ambiguous when arcs are
very close in time or when the infrared signal is not
sufficiently clear enough to visually identify an arcing
event.

2) Most of the false negative results corresponds to bor-
derline cases, i.e. when the arcs are very thin and/or
weak. In this case, the pattern reconstruction algorithm
often fails in merging the blobs (see figure 9). One
improvement should be the triggering of the foreground
classification parameter by the injected power signal,
since weak arcs occur during low power discharges only.

False positive cases during plasma current ramp-up men-
tioned in [16] have been resolved thanks to the trigger of
detection and recognition algorithms by the injected power
signal.

[Fig. 9 about here.]

Figure 10 presents an example of a residual arc recognition.

[Fig. 10 about here.]

B. Performance comparison with the arc detection algorithm
used at Tore Supra

The algorithm used at Tore Supra for arcing event detection
is based on a weighted running average over two successive
frames (at time notedt and t − 1), on the maximum infrared
luminance (noted∆L) extracted from the union of two ROI
defined for electrical arcing (see Figure 2). The computation of
the infrared luminance thresholdτ is triggered by the injected
power notedPinj . The output is a binary signal notedSARC

such as:

SARC(t) = (∆L(t) > τ(t)) ∧ (Ip(t) > 0.1) (4)

whereIp is the plasma current, and

∆L(t) = L(t) −
3 × L(t − 1) + L(t)

4
(5)

∆Pinj(t) = Pinj(t) −
3 × Pinj(t − 1) + Pinj(t)

4
(6)

τ(t) = α(1 + α∆Pinj(t)) (7)

with α = 30 (8)

Table II summarizes the detection results of this algorithm
together with the results of the proposed approach. Since
SARC is not available for all pulses of the data set used in
Table I, the test dataset has been reduced to 18 infrared films
where 90 arcing events have been annotated, still representing
a good sampling of the different scenarios.

[TABLE 2 about here.]

Our proposed approach outperforms the current arc detection
algorithm especially in terms of false detections. This large
difference makes evidence of the brittleness of the thresholding
technique of the current system. The practical consequence
of using the proposed approach for real-time control of the
launched power would be a better optimization of the power
injection.

C. Computational performance

In the perspective of a real-time implementation, we have
assessed the computation speed of the proposed approach.
The infrared videos are acquired at 50 frames per seconds.
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The image size is 320×240 pixels. The frame rate of the
C++ software implementation on 2×2.33GHz PC is about 20
frames per second. As seen in Table III, the most important
part of the computational time is taken by the detection
algorithm. This results is obviously coherent since at thisstage,
the amount of information to proceed is equal to the number
of pixels. Recognition and tracking algorithms have much less
memory and CPU needs since they just manipulate a list of
bounding box coded on only four values (upper left and bottom
right positions of the box). With an FPGA implementation
of the detection algorithm, the processing should be able to
deliver results every 20 milliseconds, i.e. at the camera frame
rate.

[TABLE 3 about here.]

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new vision-based ap-
proach for the automatic recognition of thermal events in
infrared images of PFC. The proposed approach improves
the current PFC monitoring system used at Tore Supra and
addressing arcing event recognition. As a result, the false
detection rate is drastically reduced. As a consequence for
real time control, the power injection should be better opti-
mized. Moreover, this ROI-free approach is independent of
any displacement inside the camera field of view with a better
localization of the observed thermal events. This approach
is going to be extended to the recognition of other thermal
events (e.g.,B4C flakes, accelerated electrons, fast particle
losses, etc.) to prove its genericity. A three dimensional scene
model will be added to take into account, at each step of the
thermal event recognition process, the geometrical description
of the monitored objects and their optical properties. The
ultimate goal of this project is to improve the reliability of
the current real-time control acting on the heating sources. To
this end, the hot spot detection algorithm will be implemented
on a FPGA to reach real-time constraints, and the system
will be tested during Tore Supra plasma operation. This
will be a good starting point toward a real-time automatic
feedback control system based on intelligent signal and image
processing applied to the foreseen infrared wide angle viewing
system of ITER which will be involved in the crucial PFC
protection function.
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Fig. 1. Overview of one of the seven endoscopes used to monitor PFC as heating antennas.
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Fig. 2. ROI drawn by the user (in white) for the monitoring andthe feedback control to prevent from PFC overheating. Qualitative thresholds on infrared
luminance signal are indicated for each ROI.
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Fig. 3. Process chain of the proposed approach. The algorithm is first triggered by the value of the injected powerPinj through a fixed thresholdTP (here
fixed at 0.1MW) to avoid, for instance false detection of arcing event during plasma current ramp-up.
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(a) Identified hot spots on two heating antennas. Left column: the lower hybrid current drive (LHCD), and right column: the ion cyclotron resonance
heating antenna (ICRH).
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(b) Time-traces of the apparent temperature of the picked pixels in (a) (left: LHCD hot spots, right: ICRH hot spots)

Fig. 4. Time-traces of some identified hot spots (picked fromthe infrared frames) and of the power injection (bottom plots) during a plasma discharge for
two heating antennas.
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Fig. 5. Domain class hierarchy representing the different abstraction layers used to characterize the different Thermal Events (TE). Associated knowledge
representation of TE in bold face is described in Figure 6 .
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Domain Class Transient EventSuperClass Thermal Event
Temporal Attributes

Duration [ 1 8 ]
L Gradient [ 154 347 ]

Domain Class Electrical Arcing SuperClass Transient Event
Spatial Attributes

Length [ 50 110 ]
Height [ 7 20 ]
Elongation [ 2.5 16 ]
Area [ 120 2200 ]

Infrared Luminance Attributes
Local contrast [ 1.3e-4 0.17 ]
Entropy [ 3.8 9.02 ]

Domain Class Residual Arcing SuperClass Electrical Arcingand Residual TE

Domain Class Residual TE SuperClass Thermal Event
Temporal Attributes

Duration [ 15 Inf ]

Fig. 6. High-level description ofarc andresidual arc events through the different abstraction layers defined in Figure 5. For simplification purposes,
spatial attributes have been translated from physical dimensions to pixel values, and temporal attributes have been translated from seconds to frames. Ranges
values corresponds to observed min and max.
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Fig. 7. Blobs features (w, h, o) and inter-blob features (d, I) used by the merging criteria.
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Fig. 8. Ground truth with corresponding bounding box superimposed on original images (top), process outputs after transient change detection, detected pixels
are in black (row 1), median filtering and blob extraction (row 2), pattern reconstruction (row 3), and arcing event detection with corresponding bounding box
superimposed on original images (bottom).
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Fig. 9. One example of typical missed detection. This is a borderline case when arc is very weak (low power injection). Despite the quite good detection,
the algorithm fails to reconstruct the arc pattern due to toosmall and unfavorably oriented blobs.
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Fig. 10. Residual arc event (i.e. arc lasting more than 300 ms) detected by our approach (right) after successful tracking of the same arc pattern #0 (left)
during 740 ms.
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Antenna no. of Annotated no. of detected arcing events with our approach

pulses arcing events TP FN FP

C2 28 140 133 7 0

C3 22 57 49 8 2

C2 + C3 50 197 182 15 2

TABLE I
ARCING EVENT RECOGNITION RESULTS OBTAINED WITH THE PROPOSEDAPPROACH WITH CORRESPONDING GROUND TRUTH(GT), TRUE POSITIVE

(TP),FALSE NEGATIVE (FN), AND FALSE POSITIVE(FP)COUNTS.

18



revised manuscript submitted for publication to: IEEE TRANS. ON INSTRUM. MEAS. I2MTC’09 paper #1569167935

Antenna no. of Annotated no. of detected arcing events

pulses arcing events TP FN FP

C2 11 73 68/70 5/3 51/0

C3 7 17 11/13 6/4 7/0

C2 + C3 18 90 79/83 11/7 58/0

TABLE II
COMPARISON BETWEEN THE ARCING EVENT DETECTION RESULTS OBTAINED WITH THE CURRENT SYSTEM USED ATTORE SUPRA AND WITH THE

PROPOSED APPROACH IN BOLD FACE.
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process processing time (in ms) % of the total frame rate

detection 41.0 80

recognition 3.3 7

tracking 6.7 13

overall 51.0 100

TABLE III
COMPUTATION TIME FOR EACH STEP OF THE PROPOSED APPROACH.
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