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Abstract. Human emotions entail a complex set of behavioral, physi-
ological and cognitive changes. Current state-of-the-art models fuse the
behavioral and physiological components using classic machine learning,
rather than recent deep learning techniques. We propose to fill this gap,
designing the Multimodal for Video and Physio (MVP) architecture,
streamlined to fuse video and physiological signals. Differently then oth-
ers approaches, MVP exploits the benefits of attention to enable the use
of long input sequences (1-2 minutes). We have studied video and physio-
logical backbones for inputting long sequences and evaluated our method
with respect to the state-of-the-art. Our results show that MVP outper-
forms former methods for emotion recognition based on facial videos,
EDA, and ECG/PPG. The code will be available on GitHub.

1 Introduction

The recognition of human behavior from video data has been deeply investi-
gated in the affective computing area [7]. What is limiting the performance of
computer vision algorithms is the recognizability and the meaning of visual pat-
terns. Facial expressions visible from cameras do not always correlate with the
experienced emotions, which can lead to incorrect emotion recognition, e.g., a
person may smile without being happy. In order to improve emotion recognition
performance, multimodal learning has been introduced. Most of the current re-
search on multimodal emotion recognition focuses on the combination of video,
audio, and language cues. [6,11]. Such cues represent voluntary expressions of
emotions, i.e., the behavioral component. On the other hand, the physiologi-
cal component is largely involuntary and is directly activated when a person
is emotionally triggered [24]. When an emotional trigger appears, a change in
the physiological pattern is inevitable and detectable [13]; e.g., the heart rate
increases if a person sees a snake. Thanks to their involuntary nature and to
the ease of recording, peripheral signals as the electrocardiography (ECG) or



2 F. Author et al.

OpenFace
AUs
J ECG EDA fg
. u Lo raw
B
g T RO e
RN \,Hwimwlflll‘llllll‘\u\ (AL LAALNG L] UUIRLLELUAL LA L CERLIRRL AL I8 LGEAGAPARNA (R AR 1 oo
Eﬁ: N J‘b[ i hl‘i‘»”w‘ MR ‘kh“‘ “uku“ u‘"“‘“h‘]”‘w ‘uu‘i\ lmw' ge
~ 2 number of samples ™ -5
arousal transformer
predictions
S+ V
[0,1] [1,1] E ‘rgu E _g [100,512] W [2.8k,512] 1D P [2.8k,42]
angry happy [2] (5121 S 2 9 S - CNN_V ™ 1 ax x data_size]
4—MP4— Z 5 i Be— k
valence )
[0,01 [1,0] 3 3 = @ [100,512] [19.9k,512] 1p [19.9k,2]
sad o) < 9 < S+ g ¢——MP CNN_p
4 4

Fig. 1: Multimodal Emotion Recognition based on Video and Physiological Signals
(MVP) architecture. Video features and raw physiological signals are input as full long
sequences into the model to predict binary valence and arousal. The cross-attention
transformer is used to fuse multiple modalities.

photoplethysmogram (PPG), for the heart activity, and the electrodermal activ-
ity (EDA), for to the skin conductivity, have been exploited for the purpose of
recognizing human emotions [15,23,28].

While unimodal video and physiological signals have been used to recognize
emotions, very few works combine the two kind of data [5,19,25]. A recent work
from 2023, proposes to fuse traditional features, classifying them by SVM and k-
NN [19]. Similarly, in a recent dataset for stress identification [5], the baselines for
both unimodal and multimodal experiments are conducted based on SVM/MLP
using hand-crafted features for both video and physiological signals. The state-
of-the-art approaches utilize old-fashioned machine learning pipelines. This is
probably due to the small number and small size (max 60 subjects) datasets
available. We propose to fill this gap, designing a model that exploits the benefits
of the transformer architecture attention [29]. The idea is to enable the use of
long input sequences (1-2 minutes), in the context of emotion recognition, with
video and physiological data, in order to extract complementary features.

First, we study how to efficiently input the video data. We compare two
approaches, the DL features extracted through VideoMAE [27] and the action
units (AUs), extracted through OpenFace [3]. VideoMAE and its modification [4]
have just recently showed to achieve state-of-the-art results on multiple tasks,
comprehending facial expression recognition. The main limitation of the available
approaches is related to the input length. Typically short videos of few seconds
are used. An open question is if and how these models can scale on longer
videos. Here we adapt the Hugging Face implementation of VideoMAE to long
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(1-2 minutes) videos, and we compare these results with the traditional approach
of AUs extraction. AUs are fine-grained facial muscle movements [9], typically
extracted through neural networks pre-trained on large sets of facial data. Each
AU is associated with a specific set of facial muscles. As this is the first study
on scaling VideoMAE for long emotion recognition videos, we assessed multiple
configurations, on two datasets (AMIGOS and DEAP).

Second, we study how to efficiently input physiological data. The state-of-the-
art is based on 1D-CNN and unimodal transformer for the recognition of emo-
tions from raw physiological data [30,31]. One main limitation of these methods
is related to the input signals, which are cut into 10-seconds segments. Here we
improve the physiological backbone permitting the input of the full sequences,
thus enabling attention to find correlation in both short and long range de-
pendencies. Finally, we propose a multimodal transformer-based architecture,
the Multimodal for Video and Physio (MVP), to efficiently couple the behav-
ioral and physiological components for the emotion recognition task (Figure 1).
The model combines facial video features with ECG/PPG and EDA. Deviating
from other multimodal transformer-based architectures for video and language
data [6,11,34], which use as input short subsequences (4-10 seconds), the MVP
architecture is developed to handle long input sequences (1-2 minutes) of com-
plementary behavioral and physiological data. Summarized contributions:

1. We comprehensively study the video and physiological backbones for in-
putting long sequences.

2. We propose MVP, a new affective computing architecture, streamlined to
fuse video and physiological signals.

3. Our experimental results suggest that MVP outperforms former methods for
emotion recognition based on facial videos, EDA, and ECG/PPG.

2 Related Work

2.1 Multimodal Emotion Recognition

Table 1 shows the state-of-the-art emotion recognition methods. In the case of
video, audio and language, transformer-based architectures have been proposed.
The data are typically input into transformer as features [31,33,34]: Action Units
for the video (e.g., from OpenFace), audio features (e.g., Mel spectrogram from
Librosa or Covarep), and language features (e.g., from GloVe or BERT). Each
modality is used as input into self-attention layers, which allow the model to
attend to different parts of the input sequence and capture long-range depen-
dencies. Then the multimodal part takes place, performing cross-attention across
modalities. The cross-attention can be done in multiple ways. The cross-modal
fusion has been developed on pairwise representations [12]. Here two couples of
the modalities (i.e., language + audio and language + video, with language as the
primary modality) enter a complementary module where bimodal fusion is done
at the Multi-Head Attention level. Here, each modality has its own representa-
tion to preserve modality-specific features. A joint-encoding has been also used
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Table 1: State-of-the-art multimodal emotion recognition methods. V means visual,
A means audio, L. means language, P means physiological. We describe visual and
physiological features in detail, but do not describe audio and linguistic features since
our pipeline is based on video and physiological modalities. M-SENA is a platform with
the state-of-the-art ER methods, from which we reported here the main characteristics
of top three methods.

Year Framework ‘ Modalities ‘Visual (V) and Physio (P) Features
2019|  UDLBV [25] V, P VGG-16 (V)
2020 TBJE [34] V, AL R(2+41)D-152 outputs (V)
2021 BBMF [11] V,A L Action Units (V)

Action Units (V)
2022 M-SENA [17] V,A L Facial Landmarks (V)

Eye Gaze (V)

2022|MultiTransformer [30]| P (ECG, EEG) 1D-CNN + Transformer (P)
2023 EICI [19] V, P Hand-Crafted (V, D)
2023 StressID [5] V, P (ECG, EDA) Hand-Crafted (V, P)

at the level of the Multi-Head Attention, to encode information from all the
modalities, producing a unified representation [6]. The best result is achieved
with a bimodal model using the linguistic + acoustic cues. Notably, in both
cases [6,12], the language cue is the most representative. This can be due to the
fact that annotators mainly worked on the transcript data. One of the major lim-
itation of these works is related to the unique use of the behavioral component,
i.e., video, audio and language data.

Few attempts have been made to build a multimodal framework that can
exploit both the behavioral and physiological components. These works rely on
late fusion of classical features. In the UDLBV [25] a CNN architecture (VGG-
16 pretrained on ImageNet) and hand-crafted (HC) features are concatenated
in a first step, after which PCA is applied, for then passing the features to an
LSTM (only for the DEAP dataset) and finally classify with extreme learning
machines (ELM). In EHCI [19] traditional features as spectral, HC, and local
binary patterns for facial images are late fused and classified through SVM and
k-NN.

Our aim is to propose a transformer-based architecture that fuses video and
physiological data through cross-attention. The idea is to improve the emotions
recognition by combining these two complementary signals, which represent the
behavioral and the physiological components of emotions.

Video cues. State-of-the-art video-based emotion recognition methods use two
main types of facial video features: (i) classical features like action units (AUs)
and facial landmarks [11,17] and (ii) general features extracted through DL
techniques [33, 34]. We compare these two approaches: (i) the use of AUs, ex-
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tracted through OpenFace [3], and (ii) general features extracted through Video-
MAE [27]. AUs are fine-grained facial muscle movements [9], typically extracted
through neural networks pre-trained on large sets of facial data. These methods
have been largely used showing stable and reliable results. VideoMAE and its
modifications [4,32] are new pre-training methods, providing the best results on
many tasks, including video-based facial expression recognition. Masked auto-
encoders (MAE) are self-supervised learners (SSL) trained to reconstruct the
missing masked random patches of the input video. The use of VideoMAE in
the emotion recognition field is very recent, therefore we report our adaptation
to the challenging set-up of emotion recognition with long videos.

Physiological cues. Peripheral physiological data are largely involuntary [24],
mediated by the autonomus nervous system, which is directly activated when a
person is emotionally triggered. This means that when an emotional activation
is present, a change in physiological patterns is inevitable and detectable [13].
Peripheral physiological data, as ECG/PPG and EDA, have been exploited to de-
rive reliable information for emotion recognition [8]. The use of machine learning
on physiological data is quite recent, up to 5-6 years ago computational mod-
els were the most used. In the last years, classical machine learning pipelines,
with models as Multilayer Perceptron (MLP), Support Vector Machine (SVM)
and random forest trained on HC features [21] became more popular. The first
approach exploiting deep learning architectures has seen the translation of phys-
iological time-series data into 2D images, representing spectrogram or power
spectral density, which are then input into CNN architectures (as ResNet or
VGG) pretrained on different datasets (as ImageNet) [2,7,10]. GNNs have also
been used [14] and two stacked convolutional autoencoders has been proposed
to combine ECG and EDA [21]. Now, the state-of-the-art method in the field is
based on 1D-CNN and self-attention transformers for the recognition of emotions
from raw physiological data [30,31]. The results have been proved only for the
AMIGOS dataset. In ERMS [30] the two signals are used as time-series and the
prediction is done after the concatenation of the last hidden layers of unimodal
transformers. One main limitation of all these methods is related to the input
signals, which are cut segments of 10-seconds. Then, or random 10s are taken
for each sample, or each sample is used and the output of the features extractor
is averaged. The advantage of using 10-seconds subsequences is that the net-
work can work with a small and fixed input, resulting in a higher efficiency. This
approach does not consider two factors. The ECG and EDA vary on different
time scales, from few ms to tens of seconds/minute. The annotations are weak;
a subject may express the labeled emotion for some seconds, few times in the
whole recording, and being neutral the rest of the time. We advance the state-
of-the-art permitting the input of the full sequences, thus enabling attention to
find correlation in both short and long range dependencies.

We compare our approach with with state-of-the-art methods for the input
of physiological data [31] and for the combination of multimodal signals [30].



6 F. Author et al.

Table 2: Video datasets used in this study. KAD stays for Kinetics-400 & AMIGOS
& DEAP.

Dataset  # Video clips Average clip duration  Source

Kinetics-400 306245 10s YouTube
AMIGOS 640 80s Lab
DEAP 880 70s Lab
KAD 307765 - Multi-source
3 Method

3.1 VideoMAE for Long Input Videos

We use the Hugging Face implementation of VideoMAE, with the ViT-B encoder
of 12 layers, hidden size of 768, and 87M parameters. During pre-training, the in-
put video is masked with a ratio of 90% and fed into the encoder, which outputs
the latent representations. The shallow decoder then takes the latent represen-
tations from the encoder and reconstructs the input videos. During fine-tuning,
the pre-trained encoder is learned to predict binarized valence and arousal from
original (i.e. not masked) videos. We perform experiments on two datasets, AMI-
GOS [18] and DEAP [16]. We implemented and tested multiple configurations of
pre-training strategy. (i) Self-supervised pre-training on Kinetics-400 and fine-
tuning on the target dataset (i.e. AMIGOS or DEAP). (ii) Self-supervised pre-
training on Kinetics-400, plus AMIGOS and DEAP, and fine-tuning on the target
dataset (see Figure 2). (iii) Self-supervised pre-training on Kinetics-400, plus an
intermediate step of supervised pre-training on Kinetics-400 and one of the two
target datasets and fine-tuning on the other target dataset. Table 2 shows input
video datasets used. Figure 2 represents the pipeline of VideoMAE pre-training,
with masked input video and reconstruction task, and the fine-tuning step to
predict valence and arousal.

3.2 Selected Backbones for Features Extraction

Vision backbone. Our video backbone is composed of 1D-CNN,, followed by
MLP,. It takes as input the AUs matrix of the full input video and outputs
embeddings that are used as tokens in transformer.

Physiological backbone. Our physiological backbone extracts temporal fea-
tures from the entire raw physiological data using 1D-CNN, and MLP,, layer.
We expanded the use of the sole 1D-CNN,, [31], adding the MLP,, to enable
the handling of long sequences. The extracted features are used as tokens in
transformer.
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Fig. 2: Pre-training and fine-tuning steps of VideoMAE in emotion recognition. In
the pre-training step the autoencoder reconstructs the masked input video. During
the fine-tuning, the pre-trained encoder is fine-tuned to predict binarized valence and
arousal from the original not masked videos.

3.3 MVP Architecture

Figure 1 shows the MVP architecture. Here, one input trial is exemplified, con-
sisting of a video sequence SV;; and a physiological sequence SPF;;, of shapes
TVinar X 42 and T P,,q: X 2, respectively. In our experiments, we use a batch
size of 8, so at each training iteration we randomly choose 8 trials and per-
form all the calculations for this batch. The input data enters the video and
physiological backbones. For the video input, the zero-padded matrix with AUs
enters 1D-CNN,, followed by MLP,,. For the physiological data, the zero-padded
matrix with concatenated ECG and EDA enters 1D-CNN,, followed by MLP,,.
1D-CNN, and 1D-CNN,, extract features from input data without changing the
time dimension. MLP, and MLP,, reduce the time dimension without changing
the feature dimension. 1D-CNN,, takes as input a raw physiological sequence of
dimension [19.9k, 2] and outputs a feature sequence of dimension [19.9k, 512].
Then MLP,, takes as input the output from 1D-CNN, and outputs a compact
representation [100, 512].

After that, the outputs from 1D-CNNs are used as input into transformer
with cross-attention for fusing video with physiological signals. The MVP method
uses mid-fusion fusion, where video modality is input as keys (k) and values (v)
and physiological one as queries (q) (Equation 1).

Attention(Q,, K,, V,,) = Softmax <Q”K’T> V. (1)
py=ruy YU \/(Tk v

where @), is the query from the physiological data and K, and V, are the keys
and the values from the video data. transformer has 8 attention heads and 8
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Fig. 3: Label distribution of AMIGOS and DEAP datasets.

attention layers and it predicts two outputs: valence and arousal, binarized, as
reported in Figure 1. We use binary cross entropy (BCE) to calculate the loss.
During training the loss is backpropagated through the neural network layers to
calculate the gradient for each weight.

3.4 Data Handling

The entire sequence of video and physiological data is used, with a length that
can vary between 60s and 155s. As the adopted datasets contain multiple trials
from different subjects, the input data for a trail ¢ of a subject j is composed of
two matrices: SV;; for video and SP;; for physiological signals, with dimensions
[TVij,42] and [T'P;;, 2], respectively, where T'V;; and T'P;; correspond to lengths
of the sequences and 42 and 2 are input data dimensions of each modality.Video
and physiological signals are sampled at different rates, therefore T'V;; and T'F;;
are different (e.g., for the AMIGOS dataset T'V,,4, is 2.8k and TP, is 19.9k,
corresponding to 155s sampled at 18fps and 128Hz, for the video and the physi-
ological data, respectively). We extract 42 visual features from each video frame
and use the sequence of AUs and eye gaze as video representation. AUs are
fine-grained facial muscle movements [9], each of which relates to a subset of
extracted facial landmarks [20]. From each frame we extract the following AUs:
1,2,4,5,6,7,9,10,12,14, 15,17, 20, 23, 25, 26, 28, and 45, by means of the Open-
Face library [3]. Each AU is described in two ways: presence, if AU is visible in
the face, and intensity, how intense is the AU on a 5-point scale. The eye gaze
corresponds to two gaze direction vectors of each eye. The physiological data has
a dimension of 2 at each timestamp, corresponding to the 2D time series, made
of ECG and EDA raw signals.

Before using the data as input to our model, we perform the following pre-
processing. We find the longest sequence and use its TV, 4, and T Py,, lengths
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to construct input matrices for all the trials in the dataset. Each pair of input
sequences SV;j, SP;; is zero-padded so that all input matrices with AUs and
physiological signals have sizes TV,q: X 42 and T Py,q. X 2, respectively.

4 Experiments

4.1 Emotion Recognition Labels

Emotion classification is typically approached by measuring arousal and valence
based on the emotion circumplex model [22]. Valence refers to the degree of pos-
itive or negative affect associated with an emotion. Arousal refers to the degree
of activation, engagement associated with an emotion. The valence and arousal
dimensions have been used to categorize emotions into quadrants (see Figure 1):
high valence /high arousal (e.g., excitement, happiness), high valence /low arousal
(e.g., relaxation), low valence/high arousal (e.g., anger), and low valence/low
arousal (e.g., boredom, tiredness). In the classification task these labels are typ-
ically extracted by the Self-Assessment Manikin (SAM) scale reported by each
subject. SAM is a pictorial tool for rating valence and arousal on a scale of 1 to
9. A subject selects the pictogram that best corresponds to its emotional state
at the end of each elicitation video. Therefore, such labels are more subjective
and referred to the whole session, that typically last between 1 and 2 minutes.
In Figure 3, the label distribution of the used datasets is reported.

4.2 Datasets and Pre-processing

The AMIGOS [18] and the DEAP [16] datasets are available online and comprise
both video and physiological data. The recordings are performed in a laboratory
setting and the participants are instructed to watch emotional videos and then
respond to the Self-Assessment Manikin scale. The AMIGOS dataset includes
the recording of 40 subjects, who rated 16 movie video clips for valence, arousal,
and other measures (i.e., dominance, liking, familiarity and basic emotions).
The DEAP dataset includes the recording of 32 subjects, who rated 40 music
video clips for valence, arousal and other measures. We use the facial videos and
EDA + ECG for AMIGOS, and the facial videos and EDA + PPG for DEAP,
preprocessed as follow.

For VideoMAE, the input videos are cut into smaller clips of 4 seconds,
from which 16 frames are taken and cropped using facial landmarks generated
by OpenFace [26]. Two different cropping strategies were evaluated (Figure 4).
The larger one captures the entire face and a bit of background, ensuring the
face remains visible even when the subject head is in motion, the smaller one
captures exclusively the face, causing occasionally and partially cropping out.
We experimented the two cropping strategies, achieving higher performances
(7-9%) with the larger crops; thereafter this is the set-up adopted in this work.

For the AUs, we use OpenFace [1] to extract AUs, as it is a stable and largely
adopted library in the community. 42 AUs and eye gaze direction features are
extracted for each frame.
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Fig. 4: Crop comparison on the Amigos dataset. The larger crop X captures the entire
face and a bit of background, the smaller crop Y captures exclusively the face. Larger
crops give higher F1-score.

For the physiological data, we downsampled to 128Hz, then we filtered the
signals with Butterworth filter plus powerline filter (to remove the 50Hz). The
Butterworth filters used are: 3th order band-pass with [0.5,8]Hz band for PPG,
5th order high-pass with a 0.5Hz cutoff for ECG, 4th order low-pass with a
3Hz cutoff for EDA. In the AMIGOS dataset, we cut the first 1s in all the
physiological signals, as artefacts are present in most of the recordings (probably
due to the device connection). Since the signal sequences have different lengths,
we pad the shorter sequences with zeros, so that all input sequences have the
same length. The raw data is normalized with zero-mean and unity-variance
before entering the pipeline.

4.3 Experimental Set-up

We use 5-fold cross validation to split data into train and test subject indepen-
dently. All trials of one subject are either in the train or in the test split. We use
the weighted F1-scores as metric, as the datasets are imbalanced, reporting the
mean and standard deviation.

We split valence and arousal continuous labels using the thresholds of 4.5
and 5 for AMIGOS and DEAP, respectively. If the continuous label is less or
equal than the threshold, the binarized label is 0 and 1 otherwise. In Figure 3
the labels distribution of both AMIGOS and DEAP datasets are reported.

5 Results and Discussions

5.1 Input Features

Our model fuses video with physiological signals. To extract features from each
modality, we use the models that best fit the input data. Here we explain our
motivation in selecting feature extraction backbones for facial videos and phys-
iological signals (ECG and EDA).
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Table 3: Valence prediction from raw videos using self-supervised VideoMAE pre-
training and supervised pre-training. KAD is Kinetics-400 & AMIGOS & DEAP.

SSL pre-training data‘Supervised pre-training data‘Fl-score weighted

Kinetics-400 AMIGOS 49 £ 5

KAD AMIGOS 50 + 4
Kinetics-400 Kinetics-400 & AMIGOS 51+ 6
Kinetics-400 KAD 59 £ 5

(a) 5-fold cross validated Fl-score for the AMIGOS dataset.

SSL pre-training data‘Supervised pre-training data‘Fl-score weighted

Kinetics-400 DEAP 52 £ 4

KAD DEAP 55 + 7
Kinetics-400 Kinetics-400 & DEAP 53+ 5
Kinetics-400 KAD 60 -+ 6

(b) 5-fold cross validated Fl-score for the DEAP dataset.

VideoMAE for emotion recognition. The results in Tables 3a, 3b are re-
lated to the valence prediction for the AMIGOS and DEAP datasets using the
VideoMAE self-supervised pre-training. The results show that the most effec-
tive approach is the three steps strategy, where, after the SSL pre-training on
Kinetics-400, a supervised pre-training step is added before fine-tuning on the
target dataset.

While increasing the amount of data in the self-supervised pre-training phase
does not achieve the highest weighted Fl-score, it is still more effective than
solely relying on Kinetics-400 for supervised pre-training or not using it at all.
Additionally, when the supervised pre-training step is added, the model adapts
faster. For instance, with DEAP, the model requires only 3 epochs to fine-tune,
as opposed to the initial 10. This further supports the intuition that leveraging
datasets from the same domain can significantly benefit the learning process.

Selection of the video backbone. We compare two approaches: (i) the use
of AUs extracted through OpenFace, and (ii) DL features extracted through
VideoMAE [27]. We compare the results on the AMIGOS dataset in Table 4a.
The two approaches give similar results, with AUs outperforming VideoMAE
features. We selected AUs features as they give higher F1-score, are more reliable,
explainable and requires less memory for training. A possible explanation for
their performance is that the model used to extract AUs is pre-trained on a large
set of face data, so the predictions incorporate extra knowledge, providing stable
results. In this context, stable means that the extracted features are meaningful
under different lighting conditions, resolutions, and head angles. Indeed, on the
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Table 4: Comparison of state-of-the-art emotion recognition methods with the pro-
posed MVP for unimodal and multimodal emotion recognition. ECG+EDA means
concatenated raw ECG and EDA used as one modality. Video input is raw videos for
VideoMAE and AUs for other methods. HC means hand-crafted.

F1-score weighted

Method ECG+EDA video ECG+EDA+video
arousal valence|arousal valence|arousal valence
SVM (HC feat) [5] 5145 60+6[44+8 59+3|49+8 64+ 3

MLP (HC feat) [5] 57+ 463 £1|53 5645|555 63+£3
UniTransformer (adapted) [31] |54 +4 59 £ 4| — — — —
MultiTransformer (adapted) [30]| — — — — |56+£6 61+3

VideoMAE [27] — |53+£659+5 — —

UniAUTransformer (ours) — |B6£363£4| — —

UniPhysioTransformer (ours) |56 £3 62 £ 4| — — — —
MVP (10s cut input, ours) — — — |55 +5 60+6
MVP (ours) — — — |58 £ 6 66 + 4

(a) 5-fold cross validated Fl-score for the AMIGOS dataset.

F1-score weighted
Method ECG+EDA video ECG+EDA Fvideo
arousal valence|arousal valence| arousal valence

MLP (HC feat) [5]|52 £ 3 53 £ 2|51 £2 54 £ 3| 52+ 2 55+ 6
VideoMAE [27] | —  — [524+360+6 — —
MVP (ours) |53 +6 54 +4(5d£457+7|55+5 61 +4

(b) 5-fold cross validated Fl-score for the DEAP dataset.

AMIGOS dataset, where the videos are quite dark and low resolution, AUs
improve the results even more.

Selection of the physiological backbone. We compare the state-of-the-art
unimodal transformer for physiological data [31] and our physiological backbone.
The unimodal transformer backbone uses 10s subsequences and 1D-CNN while
our backbone is made of 1ID-CNN + MLP and data is input as whole sequences.
Table 4a shows that our proposed approach outperforms the state-of-the-art by
around 3 percentage points in predicting valence.

5.2 Multimodal Emotion Recognition

The need of combining video and physiological data through a novel DL archi-
tecture is investigated. We compare the MVP method with classical machine
learning approaches and more recent transformer-based architectures proposed
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for both unimodal and multimodal data. The classical machine learning pipeline
used here exploits hand-crafted (HC) features as input to Multi-Layer Perceptron
(MLP) and Support Vector Machine (SVM) to classify valence and arousal [5].
All transformer models are used with adaptations to ensure fair comparison.
In UniTransformer we combine ECG and EDA, whereas the original UniTrans-
former uses only ECG as input. In MultiTransformer, we add AUs as video
component, using ECG+EDA as one input and AUs as the second one. The
original MultiTransformer uses ECG and EEG. The main difference between
MultiTransformer and MVP is the fusion. In MultiTransformer late fusion is
used, while MVP uses mid-fusion. For VideoMAE we have studied and adapted
the method to the case of long facial videos. Tables 4a, 4a show that transformers
outperform classical machine learning. And the use of mid-fusion and a temporal
model able to input the full sequence, as is done in MVP, gives the best results.
This is due to the capability of cross-attention to find long-range dependencies
between different kinds of input data.

5.3 Success Case Analysis

We conduct case studies to show videos and physiological sequences in which the
proposed MVP method outperforms state-of-the-art competitors. We compare
our MVP with MLP proposed by StressID for multimodal fusion [5]. Table 4b
shows that MVP outperforms MLP on the DEAP dataset. Figures 5a and 5b
demonstrate the sequences where MVP gives better results than the competitor.
We show both physiological signals and video frames of our success cases. Figure
5a shows the case where the true arousal is 1, our MVP method predicts 1, and
the competitor predicts 0. The video frames above show that the participant is
initially neutral, and after a few seconds they smile, while at the same time the
physiological signals change. The result demonstrates that MVP better captures
the dynamics of the sequence. Figure 5b shows the case where the true valence is
0, our MVP method predicts 0, and the competitor predicts 1. The video frames
above show that the participant remains neutral throughout the experiment,
without any changes except blinking while the physiological signal changes. This
success case shows that MVP better fuses multiple modalities than MLP.

6 Conclusions and Future Work

We propose a new method for combining complementary data, the behavioral
and physiological component of emotions. The method relies on the relevance
of inputting long full sequences, exploiting attention. Regarding the video in-
put, AUs are performing better than deep learning features in extracting facial
representations for emotion recognition. Nevertheless, a strategy that includes
similar data distribution in the pre-training step shows improved results for deep
learning features. Our experimental results showcase that fusing video and phys-
iological signals outperforms each modality individually. MVP achieves state-of-
the-art results in the challenging field of multimodal emotion recognition with
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Physiological signals for the participant P15 watching the clip C12 Physiological signals for the partcipant P10 watching the clip C26

.
Tt

ground truth arousal: 1 (7.08 out of 10.00)
predicted arousal: 1

i valence: 0 (1.68 out of 10.00)
0

(a) The success case for the arousal prediction. (b) The success case for the valence prediction.

Fig. 5: The success cases for the arousal and valence prediction on the DEAP dataset.

video and physiological data, where small datasets are available. With this work
we aim to foster research in the field, to improve the understanding of human
emotions expressed by behavioral and physiological signals.

Future works involve exploiting ECG and EDA data as two separated modal-
ities, fused by a transformer model. We will develop a dedicated pre-training
technique, in order to increase recognition capabilities of the model and to bring
insight into physiological and behavioral modalities.
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