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Abstract

Object tracking quality usually depends on video sceneitiongd (e.g. illumination, density of
objects, object occlusion level). In order to overcome linngtation, this article presents a new
control approach to adapt the object tracking process tesd¢kae condition variations. More
precisely, this approach learns how to tune the trackempeiexs to cope with the tracking
context variations. The tracking context, or context, ofigew sequence is defined as a set of
six features: density of mobile objects, their occlusioreletheir contrast with regard to the
surrounding background, their contrast variance, theia2&a and their 2D area variance. In
an offline phase, training video sequences are classifietlistecing their contextual features.
Each context cluster is then associated to satisfactorkitrg parameters. In the online control
phase, once a context change is detected, the tracking ptmanare tuned using the learned
values. The approach has been experimented with threeatifferacking algorithms and on
long, complex video datasets. This article brings two gdigant contributions: (1) a classifica-
tion method of video sequences to learn offline tracking ipatars, (2) a new method to tune
online tracking parameters using tracking context.
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1. Introduction

Mobile object tracking plays an important role in an incregsiaumber of computer vision
applications (e.g. home care, sport scene analysis andl\gsuveillance). The object tra-
jectories are useful for activity recognition, learninginotierest zones or paths in a scene and
detection of events of interest. Unfortunately the traglgoality depends on many factors: the

quality of vision tasks performed at lower levels such agdbjletection, object classification,
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or by some video features such as complexity of object mownésnscene illumination inten-

sity, low contrast, high density and occlusion frequencynobile objects. In particular, for

a long video sequence (i.e. several hours) in which the Nanis of these properties happen
frequently, the tracking quality is still an issue. The desbs we focus on are the following:

How can an automatic system robustly track mobile objectdfferent conditions and situa-

tions such as the ones cited above. And in those complex,da®&scan the user regulate the
tracking parameters to get an optimal tracking quality?

In order to answer these two questions, we propose in thcdeast new method for control-
ling tracking algorithms. The objective of the proposedmoetis to define an automatic control
algorithm which is able to adapt online the tracking task® $cene variations in a video se-
guence by tuning the tracking parameters over time. We aimaitd a control algorithm which
is: generig flexible andintelligent. The term ‘generic’ means that our method can handle
different tracking algorithm categories. In this work, abjective is to control tracking al-
gorithms which rely on object appearance or points of irsier&éhese algorithms are selected
because their approaches are largely studied in the stéte aft. The termfltexible” implies
that the structure of the proposed control algorithm candapted for handling other tracking
algorithm category (e.g. object silhouette-based tragkifhe term fntelligent” means that

this approach requires less human interaction than theatonéthods in the state of the art.

1.1. Hypotheses

The control method presented in this manuscript relies envilo following hypotheses:

1. The considered tracking algorithms have at least ondtamarameter which influences
significantly the tracking quality.

2. There exists a number of contexts which have an impact@trdcking quality. Ley
be a function mapping a videg to its context. For a tracking algorithf, we suppose
that there exists a functiofsx mapping a video context to satisfactory tracking parameter
values (i.e. parameter values for which the tracking quaditgreater than a predefined
thresholds):

Vo, 3f + |Q(O=(fz 0 g(vi)), Go,)
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whereG,, represents the tracking ground-truth data of vidgoO<(.) represents the



output of tracker¥ corresponding to given parameter valuégO<(.), G,,) represents
the quality of tracke® output compared to the tracking ground-truth data of video
Let 1, €2 be predefined thresholds. The functipns assumed to satisfy the following

property if the temporal lengths of andwv, are short enough (lower than 50 frames):

Vo, v tif [g(v1) — g(v2)| <& (2
=> |Q(Ox(fzog(n1)),Gyy) — Q(Ox(fsog(12)),Gu,)| < e (3

This hypothesis means that if the contexts of two vidgoandwv, are close enough, the
tracking performances far, andv, corresponding to their satisfactory tracking parameter
values are also close enough.

The hypothesis 2 is given for two objectives. First, we campote the satisfactory
tracking parameter values for a video context cluster usetgsfactory parameters of
contexts (see section 3.4.2). Second, the satisfactockitiga parameters for context

clusters can be used for tuning online the tracking paramétee section 4.2).

1.2. Article Organization

This article is organized as follows. Section 2 presentai sif the art on control methods.
Section 3, entitled “learning phase”, details a schemedmlsatisfactory tracking parameters
for each video context cluster. Section 4 describes th@eplarameter tuning process. Section
5 is dedicated to the experimentation and validation of tp@sed method. Section 6 presents

concluding remarks as well as future work.

2. State of the Art

Many approaches have been proposed to track mobile objeetsscene [Yilmaz et al.,
2006]. Depending on taxonomy criteria, the trackers candssified into different categories.
Figure 1 presents a taxonomy example (the red ellipses raricdacker categories controlled
by the proposed method). However the quality of trackingalgms always depends on scene
properties such as: mobile object density, contrast iitierscene depth and object size. The
selection of a tracking algorithm for an unknown scene bexomhard task. Even when the
tracker has already been determined, it is difficult to tunkne its parameters to get a high

performance.
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Figure 1: Taxonomy of tracking methods (adapted from [Yitneaal., 2006]). The red ellipses mark the tracker

categories controlled by our method.

The idea about an automatic control to adapt the performahaesystem to the problem
of scene variations has already been studied. However saosti@ods limit their studies to
static image and not to video processing. For example theoeuin [Thonnat et al., 1999]
present a framework which is able to integrate expert kndgdeand uses it to control the
image processing programs. The framework is experimentetthree different applications:
road obstacle detection, medical imaging and astronomy.cdsidering both context and
evaluation criteria, the system can find the best algorithmareg a predefined algorithm set and
tune its parameters to obtain the best possible performaHogever, the construction of a
knowledge base for this system requires a lot of time and data

The authors in [Georis et al., 2007] present a controlle@éwidnderstanding system based
on a knowledge base. The system is composed of three mainoc@mis in which the control
component performs several steps for managing all the ®pliacesses of the system (e.g pro-
gram execution and automatic parameter tuning). Diffenglets are defined in this component
based on user goal, contextual information and evalua¢isults. However their approach does
not address directly the tracking task.

Some methods have addressed the tracking parameter tdmangyver their approaches
require too strong hypotheses and expert knowledge. Fongeathe author in [Sherrah, 2010]

proposes an approach to tune automatically tracking dlgomparameters. In this approach, the



tracker quality is represented as a function of tuned patensieThe author supposes that this
function has no local optimal solutions. Using this hypesibgfor each parameter and a training
video, the author determines its optimal value thanks teegmowledge. Then the parameter
tendency (i.e. increase or decrease) for converging togtimal value is learned in function of
the tracker input and output. This learned parameter tarydemsed in the online phase to tune
automatically the corresponding parameter to improverteking performance. In [Caporossi
et al., 2004], the authors compare the tracker results watresponding ground-truth data to
determine the importance of each parameter for each caamexo exploit the influence of each
parameter variation on tracker performance. The authgpase that parameter variations are
independent. This is a strict hypothesis because the p&esrage usually dependent on each
other. In [Chau et al., 2011a], the authors propose a trgagorithm whose parameters can be
learned offline for each tracking context. However the atglsoippose that the context within
a video sequence is fixed over time. Moreover, the trackimjesat is manually selected.

Some approaches have been proposed to decrease the negerokegwledge [Hall, 2006,
Santner et al., 2010], however they are expensive in termmazfgssing time and their perfor-
mance are dependent on an automatic tracking evaluationexample, in [Hall, 2006], the
author proposes two strategies to regulate the parametarafroving the tracking quality. In
the first strategy, the parameter values are determined asienumerative search. In the sec-
ond strategy, a genetic algorithm is used to search for teega@ameter values. This approach
does not require human supervision and parameter knowfedgentrolling its tracker. How-
ever, it is computationally expensive because of the paemoptimization performed in the
online phase. Moreover, this approach requires an onlawkitng evaluation (without ground-
truth data) to verify the performance of the tracker whemgshe found parameters. This can
decrease the approach performance. In [Santner et al.],20@0authors present a tracking
framework which is able to control a set of different trackey get the best performance. The
system runs three tracking algorithms in parallel: noreealicross-correlation (NCC), mean-
shift optical flow (FLOW) and online random forest (ORF). FMOs used as a main tracker.
If the tracker quality of ORF is better, FLOW is replaced byfOR/hen NCC quality is better
than the one of ORF, it takes the main role. The approach édsting but the authors do

not mention how to estimate online the tracker quality. Atbe execution of three trackers in



parallel is very expensive in terms of processing time.

2.1. Discussion

As analyzed above, many approaches whose objective is tattre tracking process have
been studied in state of the art. These methods have thevfofossues.

The first issue relates to the context notion. While some aa=tistudy context for static im-
age applications [Thonnat et al., 1999], to our knowledgexe are no approach which proposes
a formal definition for object tracking context.

The second issue is about the generic level of the contrdiadst Some approaches need
too strong hypotheses on the relation between the trackiradjtg and tracking parameters
[Sherrah, 2010] or on the independence between trackiragrpiers [Caporossi et al., 2004].
Some other methods require expert knowledge [Thonnat 1299, Chau et al., 2011a] for
building knowledge base or for tuning parameters. Thesairegents reduce the genericity of
these approaches.

The third issue pertains to the feasibility of these stud&sme approaches are expensive
in term of processing time [Hall, 2006, Santner et al., 2010]

In this article, we propose a control method for object tnaglalgorithms addressing these
issues. In this article, the control trackers belong to “8@m@nce tracking” or “Point tracking”
(see figure 1). These tracker categories are selected lectteysare the most popular ones and
are largely studied in the state of the art. Our proposed odeticludes two phases: an offline
learning phase and an online parameter tuning. The nexbeegiresent in detail the steps of

these two phases.

3. Offline Learning Phase

The objective of the learning phase is to create a databasé aipports the control process
of a tracking algorithm. This database contains satisfgqtarameter values of the tracking
algorithm for various scene conditions.

This phase takes as input training video sequences, aedathfects, annotated trajectories,
a tracking algorithm including its control parameters. Téwen “control parameters” refers to
parameters which are considered in the control processt@.mok for satisfactory values in

the learning phase and to be tuned in the online phase).dmwtitk we consider only numerical
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Figure 2: The offline learning scheme

parameters, however the proposed method can be appliedralsonmbolic parameters. At the
end of the learning phase, a learned database is creatéds(i§ the first learning session) or
updated (if not). A learning session can process many vidgoences. Figure 2 presents the
proposed scheme for building and updating the learned ds¢ab

The notion of “context” (or “tracking context”) in this workepresents elements in the
videos which influence the tracking quality. More precis@ycontext of a video sequence
is defined as a set of six features: density of mobile objelstsr occlusion level, their con-
trast with regard to the surrounding background, their@sttvariance, their 2D area and their
2D area variance. For each training video, we extract thestegtual features from annotated
objects and then use them to segment the training video ih @ sensecutive chunks. Each
video chunk has a stable context. The context of a video cisirdpresented by a set of six
code-books (corresponding to six features). An optimaragirocess is performed to determine
satisfactory tracking parameter values for the video cBunkhese parameter values and the
set of code-books are inserted into a temporary learnedase¢a After processing all training
videos, we cluster these contexts and then compute satisfacacking parameter values for
context clusters.

In the following, we describe the four steps of the offlinerfaéag process: (1) contextual
feature extraction, (2) context segmentation and codé-lboadeling, (3) tracking parameter
optimization and (4) clustering (composed of two sub-stepsitext clustering and parameter

computation for context clusters).



3.1. Contextual Feature Extraction

For each training video, the context feature values are co@ajdor every frame.

3.1.1. Density of Mobile Objects
The density of mobile objects influences significantly tteeking quality. A high density
of objects may lead to a decrease of object detection ankitigaperformance. The density of

mobile objects at instaritis defined by the sum of all object areas over the 2D camera view

3.1.2. Occlusion Level of Mobile Objects

The occlusion level of mobile objects is the main elementclwhnfluences the tracking
quality. An occlusion occurrence makes the object appearpartially or completely not vis-
ible. It decreases the object detection and tracking pmdoce. In particular, the variation
of object occlusion level over time is even more challendiegause the coherence of object
appearance changes significantly. Given two objgctst instant of respectively 2D areas
anda’, we compute their occlusion level based on their area gvexddollows:

ol = —4__ @
min(ai, al)

wherek denotes the index value of this occlusion in the set of ogmfissoccurring at time, o’
is the overlap area of objeci®nd; att. Two objects and; are considered as in an occlusion
state ifol¥ is greater than a predefined threshold. gtbe the number of object occlusion
occurrences at instantol" is the occlusion level of cage(k = 1..9,). The occlusion level of
mobile objects in a scene at instantdenoted,, is defined as follows:

SN olF x 2
T ’

1) (5)

o = min(="=———

wheren; is the number of mobile objects@atThe multiplication by 2 in the formula is explained

by the fact that an occlusion occurrence is related to tweaibj

3.1.3. Contrast of Mobile Objects

The contrast of an object is defined as the color intensifgidihce between this object and
its surrounding background. Lé&t; = {C;, W;, H;} be the 2D bounding box of objetthere
C;, W; and H; are respectively its 2D center, width and height. We definexdra bounding
box of objecti: B = {C;,W; + yM;, H; + yM;} where M; = min(W;, H,;), v is a
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Figure 3: lllustration of the object contrast variation ogpace (a.) and over time (b. and c.)

predefined value in intervad, 1]. The surrounding background of objecis defined as the
area; = B \ B.

An object with low contrast reduces first the object detectjoality. Second, this decreases
the discrimination of the appearance between differergaibj So the quality of tracking algo-
rithms which rely on object appearances decreases in thes CEhe contrast of an object can
vary due to the change of its spatial location (see figure 8agver time (see figure 3b. and
c.). The contrast of mobile objects at instam$ defined as the mean value of the contrasts of

objects at instant

3.1.4. Contrast Variance of Mobile Objects
When different object contrast levels exist in the scene figgire 3a.), a mean value cannot
represent correctly the contrast of all objects in the sc&@herefore we define the variance of

object contrasts at instahas their standard deviation value:

b= | =S — @y (6)

(e
wherec! is the contrast value of objecttt, ¢; is the mean value of all object contrastg.at

3.1.5. 2D Area of Mobile Objects

2D area of an object is defined as the number of pixels witki@ bounding box. There-
fore, this feature also characterizes the reliability @f ¢ioject appearance for the tracking pro-
cess. Greater the object area is, higher the object appearalmability is. The 2D area feature

value att is defined as the mean value of the 2D areas of mobile objettstantt.



3.1.6. 2D Area Variance of Mobile Objects
Similar to the contrast feature, we define the variance cdatjD areas at instanas their

standard deviation value.

3.2. Context Segmentation and Code-book Modeling
3.2.1. Context Segmentation

The contextual variation of a video sequence influencesfgigntly the tracking quality.
Therefore it is not optimal to keep the same parameter vétweslong video. In order to solve
this issue, we propose an algorithm to segment a trainingovid consecutive chunks, each
chunk is defined as having a stable context (i.e. the valuessaime context feature in each

chunk are close to each other). This algorithm is descrisddlbws.

1. The training video is segmented in partg dfames. The last part can have a temporal
length lower tharl. The value ofl should be low enough (e.g. 50 frames) so that each
video part has a stable enough context.

2. The contextual feature values of the first part is repitesikoy a context code-book model
(see more details in section 3.2.2).

3. From the second video part, we compute the context distaatween the current part
and the context code-book model of the previous part (see aetails in section 3.2.3).

If their distance is lower than a threshdl@; (e.g.0.5), the context code-book model is
updated with the current video part. Otherwise, a new caictae-book model is created
to represent the context of the current video part. The hi@lte value, less stable the

obtained context code-book models are.

At the end of the context segmentation algorithm, the trgjniideo is divided into a set of
chunks (of different temporal lengths) corresponding eodhtained context code-book models.
There are two open problems: How to represent a video coniéxta code-book model? and
how to compute the distance between a context code-booklrandea context. The following

sections answer these two questions.

3.2.2. Code-book Modeling
During the tracking process, low frequent feature valuay jpn important role for tuning

tracking parameters. For example, when mobile object deissnigh in few frames, the track-
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ing quality can decrease significantly. Therefore, we detoduse a code-book model [Kim
et al., 2004] to represent the values of contextual featoeeause this model can estimate com-
plex and low-frequency distributions. In our approach heeantextual feature is represented
by a code-book, callefkature code-book and denotedb®, ¥ = 1..6. So a video context is
represented by a set of six feature code-books, calbatext code-book modeland denoted
CB,CB = {c*, k =1.6}. Afeature code-book is composed of a set of code-words ibescr
ing the values of this feature. The number of code-words nigpen the diversity of feature
values.

Code-word definition: A code-word represents the values and their frequencies of a

contextual feature. A code-woiaf code-book: (k = 1..6), denoted-w?, is defined as follows:
ngc = {:U_f> mf’ Mz‘ka fzk} (7)

whereu_f is the mean of the feature values belonging to this code-wafdand M are the
minimal and maximal feature values belonging to this wgffdis the number of frames when

the feature values belong to this word.

Algorithm for Updating Code-word:
- At the beginning, the code-boak” of a context featuré is empty.
- For a valueu? of a contextual featuré computed at time, verify if .~ activates any
code-word in code-book*. ¥ activates code-wordw? if both conditions are satisfied:
+ufisinrange0.7 x m¥, 1.3 x MF].
+ The distance betweem and cw! is smaller than a threshold. This distance is

defined as follows:

distance(uf, cwf) = 1 — M (8)
maz(uf, 1uf)
wherey is the mean value of code-wora?.
- If cb* is empty or if there is no code-word activated, create a naedeamord and insert it
into cb”.
- If ¥ activatessw?, this code-word is updated with the valuedf
The code-words whose valygis lower than a threshold, are eliminated because they are

corresponding to too low frequency feature values. The textnal feature extraction” and
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function contextDistance(c, CB, 1)
Input: context code-book modélB, contexte, [ (number of frames of contex)

Output: context distance between code-book médBland context

countTotal = 0;
For each code-book” in CB (k = 1..6)
count = 0;
For each valug:; of contextc at timet
For each codewordw! in code-bookeb*
if (distance(uf, cwk) < e3) { count++; break;}
if (count /1< 0.5) returnt;

countT'otal + = count;

return( 1 — countTotal /(L % 6) )

Table 1: Function for computing the distance between a gboteEle-bookC' B and a video context

“code-book modeling” steps of a video chunk plays the roltheffunctiong (mapping a video

sequence to its context) presented in hypothesis 2 (sektfion

3.2.3. Context Distance

This section presents how to compute the distance betweentextc and a context code-
book modelCB = {cb*, k = 1..6}. This distance is defined as a function of sub-distances
between context and code-booksb*. This sub-distance is expressed by the number of times
where matching code-words are found. Table 1 presents gioeithim to compute the context

distance in which the functiodistance(u¥, cw?) is defined as in formula (8).

3.3. Tracking Parameter Optimization

The objective of the tracking parameter optimization tasfoifind the values of the control
parameters which ensure the best possible tracking qudafitgach video chunk. This quality
has to be greater than the threshelgresented in hypothesis 2, section 1.1. These parameters
are called “satisfactory parameters”.

This task takes as input annotated objects, annotatedttvags, a tracking algorithm, a

video chunk and control parameters for the considerederadihe annotated objects are used
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as object detection results. This task provides as outpisfaetory parameter values. For
each control parameter, its name, value range and step asugeeded. The step value of a
parameter is defined as the minimal variation which causeméisant change on the tracking

quality. This value helps to avoid scanning the entire patamspace when searching for its
satisfactory values.

Depending on the search space size and the nature of thelgpatameters, we can select
suitable optimization algorithm. If the control parametpace is small, an exhaustive search
[Nievergelt, 2000] or an enumerative search can be usedtotbe values of these parameters.
Otherwise, we can use a genetic algorithm [Goldberg, 19&9éarching satisfactory values.
In some cases, an optimization problem can be converted lasaiftccation problem whose
objective is to optimize the weights of weak classifiers. His tase, the Adaboost algorithm
[Freund & Schapire, 1997] can be used to determine the béstvaf these weights (see
example in [Chau et al., 2011a]). More than one optimizagigorithm can be performed if the
search space or the nature of the control parameters aeeetiff

In order to represent the reliability of the found paramgtdues, we associate them to two
values. The first one is the number of frames of the trainidg@ichunk in which mobile objects
appear (called “number of training frames”). The secondisreeF-Scorevalue representing
the tracking quality of the considered video chunk whilengsihe found tracking parameter
values. Satisfactory parameter values, their reliabviethues and the context code-book model

corresponding to this video chunk are stored into a temgpdearned database.

3.4. Clustering

The clustering step is done at the end of each learning sessien the temporary learned
database contains the processing results of all trainithgod. In some cases, two similar con-
texts can have different satisfactory parameter valuesusescoptimization algorithm only finds
local optimal solutions. Moreover, the context of a videgusence is not sufficient for determin-
ing the best satisfactory tracking parameter values. Atetug) step is thus necessary to group
similar contexts and to compute satisfactory parametaregafor the context clusters. The
clustering step is composed of two sub-steps: contextegingtand parameter computation for
context clusters (see figure 4).

This step takes as input the training videos, the annotdigetts, tracking algorithm and
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Figure 4: The clustering step

annotated trajectories. It also requires the data storékdeiriemporary learned database and
in the learned database resulting from the previous legre@ssions. These data include a set
of contexts or context clusters associated to their satisfg tracking parameter values and
the reliability values of these parameters. This step gagesutput the new context clusters
which are associated to their satisfactory parameter sadne the reliability values of these

parameters.

3.4.1. Context Clustering

For the context clustering step, we use the Quality Threskdlistering (QT clustering)
algorithm [Heyer et al., 1999] due to the following threeseas. First, only clusters that pass
a user-defined quality threshold can be returned. Secorsdalorithm does not require the
number of clusters as input. Third, all possible clusteescaamsidered. However, a diameter
thresholdd is needed to consider whether two contexts can be groupe&dhigher this thresh-
old, the more easily contexts are clustered. This thresbatdbe estimated by defining the
distance metric value between two context code-book madée interval[0, 1].

The distance between a context and a context cluster is defgthe complete linkage (i.e.
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the maximum distance from the context to any context of thster) [Everitt et al., 2001] to
ensure a high reliability for the clustering process. Inftiwing, we present how to compute
the distance between two context code-book models.

- Context Code-book Model Distance

In order to compute the distance between two context cod&-bmdelsC' B, and C Bg,
each feature code-boek” (k = 1..6) of a context is transformed into a histogram whose bin
i corresponds to feature valué of code-wordi, and value of bin is defined ag’* /N where
N is the number of training frames of the code-bogk,is the number of frames in which
code-word; is activated (see section 3.2.2).

The distance between two feature code-books is defined dsattile Mover Distance be-
tween the two corresponding histograms in which the grousiduice between binsand; is
defined asu_f‘ - u_f . The distance between two context code-book models is deéisghe

mean value of the six distances between the six feature lcodlkes.

3.4.2. Parameter Computation for Context Clusters

The objective of the “Parameter Computation for Contexis@ts” sub-step is to compute
satisfactory parameter values for the context clusterss Jiib-step includes two stages: “Pa-
rameter Computation” and “Parameter Verification”.

- Parameter Computation

Once contexts are clustered, all the code-words of thegexisrbecome the code-words of
the created cluster. The satisfactory tracking paramefechister;j, denotedy’, is computed

as follows:

(9)

where©, is the number of contexts belonging to clustep; is satisfactory parameter values of
contexti belonging to this clustery’ is the weight of parameteys and is defined in function
of the two reliability values of;: number of training frames/; andF-Score:

_ N;/N7 +F-Score
B 2

w;

(10)

whereN’ is the total number of training frames of all contexts belaggo context clustey.
The reliability of context clustey is also represented by two values: number of training

framesN’ and a tracking quality score defined as a weighted combimafi&-Score.
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- Parameter Verification:

The objective of the parameter verification stage is to chebkther the parameters of
context clusters resulting from the previous stage (“PatamComputation”) are satisfactory.
For each cluster, this stage takes all training videos lgghgnto this cluster and computes the
tracking performance with the parameters resulting froendrevious stage. For each training
video, if the obtained tracking performance is greater araétp the one computed by its own
satisfactory parameters, these parameters are consitlkengiied”. Otherwise, this video is
removed from the considered cluster. It is then stored séglgrin the learned database. The
context cluster and its satisfactory parameters are repated and re-verified.

At the end of the clustering process, we obtain in the leachdbase a set of context
clusters represented similarly as a context: a context mufd&ix code-books associated to

satisfactory tracking parameter values, number of trgifiames and tracking quality score.

3.5. Training Phase Cost

The training phase cost represents the time needed fordinéiy phase. This cost depends
on the costs from the contextual feature computation, dmide modeling, tracking parameter
optimization and clustering. The contextual features ave domputational using 2D bound-
ing box features. The code-book modeling and clusterirkgstase also not expensive in terms
of processing time. Therefore, the training phase cost lpndsppends on the complexity of
the tracking parameter optimization task. More precisélyepends on the number of control
parameters and their search space size. The cost redustimofold. First, we only control
parameters which significantly influence the tracking dyafecond, we select a suitable opti-
mization algorithm in function of the search space size dnti@nature of control parameters
as analyzed in the tracking parameter optimization task ¢setion 3.3).

We should note that the training phase requires annotatedtskand trajectories as input.
This can be done using public annotated datasets (e.g ETIS&@ar) or a graphical tool (e.g.
Viper?).

http:/Iviper-toolkit.sourceforge.net/
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Figure 5: The controlled tracking task

4. Online Parameter Tuning

In this section, we describe the proposed controller whintsat tuning online the track-
ing parameter values for obtaining satisfactory trackiadgrmance. The parameter adaptation
task takes as input the video stream, the list of detecteectsbpt every frame, the learned
database and gives as output the adaptive tracking panavadtes for every new context de-
tected in the video stream (see figure 5). In the followindieas, we describe the two steps of

this task: the context detection and parameter tuning steps

4.1. Context Detection

An open problem is to detect online the variation of the tnaglcontext. The contextual
features are computed from the result of the object dete¢tisk. In complex cases such as
object occlusions, strong or low illumination intensitigetdetection quality can decrease sig-
nificantly. Also, in some cases, due to the mobile objecttlooa, some wrong detections can
happen within a small number of frames. Figure 6 illustratesh case. Therefore, in order to
detect the context at current time, we need to collect thaeegabf the contextual features in a
large enough number of frames. However if this value is togdathe contextual variation is
slowly detected and thus decreases the speed of the paradapation.

This step takes as input for every frame, the list of the curdetected objects and the

image. For each video chunk bframes, we compute the values of the contextual features.
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Figure 6: The influence of the object detection quality duelgect location (output of [Corvee & Bremond,
2010]): a. Left image: at frame 279, the two persons on the left are wrongly detdztdRight image: at frame

335, the relative position of these two persons is changetltteey are correctly detected.

A contextual change is detected when the context of the muwideo chunk does not belong
to the context cluster (clusters are learned in the offlin@sph of the previous video chunk.
In order to ensure the coherence between the learning phdgbatesting phase, we use the
same distance defined in the learning phase (section 3@8rform this classification. If
this distance is lower than threshdl,, this context is considered as belonging to the context

cluster. Otherwise, the “Parameter adaptation” task isated.

4.2. Parameter Adaptation

The parameter adaptation process takes as input the cometeixt from the “context de-
tection” task, an activation signal and gives as output adapracking parameter values. When
this process receives an activation signal, it looks fordluster in the learned database the
current context belongs to. L&t represent the learned database, a contexia video chunk

of [ frames belongs to a clustét if both conditions are satisfied:

contextDistance(c, C;, 1) < Th (11)

VC; € ©,j#i: contextDistance(c, C;, I) < contextDistance(c, C;, 1) (12)

whereT'h, is defined in section 3.2.1. The functioontextDistance(c, C;, 1) is defined in
table 1. The expression (11) represents the condition (2)ypbthesis 2 (section 1.1). If a
such context clustef’; is found, then according to this hypothesis, the satisfgdi@cking

parameters associated with are good enough for parameterizing the tracking of the atirre

18



video chunk. Otherwise, the tracking algorithm parametiersiot change, the current video

chunk is marked to be learned offline later.

4.3. Processing Time

During the online phase, the processing time depends omtiiext detection and parameter
tuning tasks. The context detection task is fast becauseotn@utation of context features and
context distance are not time consuming. The parametarduask complexity is low because

it depends linearly on the number of clusters belonging éadtfline learned database.

5. Qualitative Comparison with State of the Art Approaches

In the literature, we mention two articles [Caporossi et2004] and [Sherrah, 2010] which
propose a parameter tuning for object tracking. In thisiseate present a qualitative com-
parison between these two approaches and the proposed ameco@parison relies on the

following criteria:

e Online execution: As object tracking plays an important role in camera sulxede as
well as other online applications, this criterion is verypontant for the object tracking
approaches. The approach [Caporossi et al., 2004] needsdytouth data to analyze
the influence of tracking parameters for tracking qualitiiisTapproach cannot be done

online while our proposed approach and [Sherrah, 2010] egreldformed online.

e Requirement of tracking parameter independence:This criterion represents the level
of genericity of a tracker controller. Some approaches parameters independently and
they ignore the relation between the tuned parameter andtktee ones. However this
ignorance is not convenient as the tracking parameterdlysiegpends each other. The
approaches [Caporossi et al., 2004] and [Sherrah, 201Qjrestiis independence while

the proposed approach does not.

e Requirement of unimodality for the tracking quality on para meters: This means
the function of tracking quality on parameters do not hagalmaximum. The approach
[Sherrah, 2010] needs this hypothesis to simply the seagaifithe best parameter value.

Its parameter tuning method is inspired by the first dereatbmputation of the tracking
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Approach [Ca-| Approach [Sher{ Proposed
porossi et al., 2004]| rah, 2010] approach
Online execution No Yes Yes
Requirement of tracking parametelres Yes No
independence
Requirement of unimodality for the- Yes No
tracking quality on parameters
Requirement of ground-truth datares Yes (and with ex4 Yes
in the training pert knowledge)

Table 2: Qualitative comparison of the proposed approath [@iaporossi et al., 2004] and [Sherrah, 2010]

quality function. Our proposed approach does not need typsthesis as we use the

optimization techniques more generic (e.g. exhaustivebeanumerate search).

e Requirement of ground-truth data in the training phase: All the three approaches
require the ground-truth data to train the tracking paransetHowever in the training
phase of Sherrah [2010], the best tracking parameter valdetermined by hand, and

this phase also needs expert knowledge.

Table 2 summarizes the qualitative comparison of the pmgagpproach with the ap-
proaches [Caporossi et al., 2004] and [Sherrah, 2010]. Wethat the parameter control
proposed in this article is more generic and practical thenapproaches [Caporossi et al.,
2004] and [Sherrah, 2010].

6. Experimentation and Validation

The objective of this experimentation is to measure thee#ad robustness of the proposed
control method. We experiment this method with three olj@atkers: an appearance tracker
[Chau et al., 2011a], a tracker based on KLT [Shi & TomasiZ12®d a tracker based on Surf
[Bay et al., 2008].
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6.1. Parameter Setting and Object Detection Algorithm

The proposed control method has three predefined paraméterslistance thresholbh,
to decide whether two contexts are close enough (secti@$ 8nd 4.2) is set t0.5. The
minimum number of framekof a context segment (sections 3.2.1 and 4.1) is s&f foames.
The diameter threshold in QT clustering algorithm (section 3.4.1) is set to 0.3. #ése
values are unchanged for all experiments presented inrtictea

A HOG-based algorithm is used for detecting people [Corvdgr&mond, 2010] in videos.

6.2. Evaluation Metrics

In this experimentation, we select the tracking evaluatiggirics used in several publica-
tions [Xing et al., 2009, Li et al., 2009, Kuo et al., 2010].tK&I" be the number of trajectories
in the ground-truth of the test video. These metrics are ddfas follows:

- Mostly tracked trajectories\(T"): The number of trajectories that are successfully tracked
for more than 80% divided by GT.

- Partially tracked trajectories(I"): The number of trajectories that are tracked between
20% and 80% divided by GT.

- Mostly lost trajectories X/ L): The number of trajectories that are tracked less than 20%
divided by GT.

6.3. Appearance Tracker Control

The appearance tracker [Chau et al., 2011a] takes as inplg@stream and a list of objects
detected in a predefined temporal window. The similarity p&i of detected objects is defined
as a weighted combination of five descriptor similaritie@narea, 2D shape ratio, RGB color
histogram, color covariance and dominant color. An objeat with the highest similarity is
considered as belonging to a same object trajectory.

For this tracker, six parameters are selected for testiagptbposed control method. The
first five parameters are the object descriptor weight¢k = 1..5). These parameters depend
on the tracking context and have a significant effect on theking quality. For the dominant
color descriptor described in [Chau et al., 2011a], the remobdominant colors is required as
an input parameter. This parameter is also influenced byrdlckihg context (for example the

smaller object, the higher the number of dominant coloraikhbe). Therefore we use these
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six parameters as control parameters so that hypothesextlofs 1.1) is ensured. Clearly, the
number of dominant colors is only controlled when the wemfidominant color descriptor is

not null. As the performance of the controller depends omthect detection quality, the online
control process is tested in two cases: with automaticatgcted objects and with manually

annotated objects.

6.3.1. Training Phase

In the learning phase, we use 12 video sequences belongdiffeent context types (i.e.
different levels of density and occlusion of mobile objeatswell as of their contrast with
regard to the surrounding background, their contrast magatheir 2D area and their 2D area
variance). These videos belong to three public datasetSEEF, Caviaf and Gerhontd, to
the European Caretaker projgcand are recorded in different places (see examples in figure
7). The annotated data of object 2D bounding boxes in theogidi®m Caviar and ETISEO
datasets are available on their websites.

Each training video is segmented automatically in a set oteod segments (of different
temporal lengths). The number of context segments depemdseocontextual variation of
the training video. Figure 8 presents the context segmentatsult of sequence ThreePast-
Shop2cor belonging to the Caviar dataset. The values otbBj@ area and 2D area variance
are normalized for displaying. The context of this sequasadivided automatically into six
context segments. For each context segment, satisfaciotsot parameter values are learned.

In the tracking parameter optimization process, we uséfmstAdaboost algorithm to learn
the object descriptor weights (e.g. dominant color weidhit)each context segment because
each object descriptor similarity can be considered as & wleasifier for linking two objects
detected within a temporal window. Secondly, we search #s bumber of dominant colors
(denoted?) in context segments when the dominant color descriptosesiuWe suppose the
value range ot is from 2 to 7 colors. An exhaustive search is performed toifsmitlest value.

Table 3 presents the learned parameter values for the ¢aeigments.

2http://www-sop.inria.fr/orion/ETISEOQ/
3http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
“http://gerhome.cstb.fr/en/
Shttp://cordis.europa.eu/ist/kct/caretakgnopsis.htm
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a. Shooping center b. Building 1 c. Building 2

d. At home e. In a street f. In a subway station

Figure 7: lllustration of some training videos
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—DeJmi‘ty of mobile objedts ~— Object ccciusjicm Object contrast
== (b ;’ec_t_ contrast vaﬂ'ancle =— Object 2D arga Object 2D area vzim'ance
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Figure 8: Context segmentation of sequence ThreePastShofiizlonging to Caviar dataset). The context seg-

ments are separated by the vertical orange lines. The d¢patrameters are then learned for each context segment.
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The first context segment is from frame 1 to frame 300. Thenkshtracking parameters
for this context arav, = 0.21, w3z = 0.46, ws = 0.33, w; = wy = 0, € = 2. In this context
segment, the object occlusion level is very low. The colstdgram is selected as the most
important object descriptor for tracking mobile objectheTobject 2D area variance is quite
high, it means that there exist at the same time objectsgd land small areas. So the 2D area is
also selected as an object descriptor for tracking. Withettistence of objects whose 2D areas
are high, the use of dominant color descriptor is reasorisaause this descriptor discriminates
well large mobile objects. In the second context segmeai(firame 301 to 600), the density
and the occlusion level of mobile objects increase. The danticolor descriptor weight is
higher than the one in previous context segment becauselésiiptor integrated with the
spatial pyramid kernel can manage the object occlusiorsqase [Chau et al., 2011a] for more
details). For context segments 3 and 4, the dominant colecrigor weight is still selected
as the most important descriptor for object tracking. Integhsegment 4, the objects are
smaller, so the number of dominant color descriptor in@s&®m 2 to 3 to better discriminate
the objects. In context segment 5, the value of object 2D deeaeases significantly. While
the dominant colors between small objects might be sintiter,color histogram descriptor is
reliable because this descriptor takes into account adllpizelonging to objects. Therefore, in
this context segment, the weight of the dominant color detmrdecreases from 0.83 to 0.33,
and the color histogram descriptor reliability increasesf O to 0.34. The color covariance
descriptor is also used for solving the occlusion caseswbecur frequently in this context
segment. In the last context segment, the object 2D areanaincreases, therefore the object
2D area descriptor is selected again with the weight 0.2.

After segmenting the 12 training videos, we obtain 58 casteRy applying the clustering
process, 21 context clusters are created. Table 4 prekeriesatned control parameters for each
cluster. The shape ratio descriptor is defined as the ratiwda®m object 2D width and height.
This descriptor is never selected in the context clustecadrge it cannot well discriminate the
mobile objects in these training videos.

The cost of this training phase mainly depends on the trggk@mameter optimization time.
This phases requires about 8 hours for 60.24 minutes ofrigaindeos corresponding to 18071
frames and 165 mobile objects. This is done with an Intel(B)i{R) CPU E5430 @ 2.66GHz
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Learned control parameter values
Context | From | To wq Wo ws (RGB | wy (Color| ws (Dom-| € (Number
segment frame | frame | (Shape (2D | color his-| covari- inant of dominant
ratio) | area) | togram) | ance) color) colors)
1 1 300 |0 0.21 | 0.46 0 0.33 2
2 301 (600 |O 022 |0 0.01 0.77 2
3 601 |[700 |O 0 0 0 1 2
4 701 (800 |O 0 0.17 0 0.83 3
5 801 |1350 |0 0 0.34 0.33 0.33 2
6 1351 | 1510 | O 0.20 | 0.20 0.20 0.40 2

Table 3: Learned control parameter values for the sequem@zPastShop2cor (belonging to Caviar dataset). The

most important object descriptor weights are printed bold.

(4 cores) and of 4GB RAM.

6.3.2. Testing Phase

- Controller Experimentation with Automatically Detected Objects

1. Caviar Dataset

The processing Caviar videos have 26 sequences in whicluéisegs belong to our training
video set. The other 20 sequences including 143 mobile tshpgre used for testing. The
proposed controller is experimented in two cases to showlitsstness. In the first case, only
five object descriptor weights are considered for tuning; riamber of dominant color® is
set by default to 2. In the second case, all the six paramatersonsidered for tuning. Table
5 presents the tracking results of the proposed approacbfeswme recent trackers from the
state of the art. In the first case, the proposed controltzeases significantly the performance
of the appearance tracker. Th&T value increases from 78.3% to 84.6% and & value
decreases from 5.2% to 5.1%. In the second case, when thagtara is also tuned by the
controller, the tracking performance continues to be impdo TheM T value increases from
84.6% to 85.7% and theM L value decreases from1% to 3.0%. We obtain the best/T" value
compared to state of the art trackers.

In the rest of the article, we only present the results of treroller while tuning all the six
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Learned Control Parameter Values
Context | w; (Shape| w, (2D | w3 (RGB| w, (Color|ws (Domi-| & (Num-
cluster | ratio) area) color covariance)| nant color) | ber of
Id histogram) dominant
colors)
1 0 0.20 0.14 0.10 0.56 2
2 0 0.21 0.45 0 0.34 2
3 0 0.08 0.05 0.12 0.75 2
4 0 0.12 0.17 0.03 0.68 2
5 0 0.12 0.16 0.11 0.61 2
6 0 0.11 0.19 0.07 0.62 2
7 0 0 0.66 0 0.34 3
8 0 0.15 0.15 0 0.69 2
9 0 0.14 0.16 0.17 0.52 2
10 0 0 1 0 0
11 0 0 1 0 0
12 0 0.05 0.86 0 0.09 3
13 0 0.14 0.39 0.17 0.3 4
14 0 0 1 0 0
15 0 0 1 0 0
16 0 0 1 0 0
17 0 1 0 0 0
18 0 0 1 0 0
19 0 0 1 0 0
20 0 0.01 0 0.13 0.86 2
21 0 0.1 0 0.15 0.75 2

Table 4: Result of the training phase for the appearanckdra2l context cluster are created. The most important

object descriptor weights are in bold.
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Method MT (%) | PT (%) | ML (%)

[Wu & Nevatia, 2007] 75.7 17.9 6.4
[Huang et al., 2008] 78.3 14.7 7.0
[Xing et al., 2009] 84.3 12.1 3.6
[Lietal., 2009] 84.6 14.0 1.4
[Kuo et al., 2010] 84.6 14.7 0.7

Appearance Tracker [Chau et al., 2011a] without the pro8.3 16.5 5.2

posed controller

Appearance Tracker [Chau et al., 2011a] with the control ®4.6 10.3 51

object descriptor weights

Appearance Tracker [Chau et al., 2011a] with the conq 85.7 11.3 3.0

trol of object descriptor weights and number of domi-

nant colors

Table 5: Tracking results on the Caviar dataset. MT: Mostigked trajectories, higher is better; PT: Partially
tracked trajectories; ML: Mostly lost trajectories, lowsibetter. The proposed controller improves significantly

the tracking performance. The best values are printed in red
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parameters (i.@; with : = 1..5 and¢).

2. PETS Video

The video of the second test belongs to the PETS dataset BBIBS videos are not used
for learning. We select the sequencelS2 camera view 1, time 12.34 for testing because this
sequence is experimented in several state of the art tracRéris sequence has 794 frames,
contains 21 mobile objects and several occlusion casesigsee 9a.).

In this test, we use the tracking evaluation metrics presemt [Kasturi et al., 2009] to
compare with other tracking algorithms. The first metric IAXAverage Tracking Accuracy)
which computes the average accurate tracking time per objde second metric is MOTP
(Multiple Object Tracking Precision) which is calculatedrh the spatio-temporal overlap be-
tween the ground-truth trajectories and the algorithmipoutrajectories. The third metric is
MOTA (Multiple Object Tracking Accuracy) which penalizdsetnumber of missed detection,
false positives and switches in the output trajectory favamgreference ground-truth trajectory.
All the three metrics are normalized in the inter{@l 1]. The higher these metrics, the better
the tracking quality is.

For this sequence, the controller selects the parametsegiated to context cluster 6 for
tracking. The dominant color descriptor is selected as tbstimportant descriptor for tracked
objects because this descriptor can well handle the obgattision cases. With the proposed
controller, the tracking result increases significantlgbl€ 6 presents the metric results of the
proposed approach and of different trackers from the sfateecart. The metrid// represents
the average value of the three metrics. With the proposettaltar, we obtain the best values
in metrics ATA, MOTP andV/. The MOTA value of our approach (0.75) gets the second rank
due to some missed detection.

3. Vanaheim Video

The video of the third test belongs to the European Vanahenpeqt (see figure 9b). Vana-
heim videos are not used for learning. The test sequencaiosr36006 frames and lasts 2
hours. Table 7 presents the performance of the proposedagpand three recent trackers

from state of the art.
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Figure 9: Illustration of two test videos: a. PETS and b. \fagim

For this sequence, the proposed controller improves thHenpeance of the tracker [Chau
et al., 2011a]. TheV/T value increases from 55.26% to 60.53%. TMhd. value decreases
significantly from 13.16% to 2.63%. The tracking result witle proposed controller gets the

best quality among the trackers presented in table 7.

- Controller Experimentation with Manually Annotated Obje cts

All the six context feature values depend on the object bmgndoxes. The training phase
is performed with annotated objects, so a low quality obgetection in the online phase de-
creases the quality of the context detection. So, one drekvbiethe proposed controller is the
dependence of its performance on the object detectiontguhlithis section, manually anno-
tated objects are used for testing the controller. This expnt helps to better evaluate the
proposed controller performance because the errors oftijeetadetection task are eliminated.
We test two video sequences. The first one is the OneStopMuw&sEEor sequence belonging
to the Caviar dataset. The second one is the Vanaheim vigesimented previously.

Table 8 summarizes the obtained tracking results (withodtveith the controller) on these
two sequences in two cases: using automatically detecjedtsland using manually annotated
objects. For the OneStopMoveEnter2cor sequence, theatientincreases thé/ 7" value by
18.18% (from 72.73% to to 90.91%) in the second case and onl9.@% (from 72.73%
to 81.82%) in the first case. For the Vanaheim sequence, isd¢bend case, the controller
increases thé/ 7" value by 7.53% (from 92.47% to 100%) compared to 5.27% in tedase.

From this analysis, we conclude that the improvement of theking performance using

controller is more significant on manually annotated olgjétan on automatic detected objects.
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Method ATA MOTP | MOTA | M

[Arsic et al., 2009] 0.02 0.46 0.41 0.30
[Berclaz et al., 2009] 0.14 0.50 0.56 0.40
[Breitenstein et al., 2009] 0.30 0.60 0.74 0.55
[Ge & Collins, 2009] 0.04 0.46 0.65 0.38
[Alahi et al., 2009] 0.04 0.53 0.61 0.39
[Conte et al., 2010] 0.09 0.64 0.83 0.52

Appearance Tracker [Chau et al., 20114).26 0.63 0.62 0.50
without the proposed controller
Appearance Tracker [Chau et al., 2011a]| 0.31 0.69 0.75 0.58

with the proposed controller

Table 6: Tracking results on the sequence S2.L1, cameraljegquence time 12.34. The proposed controller

improves significantly the tracking performance. The besiies are printed in red.
It means that the controller performance is proportionéh&object detection quality.

6.4. KLT Tracker Control

The KLT tracker relies on the tracking of Kanade-Lucas-Ten{&LT) features [Shi &
Tomasi, 1994]. The KLT tracker takes detected objects astinphe object tracking relies on
the number of matching KLT features over time between thealetl objects. For the KLT
tracker, we find two parameters depending on the trackingegtinthe minimum distance be-
tween KLT feature pointsn and the size of feature windoW (see the definition ofl” at
formula (3) of [Shi & Tomasi, 1994]). For example, in the cas®bject occlusion, the values
of m should be low to detect a high enough number of KLT features&ch object. When ob-
ject 2D area is large, the valuesmafandi¥ should be high to take into account whole object.
Therefore these two parameters are selected for expermgeht proposed control approach
so that hypothesis 1 (section 1.1) is ensured. We train theater for this tracker on the same
12 training video sequences presented in section 6.3.120I@aviar videos (not belonging to

the training sequences) are used for testing.
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Method #GT MT (%) | PT (%) | ML (%)
[Chau et al., 2011Db] 38 10.53 13.16 76.31
[Souded et al., 2011] 38 44.74 42.11 13.15
Appearance Tracker [Chau et al., 201188 55.26 31.58 13.16
without the proposed controller

Appearance Tracker [Chau et al.,| 38 60.53 36.84 2.63
2011a] with the proposed controller

Table 7: Tracking results on the Vanaheim video. #GT dentitesnumber of ground-truth trajectories. The

proposed controller improves significantly the trackingfpenance. The best values are printed in red.

Sequence Method #GT| MT(%)| PT(%)| ML(%)

Using OneStopMove-Without the pro-| 11 | 72.73 | 18.18 | 9.09
posed controller

automatically | Enter2cor With the pro- | 11 | 81.82 | 18.18| 0
posed controller

detected Vanaheim Without the pro-| 38 | 55.26 | 31.58 | 13.16
posed controller

objects With the pro- | 38 | 60.53 | 36.84 | 2.63
posed controller

Using OneStopMove-Without the pro-| 11 | 72.73 | 27.27 | 0
posed controller

manually Enter2cor With the pro- |11 |90.91 |9.09 |0
posed controller

annotated Vanaheim Without the pro-| 38 | 92.47 | 753 |0
posed controller

objects With the pro- | 38 | 100 0 0
posed controller

Table 8: Results of the appearance tracker for the OneStepEtder2cor and Vanaheim video sequences in two

cases: using detected objects and using annotated objeetsontroller improves the tracking performance more

significantly in the second case. Best values are in red.

31




10

Value

10 11 12 13 14 15 16 17 18 19 20 21
Cluster ID

o B N W s o O N 0O

Figure 10: Result of the training phase of control paransetéthe KLT tracker

Method MT (%) | PT (%) | ML (%)
KLT Tracker without the proposed controller 74.4 13.4 12.2

KLT Tracker with the proposed controller 80.0 13.3 6.7

Table 9: Tracking results on the Caviar dataset. Our cdetrishproves significantly the tracking performance.

6.4.1. Training Phase

We suppose that the minimum distangecan get the values 3, 5, 7, 9 pixels and the feature
window sizelV can get the values 5, 10, 15 pixels. In the tracking parancgiemization,
due to the small space of control parameters, we use an eativeesearch to learn satisfactory
parameter values for each context. Figure 10 presentsdhmelé control parameter values for

each context cluster.

6.4.2. Testing Phase

Table 9 presents the tracking results for 20 test Caviarogde both cases: without and
with the proposed controller. In the first case, the valuesi@nd |V are set by default t6.
While using the proposed controller, the tracking perfanmo®ais increased significantly. The
MT value increases by 5.6% (from 74.4% to 80%) andthé value decreases from 12.2%
to 6.7%. Compared to the improvement of th&/” value for the appearance tracker which is
7.4% (from 78.3% to 85.7%, see table 5), the controller perémce for the KLT tracker is
less significant because fewer parameters are controlibthase parameters influence less the

tracking quality. Also, they depend less on the trackingexin
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6.5. Surf Tracker Control

The Surf tracker relies on the tracking of Surf (Speeded UpuRbFeatures) [Bay et al.,
2008]. Similar to the KLT tracker, the Surf tracker takesedétd objects as input. The object
tracking relies on the number of matching Surf features twes between the detected objects.

For the Surf tracker, we consider two parameters:

e Hessian threshold: This is a threshold for the key point detector. Only feasyurehose
hessian is larger than Hessian threshold are retained ldeteetor. Therefore, the larger

the value, the less key points are detected.

e Number of octave layera: The number of images within each octave of a Gaussian

pyramid.

We train the controller for this tracker on the same 12 tragniideo sequences presented in
section 6.3.1. The two videos belonging to PETS datamsd TUD dataset [Andriluka et al.,

2010] are used for testing. These two datasets are not usled iraining phase.

6.5.1. Training Phase

We suppose that the Hessian thresholchn get the values 100, 300, 500 and the number
of octave layers: can get the values 2, 4, 6. In the tracking parameter opttinizadue to the
small space of control parameters, we use an enumeratikehdedearn satisfactory parameter
values for each context.

Similar to the training phases of the previous trackers,&iext clusters are created. We
compute then satisfactory tracking parameters for eactkexboluster. Figures 11 and 12
present respectively the training results of the pararmeteHessian threshold and the number
of octave layers for 21 context clusters. For each contetet, satisfactory tracking param-
eters are defined as weighted combinations of the ones oéxtsribelonging to that cluster.
Therefore the learned values of control parameters canftegatit from the values which are

initially determined. For example, the learned hessiaasiold value of context cluster 3 is

Shttp://www.cvg.rdg.ac.uk/PETS2013/a.html
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Figure 11: Training results of the Hessian threshold patanfer 21 context clusters
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Figure 12: Training results of the parameter of number cheetayers for 21 context clusters

200; the learned number of octave layers of context cluster®% From cluster 1 to 9, the
learned pamrameter values are quite different each othieis nieans that these two control

parameters are influenced by the tracking context.

6.5.2. Testing Phase

In the testing phase, when the controller is not used, theevall hessian threshold is set to
100, and the value of number of octave layers is set to 2. Tinesealues are selected because
they are determined as the satisfactory values for manyexgbalusters in the training phase.

1. PETS Video

This PETS video is also the one tested at section 6.3.2trHitisn of this video is presented
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Methods MOTA | MOTP| M

[Berclaz et al., 2011] 0.80 | 0.58 | 0.69
[Shitrit et al., 2011] 0.81 | 0.58 | 0.70
[Henriques et al., 2011] 0.85 0.69 | 0.77

Surf tracker [Bay et al., 2008] without the proposed comgrol| 0.80 | 0.66 | 0.73
Surf tracker [Bay et al., 2008] with the proposed controller| 0.86 0.69 | 0.78

Table 10: Tracking results on the PETS sequence S2.L1, eam@w 1, time 12.34. MOTA: Multiple Object
Tracking Accuracy; MOTP: Multiple Object Tracking Precisi(higher is better). The best values are printed in

red.

at figure 9a. Table 10 presents the metric results of the gexpapproach and of different track-
ers from the state of the art. While using the proposed cbatrohe tracking result increases
significantly. The value of MOTA increases 0.80 to 0.86; taie of MOTP increases 0.66 to
0.69; and the value af/ increases 0.73 to 0.78. The obtained values are the besiacedm

the ones presented in the table.

2. TUD dataset

For the TUD dataset, we select the TUD-Stadtmitte sequesrcee$ting. This video con-
tains only 179 frames and 10 objects but it is very challeggine to heavy and frequent object
occlusions. For this sequence, the controller selectsegbictuster 13 in which parameters
h = 281, n = 2 are used for parameterizing the tracking process. With bigthvalue ofh,
the number of detected Surf points is small. In this trackertake the detected objects as input
and compute Surf points in corresponding 2D bounding bokeshe case of high occlusion
level as in this video, object bounding boxes may containraqiather objects. A low number
of detected Surf points helps to decrease the distributidhese points on different objects.
The tracking quality is then better.

Figures 13 to 16 illustrate the tracking output in two caseshout controller (figures 13
and 14) and with the proposed controller (figures 15 and 1&jlathere is a ID switch between
two persons (marked my arrows) in the first case, this errsoliged in the second case. Table

11 presents the tracking results of the proposed approatihaee recent trackers from the

35



Figure 13: Frame 51, without controller: Per- Figure 14: Frame 70, without controller: Per-
sons 6 and 467 are tracked correctly before thesons 6 and 467 switch their ids after their occlu-

occlusion

Figure 15: Frame 51, with the proposed con- Figure 16: Frame 70, with the proposed con-
troller : Persons 75 and 519 are tracked correctlyoller : Persons 75 and 519 are still tracked cor-

before their occlusion rectly after their occlusion

state of the art. While using the proposed controller, thewdllie increases significantly 50%

to 70%. Also the obtained/T" value is the best compared to these three trackers.

In all the testing video sequences and for three trackezghine processing time increases

only slightly (less than 10%) when the controller is used.

7. Conclusion

In this article, we have presented a new control approacholfipect tracking which is

generic, flexible and intelligent. More precisely in ordercope with tracking context vari-

ations, this approach learns how to tune the parameteracKing algorithms. The tracking

context of a video sequence is defined as a set of six featdeesity of mobile objects, their
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Methods MT(%) | PT(%) | ML(%)
[Kuo & Nevatia, 2011] 60.0 30.0 10.0
[Andriyenko & Schindler, 2011] 60.0 30.0 10.0
Surf tracker [Bay et al., 2008] without the proposed comgrol 50.0 10.0 40.0
Surf tracker [Bay et al., 2008] with the proposed controller| 70.0 10.0 20.0

Table 11: Tracking results for the TUD-Stadtmitte sequeME Mostly tracked trajectories, higher is better; PT:

Partially tracked trajectories; ML: Mostly lost trajecies, lower is better. The best values are printedkioh

occlusion level, their contrast with regard to the surrangdackground, their contrast vari-
ance, their 2D area and their 2D area variance. In an offlias@iwe learn satisfactory tracking
parameters for context clusters. In the online control phasce a context change is detected,
the tracking parameters are tuned using the learned valesmethod is able to control track-
ers belonging to two different categories (appearanc&ittg@and point tracking). Moreover,
other tracker category can still be controlled by adaptirgdontext notion to the tracker prin-
ciple (for example to control silhouette-based trackers,can add the object rigidity feature
to the context). The training and testing phases are not tomsuming. The proposed ap-
proach has been experimented with three trackers on a longplex video and on three public
datasets (Caviar, PETS and TUD). The experimental redudis 8 significant improvement of
the performances while using the proposed controller.

In future work, we will extend the context notion which shddde independent from the
object detection quality. Also, the proposed control apphoshould be able to interact with the
object detection task to improve the detection quality. Afiree mechanism for updating the

learned database is also necessary to increase the pant@mwithe proposed approach.
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