
Online Parameter Tuning for Object Tracking Algorithms

Duc Phu CHAU, Monique THONNAT, François BREMOND and Etienne CORVEE
{Duc-Phu.Chau, Monique.Thonnat, Francois.Bremond, Etienne.Corvee}@inria.fr

STARS team, INRIA Sophia Antipolis - Méditerrańee
2004 route des Lucioles, 06560 Valbonne, France

Abstract

Object tracking quality usually depends on video scene conditions (e.g. illumination, density of

objects, object occlusion level). In order to overcome thislimitation, this article presents a new

control approach to adapt the object tracking process to thescene condition variations. More

precisely, this approach learns how to tune the tracker parameters to cope with the tracking

context variations. The tracking context, or context, of a video sequence is defined as a set of

six features: density of mobile objects, their occlusion level, their contrast with regard to the

surrounding background, their contrast variance, their 2Darea and their 2D area variance. In

an offline phase, training video sequences are classified by clustering their contextual features.

Each context cluster is then associated to satisfactory tracking parameters. In the online control

phase, once a context change is detected, the tracking parameters are tuned using the learned

values. The approach has been experimented with three different tracking algorithms and on

long, complex video datasets. This article brings two significant contributions: (1) a classifica-

tion method of video sequences to learn offline tracking parameters, (2) a new method to tune

online tracking parameters using tracking context.

Keywords:

Object tracking, online parameter tuning, controller, self-adaptation, machine learning

1. Introduction

Mobile object tracking plays an important role in an increasing number of computer vision

applications (e.g. home care, sport scene analysis and visual surveillance). The object tra-

jectories are useful for activity recognition, learning ofinterest zones or paths in a scene and

detection of events of interest. Unfortunately the tracking quality depends on many factors: the

quality of vision tasks performed at lower levels such as object detection, object classification,

Preprint submitted to Image and Vision Computing January 13, 2014

or by some video features such as complexity of object movements, scene illumination inten-

sity, low contrast, high density and occlusion frequency ofmobile objects. In particular, for

a long video sequence (i.e. several hours) in which the variations of these properties happen

frequently, the tracking quality is still an issue. The problems we focus on are the following:

How can an automatic system robustly track mobile objects indifferent conditions and situa-

tions such as the ones cited above. And in those complex cases, how can the user regulate the

tracking parameters to get an optimal tracking quality?

In order to answer these two questions, we propose in this article a new method for control-

ling tracking algorithms. The objective of the proposed method is to define an automatic control

algorithm which is able to adapt online the tracking task to the scene variations in a video se-

quence by tuning the tracking parameters over time. We aim tobuild a control algorithm which

is: generic, flexible and intelligent. The term “generic” means that our method can handle

different tracking algorithm categories. In this work, ourobjective is to control tracking al-

gorithms which rely on object appearance or points of interest. These algorithms are selected

because their approaches are largely studied in the state ofthe art. The term “flexible” implies

that the structure of the proposed control algorithm can be adapted for handling other tracking

algorithm category (e.g. object silhouette-based tracking). The term “intelligent” means that

this approach requires less human interaction than the control methods in the state of the art.

1.1. Hypotheses

The control method presented in this manuscript relies on the two following hypotheses:

1. The considered tracking algorithms have at least one tunable parameter which influences

significantly the tracking quality.

2. There exists a number of contexts which have an impact on the tracking quality. Letg

be a function mapping a videovi to its context. For a tracking algorithmT, we suppose

that there exists a functionfT mapping a video context to satisfactory tracking parameter

values (i.e. parameter values for which the tracking quality is greater than a predefined

thresholds):

∀vi, ∃f : |Q(OT(fT ◦ g(vi)), Gvi
)| > s (1)

whereGvi
represents the tracking ground-truth data of videovi; OT(.) represents the

2

output of trackerT corresponding to given parameter values;Q(OT(.), Gvi
) represents

the quality of trackerT output compared to the tracking ground-truth data of videovi.

Let ǫ1, ǫ2 be predefined thresholds. The functionf is assumed to satisfy the following

property if the temporal lengths ofv1 andv2 are short enough (lower than 50 frames):

∀v1, v2 : if |g(v1) − g(v2)| < ǫ1 (2)

=> |Q(OT(fT ◦ g(v1)), Gv1
) − Q(OT(fT ◦ g(v2)), Gv2

)| < ǫ2 (3)

This hypothesis means that if the contexts of two videosv1 andv2 are close enough, the

tracking performances forv1 andv2 corresponding to their satisfactory tracking parameter

values are also close enough.

The hypothesis 2 is given for two objectives. First, we can compute the satisfactory

tracking parameter values for a video context cluster usingsatisfactory parameters of

contexts (see section 3.4.2). Second, the satisfactory tracking parameters for context

clusters can be used for tuning online the tracking parameters (see section 4.2).

1.2. Article Organization

This article is organized as follows. Section 2 presents a state of the art on control methods.

Section 3, entitled “learning phase”, details a scheme to learn satisfactory tracking parameters

for each video context cluster. Section 4 describes the online parameter tuning process. Section

5 is dedicated to the experimentation and validation of the proposed method. Section 6 presents

concluding remarks as well as future work.

2. State of the Art

Many approaches have been proposed to track mobile objects in a scene [Yilmaz et al.,

2006]. Depending on taxonomy criteria, the trackers can be classified into different categories.

Figure 1 presents a taxonomy example (the red ellipses mark the tracker categories controlled

by the proposed method). However the quality of tracking algorithms always depends on scene

properties such as: mobile object density, contrast intensity, scene depth and object size. The

selection of a tracking algorithm for an unknown scene becomes a hard task. Even when the

tracker has already been determined, it is difficult to tune online its parameters to get a high

performance.

3

Figure 1: Taxonomy of tracking methods (adapted from [Yilmaz et al., 2006]). The red ellipses mark the tracker

categories controlled by our method.

The idea about an automatic control to adapt the performanceof a system to the problem

of scene variations has already been studied. However some methods limit their studies to

static image and not to video processing. For example the authors in [Thonnat et al., 1999]

present a framework which is able to integrate expert knowledge and uses it to control the

image processing programs. The framework is experimented on three different applications:

road obstacle detection, medical imaging and astronomy. Byconsidering both context and

evaluation criteria, the system can find the best algorithm among a predefined algorithm set and

tune its parameters to obtain the best possible performance. However, the construction of a

knowledge base for this system requires a lot of time and data.

The authors in [Georis et al., 2007] present a controlled video understanding system based

on a knowledge base. The system is composed of three main components in which the control

component performs several steps for managing all the online processes of the system (e.g pro-

gram execution and automatic parameter tuning). Differentrules are defined in this component

based on user goal, contextual information and evaluation results. However their approach does

not address directly the tracking task.

Some methods have addressed the tracking parameter tuning,however their approaches

require too strong hypotheses and expert knowledge. For example, the author in [Sherrah, 2010]

proposes an approach to tune automatically tracking algorithm parameters. In this approach, the

4

tracker quality is represented as a function of tuned parameters. The author supposes that this

function has no local optimal solutions. Using this hypothesis, for each parameter and a training

video, the author determines its optimal value thanks to expert knowledge. Then the parameter

tendency (i.e. increase or decrease) for converging to the optimal value is learned in function of

the tracker input and output. This learned parameter tendency is used in the online phase to tune

automatically the corresponding parameter to improve the tracking performance. In [Caporossi

et al., 2004], the authors compare the tracker results with corresponding ground-truth data to

determine the importance of each parameter for each contextand to exploit the influence of each

parameter variation on tracker performance. The authors suppose that parameter variations are

independent. This is a strict hypothesis because the parameters are usually dependent on each

other. In [Chau et al., 2011a], the authors propose a tracking algorithm whose parameters can be

learned offline for each tracking context. However the authors suppose that the context within

a video sequence is fixed over time. Moreover, the tracking context is manually selected.

Some approaches have been proposed to decrease the need of expert knowledge [Hall, 2006,

Santner et al., 2010], however they are expensive in term of processing time and their perfor-

mance are dependent on an automatic tracking evaluation. For example, in [Hall, 2006], the

author proposes two strategies to regulate the parameters for improving the tracking quality. In

the first strategy, the parameter values are determined using an enumerative search. In the sec-

ond strategy, a genetic algorithm is used to search for the best parameter values. This approach

does not require human supervision and parameter knowledgefor controlling its tracker. How-

ever, it is computationally expensive because of the parameter optimization performed in the

online phase. Moreover, this approach requires an online tracking evaluation (without ground-

truth data) to verify the performance of the tracker when using the found parameters. This can

decrease the approach performance. In [Santner et al., 2010], the authors present a tracking

framework which is able to control a set of different trackers to get the best performance. The

system runs three tracking algorithms in parallel: normalized cross-correlation (NCC), mean-

shift optical flow (FLOW) and online random forest (ORF). FLOW is used as a main tracker.

If the tracker quality of ORF is better, FLOW is replaced by ORF. When NCC quality is better

than the one of ORF, it takes the main role. The approach is interesting but the authors do

not mention how to estimate online the tracker quality. Also, the execution of three trackers in

5

parallel is very expensive in terms of processing time.

2.1. Discussion

As analyzed above, many approaches whose objective is to control the tracking process have

been studied in state of the art. These methods have the following issues.

The first issue relates to the context notion. While some methods study context for static im-

age applications [Thonnat et al., 1999], to our knowledge, there are no approach which proposes

a formal definition for object tracking context.

The second issue is about the generic level of the control methods. Some approaches need

too strong hypotheses on the relation between the tracking quality and tracking parameters

[Sherrah, 2010] or on the independence between tracking parameters [Caporossi et al., 2004].

Some other methods require expert knowledge [Thonnat et al., 1999, Chau et al., 2011a] for

building knowledge base or for tuning parameters. These requirements reduce the genericity of

these approaches.

The third issue pertains to the feasibility of these studies. Some approaches are expensive

in term of processing time [Hall, 2006, Santner et al., 2010].

In this article, we propose a control method for object tracking algorithms addressing these

issues. In this article, the control trackers belong to “Appearance tracking” or “Point tracking”

(see figure 1). These tracker categories are selected because they are the most popular ones and

are largely studied in the state of the art. Our proposed method includes two phases: an offline

learning phase and an online parameter tuning. The next sections present in detail the steps of

these two phases.

3. Offline Learning Phase

The objective of the learning phase is to create a database which supports the control process

of a tracking algorithm. This database contains satisfactory parameter values of the tracking

algorithm for various scene conditions.

This phase takes as input training video sequences, annotated objects, annotated trajectories,

a tracking algorithm including its control parameters. Theterm “control parameters” refers to

parameters which are considered in the control process (i.e. to look for satisfactory values in

the learning phase and to be tuned in the online phase). In this work we consider only numerical

6

Figure 2: The offline learning scheme

parameters, however the proposed method can be applied alsoon symbolic parameters. At the

end of the learning phase, a learned database is created (if this is the first learning session) or

updated (if not). A learning session can process many video sequences. Figure 2 presents the

proposed scheme for building and updating the learned database.

The notion of “context” (or “tracking context”) in this workrepresents elements in the

videos which influence the tracking quality. More precisely, a context of a video sequence

is defined as a set of six features: density of mobile objects,their occlusion level, their con-

trast with regard to the surrounding background, their contrast variance, their 2D area and their

2D area variance. For each training video, we extract these contextual features from annotated

objects and then use them to segment the training video in a set of consecutive chunks. Each

video chunk has a stable context. The context of a video chunkis represented by a set of six

code-books (corresponding to six features). An optimization process is performed to determine

satisfactory tracking parameter values for the video chunks. These parameter values and the

set of code-books are inserted into a temporary learned database. After processing all training

videos, we cluster these contexts and then compute satisfactory tracking parameter values for

context clusters.

In the following, we describe the four steps of the offline learning process: (1) contextual

feature extraction, (2) context segmentation and code-book modeling, (3) tracking parameter

optimization and (4) clustering (composed of two sub-steps: context clustering and parameter

computation for context clusters).

7

3.1. Contextual Feature Extraction

For each training video, the context feature values are computed for every frame.

3.1.1. Density of Mobile Objects

The density of mobile objects influences significantly the tracking quality. A high density

of objects may lead to a decrease of object detection and tracking performance. The density of

mobile objects at instantt is defined by the sum of all object areas over the 2D camera view.

3.1.2. Occlusion Level of Mobile Objects

The occlusion level of mobile objects is the main element which influences the tracking

quality. An occlusion occurrence makes the object appearance partially or completely not vis-

ible. It decreases the object detection and tracking performance. In particular, the variation

of object occlusion level over time is even more challengingbecause the coherence of object

appearance changes significantly. Given two objectsi, j at instantt of respectively 2D areasai
t

andaj
t , we compute their occlusion level based on their area overlap as follows:

olkt =
aij

t

min(ai
t, a

j
t)

(4)

wherek denotes the index value of this occlusion in the set of occlusions occurring at timet, aij
t

is the overlap area of objectsi andj at t. Two objectsi andj are considered as in an occlusion

state ifolkt is greater than a predefined threshold. LetNt be the number of object occlusion

occurrences at instantt, olkt is the occlusion level of casek (k = 1..Nt). The occlusion level of

mobile objects in a scene at instantt, denotedot, is defined as follows:

ot = min(

∑

Nt

k=1
olkt × 2

nt

, 1) (5)

wherent is the number of mobile objects att. The multiplication by 2 in the formula is explained

by the fact that an occlusion occurrence is related to two objects.

3.1.3. Contrast of Mobile Objects

The contrast of an object is defined as the color intensity difference between this object and

its surrounding background. LetBi = {Ci, Wi, Hi} be the 2D bounding box of objecti where

Ci, Wi andHi are respectively its 2D center, width and height. We define anextra bounding

box of objecti: B+
i = {Ci, Wi + γMi, Hi + γMi} whereMi = min(Wi, Hi), γ is a

8

Figure 3: Illustration of the object contrast variation over space (a.) and over time (b. and c.)

predefined value in interval[0, 1]. The surrounding background of objecti is defined as the

areaBi = B+
i \ Bi.

An object with low contrast reduces first the object detection quality. Second, this decreases

the discrimination of the appearance between different objects. So the quality of tracking algo-

rithms which rely on object appearances decreases in this case. The contrast of an object can

vary due to the change of its spatial location (see figure 3a.)or over time (see figure 3b. and

c.). The contrast of mobile objects at instantt is defined as the mean value of the contrasts of

objects at instantt.

3.1.4. Contrast Variance of Mobile Objects

When different object contrast levels exist in the scene (see figure 3a.), a mean value cannot

represent correctly the contrast of all objects in the scene. Therefore we define the variance of

object contrasts at instantt as their standard deviation value:

ĉt =

√

√

√

√

1

nt

n
∑

i=1

(ci
t − c̄t)2 (6)

whereci
t is the contrast value of objecti at t, c̄t is the mean value of all object contrasts att.

3.1.5. 2D Area of Mobile Objects

2D area of an object is defined as the number of pixels within its 2D bounding box. There-

fore, this feature also characterizes the reliability of the object appearance for the tracking pro-

cess. Greater the object area is, higher the object appearance reliability is. The 2D area feature

value att is defined as the mean value of the 2D areas of mobile objects atinstantt.

9

3.1.6. 2D Area Variance of Mobile Objects

Similar to the contrast feature, we define the variance of object 2D areas at instantt as their

standard deviation value.

3.2. Context Segmentation and Code-book Modeling

3.2.1. Context Segmentation

The contextual variation of a video sequence influences significantly the tracking quality.

Therefore it is not optimal to keep the same parameter valuesfor a long video. In order to solve

this issue, we propose an algorithm to segment a training video in consecutive chunks, each

chunk is defined as having a stable context (i.e. the values ofa same context feature in each

chunk are close to each other). This algorithm is described as follows.

1. The training video is segmented in parts ofl frames. The last part can have a temporal

length lower thanl. The value ofl should be low enough (e.g. 50 frames) so that each

video part has a stable enough context.

2. The contextual feature values of the first part is represented by a context code-book model

(see more details in section 3.2.2).

3. From the second video part, we compute the context distance between the current part

and the context code-book model of the previous part (see more details in section 3.2.3).

If their distance is lower than a thresholdTh1 (e.g.0.5), the context code-book model is

updated with the current video part. Otherwise, a new context code-book model is created

to represent the context of the current video part. The higher Th1 value, less stable the

obtained context code-book models are.

At the end of the context segmentation algorithm, the training video is divided into a set of

chunks (of different temporal lengths) corresponding to the obtained context code-book models.

There are two open problems: How to represent a video contextwith a code-book model? and

how to compute the distance between a context code-book model and a context. The following

sections answer these two questions.

3.2.2. Code-book Modeling

During the tracking process, low frequent feature values play an important role for tuning

tracking parameters. For example, when mobile object density is high in few frames, the track-

10

ing quality can decrease significantly. Therefore, we decide to use a code-book model [Kim

et al., 2004] to represent the values of contextual featuresbecause this model can estimate com-

plex and low-frequency distributions. In our approach, each contextual feature is represented

by a code-book, calledfeature code-book, and denotedcbk, k = 1..6. So a video context is

represented by a set of six feature code-books, calledcontext code-book model, and denoted

CB, CB = {cbk, k = 1..6}. A feature code-book is composed of a set of code-words describ-

ing the values of this feature. The number of code-words depends on the diversity of feature

values.

Code-word definition: A code-word represents the values and their frequencies of a

contextual feature. A code-wordi of code-bookk (k = 1..6), denotedcwk
i , is defined as follows:

cwk
i = {µk

i , mk
i , Mk

i , fk
i } (7)

whereµk
i is the mean of the feature values belonging to this code-word; mk

i andMk
i are the

minimal and maximal feature values belonging to this word;fk
i is the number of frames when

the feature values belong to this word.

Algorithm for Updating Code-word:

- At the beginning, the code-bookcbk of a context featurek is empty.

- For a valueµk
t of a contextual featurek computed at timet, verify if µk

t activates any

code-word in code-bookcbk. µk
t activates code-wordcwk

i if both conditions are satisfied:

+ µk
t is in range[0.7 × mk

i , 1.3 × Mk
i].

+ The distance betweenµk
t and cwk

i is smaller than a thresholdǫ3. This distance is

defined as follows:

distance(µk
t , cwk

i) = 1 −
min(µk

t , µk
i)

max(µk
t , µk

i)
(8)

whereµk
i is the mean value of code-wordcwk

i .

- If cbk is empty or if there is no code-word activated, create a new code-word and insert it

into cbk.

- If µk
t activatescwk

i , this code-word is updated with the value ofµk
t .

The code-words whose valuefi is lower than a threshold, are eliminated because they are

corresponding to too low frequency feature values. The “contextual feature extraction” and

11

functioncontextDistance(c, CB, l)

Input: context code-book modelCB, contextc, l (number of frames of contextc)

Output: context distance between code-book modelCB and contextc

countTotal = 0;

For each code-bookcbk in CB (k = 1..6)

count = 0;

For each valueµk
t of contextc at timet

For each codewordcwk
i in code-bookcbk

if (distance(µk
t , cwk

i) < ǫ3) { count++; break;}

if (count / l < 0.5) return1;

countTotal + = count;

return(1 − countTotal/(l ∗ 6))

Table 1: Function for computing the distance between a context code-bookCB and a video contextc

“code-book modeling” steps of a video chunk plays the role ofthe functiong (mapping a video

sequence to its context) presented in hypothesis 2 (section1).

3.2.3. Context Distance

This section presents how to compute the distance between a contextc and a context code-

book modelCB = {cbk, k = 1..6}. This distance is defined as a function of sub-distances

between contextc and code-bookscbk. This sub-distance is expressed by the number of times

where matching code-words are found. Table 1 presents the algorithm to compute the context

distance in which the functiondistance(µk
t , cwk

i) is defined as in formula (8).

3.3. Tracking Parameter Optimization

The objective of the tracking parameter optimization task is to find the values of the control

parameters which ensure the best possible tracking qualityfor each video chunk. This quality

has to be greater than the thresholds presented in hypothesis 2, section 1.1. These parameters

are called “satisfactory parameters”.

This task takes as input annotated objects, annotated trajectories, a tracking algorithm, a

video chunk and control parameters for the considered tracker. The annotated objects are used

12

as object detection results. This task provides as output satisfactory parameter values. For

each control parameter, its name, value range and step valueare needed. The step value of a

parameter is defined as the minimal variation which causes a significant change on the tracking

quality. This value helps to avoid scanning the entire parameter space when searching for its

satisfactory values.

Depending on the search space size and the nature of the control parameters, we can select

suitable optimization algorithm. If the control parameterspace is small, an exhaustive search

[Nievergelt, 2000] or an enumerative search can be used to scan the values of these parameters.

Otherwise, we can use a genetic algorithm [Goldberg, 1989] for searching satisfactory values.

In some cases, an optimization problem can be converted to a classification problem whose

objective is to optimize the weights of weak classifiers. In this case, the Adaboost algorithm

[Freund & Schapire, 1997] can be used to determine the best values of these weights (see

example in [Chau et al., 2011a]). More than one optimizationalgorithm can be performed if the

search space or the nature of the control parameters are different.

In order to represent the reliability of the found parametervalues, we associate them to two

values. The first one is the number of frames of the training video chunk in which mobile objects

appear (called “number of training frames”). The second oneis a F-Scorevalue representing

the tracking quality of the considered video chunk while using the found tracking parameter

values. Satisfactory parameter values, their reliabilityvalues and the context code-book model

corresponding to this video chunk are stored into a temporary learned database.

3.4. Clustering

The clustering step is done at the end of each learning session when the temporary learned

database contains the processing results of all training videos. In some cases, two similar con-

texts can have different satisfactory parameter values because optimization algorithm only finds

local optimal solutions. Moreover, the context of a video sequence is not sufficient for determin-

ing the best satisfactory tracking parameter values. A clustering step is thus necessary to group

similar contexts and to compute satisfactory parameter values for the context clusters. The

clustering step is composed of two sub-steps: context clustering and parameter computation for

context clusters (see figure 4).

This step takes as input the training videos, the annotated objects, tracking algorithm and

13

Figure 4: The clustering step

annotated trajectories. It also requires the data stored inthe temporary learned database and

in the learned database resulting from the previous learning sessions. These data include a set

of contexts or context clusters associated to their satisfactory tracking parameter values and

the reliability values of these parameters. This step givesas output the new context clusters

which are associated to their satisfactory parameter values and the reliability values of these

parameters.

3.4.1. Context Clustering

For the context clustering step, we use the Quality Threshold Clustering (QT clustering)

algorithm [Heyer et al., 1999] due to the following three reasons. First, only clusters that pass

a user-defined quality threshold can be returned. Second, this algorithm does not require the

number of clusters as input. Third, all possible clusters are considered. However, a diameter

thresholdd is needed to consider whether two contexts can be grouped. The higher this thresh-

old, the more easily contexts are clustered. This thresholdcan be estimated by defining the

distance metric value between two context code-book modelsin the interval[0, 1].

The distance between a context and a context cluster is defined as the complete linkage (i.e.

14

the maximum distance from the context to any context of the cluster) [Everitt et al., 2001] to

ensure a high reliability for the clustering process. In thefollowing, we present how to compute

the distance between two context code-book models.

- Context Code-book Model Distance

In order to compute the distance between two context code-book modelsCBα andCBβ,

each feature code-bookcbk (k = 1..6) of a context is transformed into a histogram whose bin

i corresponds to feature valueµk
i of code-wordi, and value of bini is defined asfk

i /N where

N is the number of training frames of the code-book,fk
i is the number of frames in which

code-wordi is activated (see section 3.2.2).

The distance between two feature code-books is defined as theEarth Mover Distance be-

tween the two corresponding histograms in which the ground distance between binsi andj is

defined as|µk
i − µk

j |. The distance between two context code-book models is defined as the

mean value of the six distances between the six feature code-books.

3.4.2. Parameter Computation for Context Clusters

The objective of the “Parameter Computation for Context Clusters” sub-step is to compute

satisfactory parameter values for the context clusters. This sub-step includes two stages: “Pa-

rameter Computation” and “Parameter Verification”.

- Parameter Computation

Once contexts are clustered, all the code-words of these contexts become the code-words of

the created cluster. The satisfactory tracking parametersof clusterj, denoted~pj, is computed

as follows:

~pj =

∑Θj

i=1 ~pi × wi

∑Θj

i=1 wi
(9)

whereΘj is the number of contexts belonging to clusterj, ~pi is satisfactory parameter values of

contexti belonging to this cluster,wi is the weight of parameters~pi and is defined in function

of the two reliability values of~pi: number of training framesNi andF-Scorei:

wi =
Ni/N

j + F-Scorei
2

(10)

whereN j is the total number of training frames of all contexts belonging to context clusterj.

The reliability of context clusterj is also represented by two values: number of training

framesN j and a tracking quality score defined as a weighted combination of F-Scorei.

15

- Parameter Verification:

The objective of the parameter verification stage is to checkwhether the parameters of

context clusters resulting from the previous stage (“Parameter Computation”) are satisfactory.

For each cluster, this stage takes all training videos belonging to this cluster and computes the

tracking performance with the parameters resulting from the previous stage. For each training

video, if the obtained tracking performance is greater or equal to the one computed by its own

satisfactory parameters, these parameters are considered“verified”. Otherwise, this video is

removed from the considered cluster. It is then stored separately in the learned database. The

context cluster and its satisfactory parameters are re-computed and re-verified.

At the end of the clustering process, we obtain in the learneddatabase a set of context

clusters represented similarly as a context: a context model of six code-books associated to

satisfactory tracking parameter values, number of training frames and tracking quality score.

3.5. Training Phase Cost

The training phase cost represents the time needed for the training phase. This cost depends

on the costs from the contextual feature computation, code-book modeling, tracking parameter

optimization and clustering. The contextual features are low computational using 2D bound-

ing box features. The code-book modeling and clustering tasks are also not expensive in terms

of processing time. Therefore, the training phase cost mostly depends on the complexity of

the tracking parameter optimization task. More precisely,it depends on the number of control

parameters and their search space size. The cost reduction is twofold. First, we only control

parameters which significantly influence the tracking quality. Second, we select a suitable opti-

mization algorithm in function of the search space size and of the nature of control parameters

as analyzed in the tracking parameter optimization task (see section 3.3).

We should note that the training phase requires annotated objects and trajectories as input.

This can be done using public annotated datasets (e.g ETISEO, Caviar) or a graphical tool (e.g.

Viper1).

1http://viper-toolkit.sourceforge.net/

16

Figure 5: The controlled tracking task

4. Online Parameter Tuning

In this section, we describe the proposed controller which aims at tuning online the track-

ing parameter values for obtaining satisfactory tracking performance. The parameter adaptation

task takes as input the video stream, the list of detected objects at every frame, the learned

database and gives as output the adaptive tracking parameter values for every new context de-

tected in the video stream (see figure 5). In the following sections, we describe the two steps of

this task: the context detection and parameter tuning steps.

4.1. Context Detection

An open problem is to detect online the variation of the tracking context. The contextual

features are computed from the result of the object detection task. In complex cases such as

object occlusions, strong or low illumination intensity, the detection quality can decrease sig-

nificantly. Also, in some cases, due to the mobile object locations, some wrong detections can

happen within a small number of frames. Figure 6 illustratessuch case. Therefore, in order to

detect the context at current time, we need to collect the values of the contextual features in a

large enough number of frames. However if this value is too large, the contextual variation is

slowly detected and thus decreases the speed of the parameter adaptation.

This step takes as input for every frame, the list of the current detected objects and the

image. For each video chunk ofl frames, we compute the values of the contextual features.

17

Figure 6: The influence of the object detection quality due toobject location (output of [Corvee & Bremond,

2010]): a. Left image: at frame 279, the two persons on the left are wrongly detectedb. Right image: at frame

335, the relative position of these two persons is changed, and they are correctly detected.

A contextual change is detected when the context of the current video chunk does not belong

to the context cluster (clusters are learned in the offline phase) of the previous video chunk.

In order to ensure the coherence between the learning phase and the testing phase, we use the

same distance defined in the learning phase (section 3.2.3) to perform this classification. If

this distance is lower than thresholdTh1, this context is considered as belonging to the context

cluster. Otherwise, the “Parameter adaptation” task is activated.

4.2. Parameter Adaptation

The parameter adaptation process takes as input the currentcontext from the “context de-

tection” task, an activation signal and gives as output adaptive tracking parameter values. When

this process receives an activation signal, it looks for thecluster in the learned database the

current context belongs to. LetD represent the learned database, a contextc of a video chunk

of l frames belongs to a clusterCi if both conditions are satisfied:

contextDistance(c, Ci, l) < Th1 (11)

∀Cj ∈ D, j 6= i : contextDistance(c, Ci, l) ≤ contextDistance(c, Cj, l) (12)

whereTh1 is defined in section 3.2.1. The functioncontextDistance(c, Ci, l) is defined in

table 1. The expression (11) represents the condition (2) ofhypothesis 2 (section 1.1). If a

such context clusterCi is found, then according to this hypothesis, the satisfactory tracking

parameters associated withCi are good enough for parameterizing the tracking of the current

18

video chunk. Otherwise, the tracking algorithm parametersdo not change, the current video

chunk is marked to be learned offline later.

4.3. Processing Time

During the online phase, the processing time depends on the context detection and parameter

tuning tasks. The context detection task is fast because thecomputation of context features and

context distance are not time consuming. The parameter tuning task complexity is low because

it depends linearly on the number of clusters belonging to the offline learned database.

5. Qualitative Comparison with State of the Art Approaches

In the literature, we mention two articles [Caporossi et al., 2004] and [Sherrah, 2010] which

propose a parameter tuning for object tracking. In this section we present a qualitative com-

parison between these two approaches and the proposed one. Our comparison relies on the

following criteria:

• Online execution: As object tracking plays an important role in camera surveillance as

well as other online applications, this criterion is very important for the object tracking

approaches. The approach [Caporossi et al., 2004] needs ground-truth data to analyze

the influence of tracking parameters for tracking quality. This approach cannot be done

online while our proposed approach and [Sherrah, 2010] can be performed online.

• Requirement of tracking parameter independence:This criterion represents the level

of genericity of a tracker controller. Some approaches tuneparameters independently and

they ignore the relation between the tuned parameter and theother ones. However this

ignorance is not convenient as the tracking parameters usually depends each other. The

approaches [Caporossi et al., 2004] and [Sherrah, 2010] require this independence while

the proposed approach does not.

• Requirement of unimodality for the tracking quality on para meters: This means

the function of tracking quality on parameters do not have local maximum. The approach

[Sherrah, 2010] needs this hypothesis to simply the searching of the best parameter value.

Its parameter tuning method is inspired by the first derivative computation of the tracking

19

Approach [Ca-

porossi et al., 2004]

Approach [Sher-

rah, 2010]

Proposed

approach

Online execution No Yes Yes

Requirement of tracking parameter

independence

Yes Yes No

Requirement of unimodality for the

tracking quality on parameters

- Yes No

Requirement of ground-truth data

in the training

Yes Yes (and with ex-

pert knowledge)

Yes

Table 2: Qualitative comparison of the proposed approach with [Caporossi et al., 2004] and [Sherrah, 2010]

quality function. Our proposed approach does not need this hypothesis as we use the

optimization techniques more generic (e.g. exhaustive search, enumerate search).

• Requirement of ground-truth data in the training phase: All the three approaches

require the ground-truth data to train the tracking parameters. However in the training

phase of Sherrah [2010], the best tracking parameter value is determined by hand, and

this phase also needs expert knowledge.

Table 2 summarizes the qualitative comparison of the proposed approach with the ap-

proaches [Caporossi et al., 2004] and [Sherrah, 2010]. We find that the parameter control

proposed in this article is more generic and practical than the approaches [Caporossi et al.,

2004] and [Sherrah, 2010].

6. Experimentation and Validation

The objective of this experimentation is to measure the effect and robustness of the proposed

control method. We experiment this method with three objecttrackers: an appearance tracker

[Chau et al., 2011a], a tracker based on KLT [Shi & Tomasi, 1994] and a tracker based on Surf

[Bay et al., 2008].

20

6.1. Parameter Setting and Object Detection Algorithm

The proposed control method has three predefined parameters. The distance thresholdTh1

to decide whether two contexts are close enough (sections 3.2.1 and 4.2) is set to0.5. The

minimum number of framesl of a context segment (sections 3.2.1 and 4.1) is set to50 frames.

The diameter thresholdd in QT clustering algorithm (section 3.4.1) is set to 0.3. Allthese

values are unchanged for all experiments presented in this article.

A HOG-based algorithm is used for detecting people [Corvee &Bremond, 2010] in videos.

6.2. Evaluation Metrics

In this experimentation, we select the tracking evaluationmetrics used in several publica-

tions [Xing et al., 2009, Li et al., 2009, Kuo et al., 2010]. Let GT be the number of trajectories

in the ground-truth of the test video. These metrics are defined as follows:

- Mostly tracked trajectories (MT): The number of trajectories that are successfully tracked

for more than 80% divided by GT.

- Partially tracked trajectories (PT): The number of trajectories that are tracked between

20% and 80% divided by GT.

- Mostly lost trajectories (ML): The number of trajectories that are tracked less than 20%

divided by GT.

6.3. Appearance Tracker Control

The appearance tracker [Chau et al., 2011a] takes as input a video stream and a list of objects

detected in a predefined temporal window. The similarity of apair of detected objects is defined

as a weighted combination of five descriptor similarities on2D area, 2D shape ratio, RGB color

histogram, color covariance and dominant color. An object pair with the highest similarity is

considered as belonging to a same object trajectory.

For this tracker, six parameters are selected for testing the proposed control method. The

first five parameters are the object descriptor weightswk (k = 1..5). These parameters depend

on the tracking context and have a significant effect on the tracking quality. For the dominant

color descriptor described in [Chau et al., 2011a], the number of dominant colors is required as

an input parameter. This parameter is also influenced by the tracking context (for example the

smaller object, the higher the number of dominant colors should be). Therefore we use these

21

six parameters as control parameters so that hypothesis 1 (section 1.1) is ensured. Clearly, the

number of dominant colors is only controlled when the weightof dominant color descriptor is

not null. As the performance of the controller depends on theobject detection quality, the online

control process is tested in two cases: with automatically detected objects and with manually

annotated objects.

6.3.1. Training Phase

In the learning phase, we use 12 video sequences belonging todifferent context types (i.e.

different levels of density and occlusion of mobile objectsas well as of their contrast with

regard to the surrounding background, their contrast variance, their 2D area and their 2D area

variance). These videos belong to three public datasets (ETISEO2, Caviar3 and Gerhome4), to

the European Caretaker project5, and are recorded in different places (see examples in figure

7). The annotated data of object 2D bounding boxes in the videos from Caviar and ETISEO

datasets are available on their websites.

Each training video is segmented automatically in a set of context segments (of different

temporal lengths). The number of context segments depends on the contextual variation of

the training video. Figure 8 presents the context segmentation result of sequence ThreePast-

Shop2cor belonging to the Caviar dataset. The values of object 2D area and 2D area variance

are normalized for displaying. The context of this sequenceis divided automatically into six

context segments. For each context segment, satisfactory control parameter values are learned.

In the tracking parameter optimization process, we use firstly an Adaboost algorithm to learn

the object descriptor weights (e.g. dominant color weight)for each context segment because

each object descriptor similarity can be considered as a weak classifier for linking two objects

detected within a temporal window. Secondly, we search the best number of dominant colors

(denotedC) in context segments when the dominant color descriptor is used. We suppose the

value range ofC is from 2 to 7 colors. An exhaustive search is performed to findits best value.

Table 3 presents the learned parameter values for the context segments.

2http://www-sop.inria.fr/orion/ETISEO/
3http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
4http://gerhome.cstb.fr/en/
5http://cordis.europa.eu/ist/kct/caretakersynopsis.htm

22

Figure 7: Illustration of some training videos

Figure 8: Context segmentation of sequence ThreePastShop2cor (belonging to Caviar dataset). The context seg-

ments are separated by the vertical orange lines. The control parameters are then learned for each context segment.

23

The first context segment is from frame 1 to frame 300. The learned tracking parameters

for this context arew2 = 0.21, w3 = 0.46, w5 = 0.33, w1 = w4 = 0, C = 2. In this context

segment, the object occlusion level is very low. The color histogram is selected as the most

important object descriptor for tracking mobile objects. The object 2D area variance is quite

high, it means that there exist at the same time objects of large and small areas. So the 2D area is

also selected as an object descriptor for tracking. With theexistence of objects whose 2D areas

are high, the use of dominant color descriptor is reasonablebecause this descriptor discriminates

well large mobile objects. In the second context segment (from frame 301 to 600), the density

and the occlusion level of mobile objects increase. The dominant color descriptor weight is

higher than the one in previous context segment because thisdescriptor integrated with the

spatial pyramid kernel can manage the object occlusion cases (see [Chau et al., 2011a] for more

details). For context segments 3 and 4, the dominant color descriptor weight is still selected

as the most important descriptor for object tracking. In context segment 4, the objects are

smaller, so the number of dominant color descriptor increases from 2 to 3 to better discriminate

the objects. In context segment 5, the value of object 2D areadecreases significantly. While

the dominant colors between small objects might be similar,the color histogram descriptor is

reliable because this descriptor takes into account all pixels belonging to objects. Therefore, in

this context segment, the weight of the dominant color descriptor decreases from 0.83 to 0.33,

and the color histogram descriptor reliability increases from 0 to 0.34. The color covariance

descriptor is also used for solving the occlusion cases which occur frequently in this context

segment. In the last context segment, the object 2D area variance increases, therefore the object

2D area descriptor is selected again with the weightw2 = 0.2.

After segmenting the 12 training videos, we obtain 58 contexts. By applying the clustering

process, 21 context clusters are created. Table 4 presents the learned control parameters for each

cluster. The shape ratio descriptor is defined as the ratio between object 2D width and height.

This descriptor is never selected in the context clusters because it cannot well discriminate the

mobile objects in these training videos.

The cost of this training phase mainly depends on the tracking parameter optimization time.

This phases requires about 8 hours for 60.24 minutes of training videos corresponding to 18071

frames and 165 mobile objects. This is done with an Intel(R) Xeon(R) CPU E5430 @ 2.66GHz

24

Learned control parameter values

Context

segment

From

frame

To

frame

w1

(Shape

ratio)

w2

(2D

area)

w3 (RGB

color his-

togram)

w4 (Color

covari-

ance)

w5 (Dom-

inant

color)

C (Number

of dominant

colors)

1 1 300 0 0.21 0.46 0 0.33 2

2 301 600 0 0.22 0 0.01 0.77 2

3 601 700 0 0 0 0 1 2

4 701 800 0 0 0.17 0 0.83 3

5 801 1350 0 0 0.34 0.33 0.33 2

6 1351 1510 0 0.20 0.20 0.20 0.40 2

Table 3: Learned control parameter values for the sequence ThreePastShop2cor (belonging to Caviar dataset). The

most important object descriptor weights are printed bold.

(4 cores) and of 4GB RAM.

6.3.2. Testing Phase

- Controller Experimentation with Automatically Detected Objects

1. Caviar Dataset

The processing Caviar videos have 26 sequences in which 6 sequences belong to our training

video set. The other 20 sequences including 143 mobile objects are used for testing. The

proposed controller is experimented in two cases to show itsrobustness. In the first case, only

five object descriptor weights are considered for tuning; the number of dominant colorsC is

set by default to 2. In the second case, all the six parametersare considered for tuning. Table

5 presents the tracking results of the proposed approach andof some recent trackers from the

state of the art. In the first case, the proposed controller increases significantly the performance

of the appearance tracker. TheMT value increases from 78.3% to 84.6% and theML value

decreases from 5.2% to 5.1%. In the second case, when the parameterC is also tuned by the

controller, the tracking performance continues to be improved. TheMT value increases from

84.6% to 85.7% and theML value decreases from5.1% to 3.0%. We obtain the bestMT value

compared to state of the art trackers.

In the rest of the article, we only present the results of the controller while tuning all the six

25

Learned Control Parameter Values

Context

cluster

Id

w1 (Shape

ratio)

w2 (2D

area)

w3 (RGB

color

histogram)

w4 (Color

covariance)

w5 (Domi-

nant color)

C (Num-

ber of

dominant

colors)

1 0 0.20 0.14 0.10 0.56 2

2 0 0.21 0.45 0 0.34 2

3 0 0.08 0.05 0.12 0.75 2

4 0 0.12 0.17 0.03 0.68 2

5 0 0.12 0.16 0.11 0.61 2

6 0 0.11 0.19 0.07 0.62 2

7 0 0 0.66 0 0.34 3

8 0 0.15 0.15 0 0.69 2

9 0 0.14 0.16 0.17 0.52 2

10 0 0 1 0 0

11 0 0 1 0 0

12 0 0.05 0.86 0 0.09 3

13 0 0.14 0.39 0.17 0.3 4

14 0 0 1 0 0

15 0 0 1 0 0

16 0 0 1 0 0

17 0 1 0 0 0

18 0 0 1 0 0

19 0 0 1 0 0

20 0 0.01 0 0.13 0.86 2

21 0 0.1 0 0.15 0.75 2

Table 4: Result of the training phase for the appearance tracker. 21 context cluster are created. The most important

object descriptor weights are in bold.

26

Method MT (%) PT (%) ML (%)

[Wu & Nevatia, 2007] 75.7 17.9 6.4

[Huang et al., 2008] 78.3 14.7 7.0

[Xing et al., 2009] 84.3 12.1 3.6

[Li et al., 2009] 84.6 14.0 1.4

[Kuo et al., 2010] 84.6 14.7 0.7

Appearance Tracker [Chau et al., 2011a] without the pro-

posed controller

78.3 16.5 5.2

Appearance Tracker [Chau et al., 2011a] with the control of

object descriptor weights

84.6 10.3 5.1

Appearance Tracker [Chau et al., 2011a] with the con-

trol of object descriptor weights and number of domi-

nant colors

85.7 11.3 3.0

Table 5: Tracking results on the Caviar dataset. MT: Mostly tracked trajectories, higher is better; PT: Partially

tracked trajectories; ML: Mostly lost trajectories, loweris better. The proposed controller improves significantly

the tracking performance. The best values are printed in red.

27

parameters (i.ewi with i = 1..5 andC).

2. PETS Video

The video of the second test belongs to the PETS dataset 2009.PETS videos are not used

for learning. We select the sequence S2L1, camera view 1, time 12.34 for testing because this

sequence is experimented in several state of the art trackers. This sequence has 794 frames,

contains 21 mobile objects and several occlusion cases (seefigure 9a.).

In this test, we use the tracking evaluation metrics presented in [Kasturi et al., 2009] to

compare with other tracking algorithms. The first metric is ATA (Average Tracking Accuracy)

which computes the average accurate tracking time per object. The second metric is MOTP

(Multiple Object Tracking Precision) which is calculated from the spatio-temporal overlap be-

tween the ground-truth trajectories and the algorithm’s output trajectories. The third metric is

MOTA (Multiple Object Tracking Accuracy) which penalizes the number of missed detection,

false positives and switches in the output trajectory for a given reference ground-truth trajectory.

All the three metrics are normalized in the interval[0, 1]. The higher these metrics, the better

the tracking quality is.

For this sequence, the controller selects the parameters associated to context cluster 6 for

tracking. The dominant color descriptor is selected as the most important descriptor for tracked

objects because this descriptor can well handle the object occlusion cases. With the proposed

controller, the tracking result increases significantly. Table 6 presents the metric results of the

proposed approach and of different trackers from the state of the art. The metricM represents

the average value of the three metrics. With the proposed controller, we obtain the best values

in metrics ATA, MOTP andM . The MOTA value of our approach (0.75) gets the second rank

due to some missed detection.

3. Vanaheim Video

The video of the third test belongs to the European Vanaheim project (see figure 9b). Vana-

heim videos are not used for learning. The test sequence contains 36006 frames and lasts 2

hours. Table 7 presents the performance of the proposed approach and three recent trackers

from state of the art.

28

Figure 9: Illustration of two test videos: a. PETS and b. Vanaheim

For this sequence, the proposed controller improves the performance of the tracker [Chau

et al., 2011a]. TheMT value increases from 55.26% to 60.53%. TheML value decreases

significantly from 13.16% to 2.63%. The tracking result withthe proposed controller gets the

best quality among the trackers presented in table 7.

- Controller Experimentation with Manually Annotated Obje cts

All the six context feature values depend on the object bounding boxes. The training phase

is performed with annotated objects, so a low quality objectdetection in the online phase de-

creases the quality of the context detection. So, one drawback of the proposed controller is the

dependence of its performance on the object detection quality. In this section, manually anno-

tated objects are used for testing the controller. This experiment helps to better evaluate the

proposed controller performance because the errors of the object detection task are eliminated.

We test two video sequences. The first one is the OneStopMoveEnter2cor sequence belonging

to the Caviar dataset. The second one is the Vanaheim video experimented previously.

Table 8 summarizes the obtained tracking results (without and with the controller) on these

two sequences in two cases: using automatically detected objects and using manually annotated

objects. For the OneStopMoveEnter2cor sequence, the controller increases theMT value by

18.18% (from 72.73% to to 90.91%) in the second case and only by 9.09% (from 72.73%

to 81.82%) in the first case. For the Vanaheim sequence, in thesecond case, the controller

increases theMT value by 7.53% (from 92.47% to 100%) compared to 5.27% in the first case.

From this analysis, we conclude that the improvement of the tracking performance using

controller is more significant on manually annotated objects than on automatic detected objects.

29

Method ATA MOTP MOTA M

[Arsic et al., 2009] 0.02 0.46 0.41 0.30

[Berclaz et al., 2009] 0.14 0.50 0.56 0.40

[Breitenstein et al., 2009] 0.30 0.60 0.74 0.55

[Ge & Collins, 2009] 0.04 0.46 0.65 0.38

[Alahi et al., 2009] 0.04 0.53 0.61 0.39

[Conte et al., 2010] 0.09 0.64 0.83 0.52

Appearance Tracker [Chau et al., 2011a]

without the proposed controller

0.26 0.63 0.62 0.50

Appearance Tracker [Chau et al., 2011a]

with the proposed controller

0.31 0.69 0.75 0.58

Table 6: Tracking results on the sequence S2.L1, camera view1, sequence time 12.34. The proposed controller

improves significantly the tracking performance. The best values are printed in red.

It means that the controller performance is proportional tothe object detection quality.

6.4. KLT Tracker Control

The KLT tracker relies on the tracking of Kanade-Lucas-Tomasi (KLT) features [Shi &

Tomasi, 1994]. The KLT tracker takes detected objects as input. The object tracking relies on

the number of matching KLT features over time between the detected objects. For the KLT

tracker, we find two parameters depending on the tracking context: the minimum distance be-

tween KLT feature pointsm and the size of feature windowW (see the definition ofW at

formula (3) of [Shi & Tomasi, 1994]). For example, in the caseof object occlusion, the values

of m should be low to detect a high enough number of KLT features for each object. When ob-

ject 2D area is large, the values ofm andW should be high to take into account whole object.

Therefore these two parameters are selected for experimenting the proposed control approach

so that hypothesis 1 (section 1.1) is ensured. We train the controller for this tracker on the same

12 training video sequences presented in section 6.3.1. The20 Caviar videos (not belonging to

the training sequences) are used for testing.

30

Method #GT MT (%) PT (%) ML (%)

[Chau et al., 2011b] 38 10.53 13.16 76.31

[Souded et al., 2011] 38 44.74 42.11 13.15

Appearance Tracker [Chau et al., 2011a]

without the proposed controller

38 55.26 31.58 13.16

Appearance Tracker [Chau et al.,

2011a] with the proposed controller

38 60.53 36.84 2.63

Table 7: Tracking results on the Vanaheim video. #GT denotesthe number of ground-truth trajectories. The

proposed controller improves significantly the tracking performance. The best values are printed in red.

Sequence Method #GT MT(%) PT(%) ML(%)

Using OneStopMove-Without the pro-

posed controller

11 72.73 18.18 9.09

automatically Enter2cor With the pro-

posed controller

11 81.82 18.18 0

detected Vanaheim Without the pro-

posed controller

38 55.26 31.58 13.16

objects With the pro-

posed controller

38 60.53 36.84 2.63

Using OneStopMove-Without the pro-

posed controller

11 72.73 27.27 0

manually Enter2cor With the pro-

posed controller

11 90.91 9.09 0

annotated Vanaheim Without the pro-

posed controller

38 92.47 7.53 0

objects With the pro-

posed controller

38 100 0 0

Table 8: Results of the appearance tracker for the OneStopMoveEnter2cor and Vanaheim video sequences in two

cases: using detected objects and using annotated objects.The controller improves the tracking performance more

significantly in the second case. Best values are in red.

31

Figure 10: Result of the training phase of control parameters of the KLT tracker

Method MT (%) PT (%) ML (%)

KLT Tracker without the proposed controller 74.4 13.4 12.2

KLT Tracker with the proposed controller 80.0 13.3 6.7

Table 9: Tracking results on the Caviar dataset. Our controller improves significantly the tracking performance.

6.4.1. Training Phase

We suppose that the minimum distancem can get the values 3, 5, 7, 9 pixels and the feature

window sizeW can get the values 5, 10, 15 pixels. In the tracking parameteroptimization,

due to the small space of control parameters, we use an enumerative search to learn satisfactory

parameter values for each context. Figure 10 presents the learned control parameter values for

each context cluster.

6.4.2. Testing Phase

Table 9 presents the tracking results for 20 test Caviar videos in both cases: without and

with the proposed controller. In the first case, the values ofm andW are set by default to5.

While using the proposed controller, the tracking performance is increased significantly. The

MT value increases by 5.6% (from 74.4% to 80%) and theML value decreases from 12.2%

to 6.7%. Compared to the improvement of theMT value for the appearance tracker which is

7.4% (from 78.3% to 85.7%, see table 5), the controller performance for the KLT tracker is

less significant because fewer parameters are controlled and these parameters influence less the

tracking quality. Also, they depend less on the tracking context.

32

6.5. Surf Tracker Control

The Surf tracker relies on the tracking of Surf (Speeded Up Robust Features) [Bay et al.,

2008]. Similar to the KLT tracker, the Surf tracker takes detected objects as input. The object

tracking relies on the number of matching Surf features overtime between the detected objects.

For the Surf tracker, we consider two parameters:

• Hessian thresholdh: This is a threshold for the key point detector. Only features, whose

hessian is larger than Hessian threshold are retained by thedetector. Therefore, the larger

the value, the less key points are detected.

• Number of octave layersn: The number of images within each octave of a Gaussian

pyramid.

We train the controller for this tracker on the same 12 training video sequences presented in

section 6.3.1. The two videos belonging to PETS dataset6 and TUD dataset [Andriluka et al.,

2010] are used for testing. These two datasets are not used inthe training phase.

6.5.1. Training Phase

We suppose that the Hessian thresholdh can get the values 100, 300, 500 and the number

of octave layersn can get the values 2, 4, 6. In the tracking parameter optimization, due to the

small space of control parameters, we use an enumerative search to learn satisfactory parameter

values for each context.

Similar to the training phases of the previous trackers, 21 context clusters are created. We

compute then satisfactory tracking parameters for each context cluster. Figures 11 and 12

present respectively the training results of the parameters of Hessian threshold and the number

of octave layers for 21 context clusters. For each context cluster, satisfactory tracking param-

eters are defined as weighted combinations of the ones of contexts belonging to that cluster.

Therefore the learned values of control parameters can be different from the values which are

initially determined. For example, the learned hessian threshold value of context cluster 3 is

6http://www.cvg.rdg.ac.uk/PETS2013/a.html

33

Figure 11: Training results of the Hessian threshold parameter for 21 context clusters

Figure 12: Training results of the parameter of number of octave layers for 21 context clusters

200; the learned number of octave layers of context cluster 6is 5. From cluster 1 to 9, the

learned pamrameter values are quite different each other. This means that these two control

parameters are influenced by the tracking context.

6.5.2. Testing Phase

In the testing phase, when the controller is not used, the value of hessian threshold is set to

100, and the value of number of octave layers is set to 2. Thesetwo values are selected because

they are determined as the satisfactory values for many context clusters in the training phase.

1. PETS Video

This PETS video is also the one tested at section 6.3.2. Illustration of this video is presented

34

Methods MOTA MOTP M

[Berclaz et al., 2011] 0.80 0.58 0.69

[Shitrit et al., 2011] 0.81 0.58 0.70

[Henriques et al., 2011] 0.85 0.69 0.77

Surf tracker [Bay et al., 2008] without the proposed controller 0.80 0.66 0.73

Surf tracker [Bay et al., 2008] with the proposed controller 0.86 0.69 0.78

Table 10: Tracking results on the PETS sequence S2.L1, camera view 1, time 12.34. MOTA: Multiple Object

Tracking Accuracy; MOTP: Multiple Object Tracking Precision (higher is better). The best values are printed in

red.

at figure 9a. Table 10 presents the metric results of the proposed approach and of different track-

ers from the state of the art. While using the proposed controller, the tracking result increases

significantly. The value of MOTA increases 0.80 to 0.86; the value of MOTP increases 0.66 to

0.69; and the value ofM increases 0.73 to 0.78. The obtained values are the best compared to

the ones presented in the table.

2. TUD dataset

For the TUD dataset, we select the TUD-Stadtmitte sequence for testing. This video con-

tains only 179 frames and 10 objects but it is very challenging due to heavy and frequent object

occlusions. For this sequence, the controller selects context cluster 13 in which parameters

h = 281, n = 2 are used for parameterizing the tracking process. With suchhigh value ofh,

the number of detected Surf points is small. In this tracker,we take the detected objects as input

and compute Surf points in corresponding 2D bounding boxes.In the case of high occlusion

level as in this video, object bounding boxes may contain a part of other objects. A low number

of detected Surf points helps to decrease the distribution of these points on different objects.

The tracking quality is then better.

Figures 13 to 16 illustrate the tracking output in two cases:without controller (figures 13

and 14) and with the proposed controller (figures 15 and 16). While there is a ID switch between

two persons (marked my arrows) in the first case, this error issolved in the second case. Table

11 presents the tracking results of the proposed approach and three recent trackers from the

35

Figure 13: Frame 51, without controller: Per-

sons 6 and 467 are tracked correctly before their

occlusion

Figure 14: Frame 70, without controller: Per-

sons 6 and 467 switch their ids after their occlu-

sion

Figure 15: Frame 51, with the proposed con-

troller : Persons 75 and 519 are tracked correctly

before their occlusion

Figure 16: Frame 70, with the proposed con-

troller : Persons 75 and 519 are still tracked cor-

rectly after their occlusion

state of the art. While using the proposed controller, the MTvalue increases significantly 50%

to 70%. Also the obtainedMT value is the best compared to these three trackers.

In all the testing video sequences and for three trackers, the online processing time increases

only slightly (less than 10%) when the controller is used.

7. Conclusion

In this article, we have presented a new control approach forobject tracking which is

generic, flexible and intelligent. More precisely in order to cope with tracking context vari-

ations, this approach learns how to tune the parameters of tracking algorithms. The tracking

context of a video sequence is defined as a set of six features:density of mobile objects, their

36

Methods MT(%) PT(%) ML(%)

[Kuo & Nevatia, 2011] 60.0 30.0 10.0

[Andriyenko & Schindler, 2011] 60.0 30.0 10.0

Surf tracker [Bay et al., 2008] without the proposed controller 50.0 10.0 40.0

Surf tracker [Bay et al., 2008] with the proposed controller 70.0 10.0 20.0

Table 11: Tracking results for the TUD-Stadtmitte sequence. MT: Mostly tracked trajectories, higher is better; PT:

Partially tracked trajectories; ML: Mostly lost trajectories, lower is better. The best values are printed inred.

occlusion level, their contrast with regard to the surrounding background, their contrast vari-

ance, their 2D area and their 2D area variance. In an offline phase, we learn satisfactory tracking

parameters for context clusters. In the online control phase, once a context change is detected,

the tracking parameters are tuned using the learned values.This method is able to control track-

ers belonging to two different categories (appearance tracking and point tracking). Moreover,

other tracker category can still be controlled by adapting the context notion to the tracker prin-

ciple (for example to control silhouette-based trackers, we can add the object rigidity feature

to the context). The training and testing phases are not timeconsuming. The proposed ap-

proach has been experimented with three trackers on a long, complex video and on three public

datasets (Caviar, PETS and TUD). The experimental results show a significant improvement of

the performances while using the proposed controller.

In future work, we will extend the context notion which should be independent from the

object detection quality. Also, the proposed control approach should be able to interact with the

object detection task to improve the detection quality. An online mechanism for updating the

learned database is also necessary to increase the performance of the proposed approach.

References

Alahi, A., Jacques, L., Boursier, Y., & Vandergheynst, P. (2009). Sparsity-driven people local-

ization algorithm: Evaluation in crowded scenes environments. InThe International Work-

shop on Performance Evaluation of Tracking and Surveillance (PETS), in conjunction with

CVPR.

37

Andriluka, M., Roth, S., & Schiele, B. (2010). Monocular 3d pose estimation and tracking by

detection. In CVPR.

Andriyenko, A., & Schindler, K. (2011). Multi-target tracking by continuous energy minimiza-

tion. In CVPR.

Arsic, D., Lyutskanov, A., Rigoll, G., & Kwolek, B. (2009). Multi camera person tracking

applying a graph-cuts based foreground segmentation in a homography framework. InThe

International Workshop on Performance Evaluation of Tracking and Surveillance (PETS), in

conjunction with CVPR.

Bay, H., Ess, A., Tuytelaars, T., & Gool, L. (2008). Surf: Speeded up robust features.In The

Journal of Computer Vision and Image Understanding (CVIU), 110, 346–359.

Berclaz, J., Fleuret, F., & Fua, P. (2009). Multiple object tracking using flow linear program-

ming. In The International Workshop on Performance Evaluation of Tracking and Surveil-

lance (PETS), in conjunction with CVPR.

Berclaz, J., Fleuret, F., Turetken, E., & Fua, P. (2011). Multiple object tracking using k-shortest

paths optimization.TPAMI, 33, 1806–1819.

Breitenstein, M. D., Reichlin, F., Leibe, B., Koller-Meier, E., & Gool, L. V. (2009). Markovian

tracking-by-detection from a single, uncalibrated camera. In The International Workshop on

Performance Evaluation of Tracking and Surveillance (PETS), in conjunction with CVPR.

Caporossi, A., Hall, D., Reignier, P., & Crowley, J. L. (2004). Robust Visual Tracking from

Dynamic Control of Processing. InThe Workshop on Performance Evaluation for tracking

and Surveillance (PETS), in the conjunction with ECCV, Prague, Czech.

Chau, D. P., Bremond, F., & Thonnat, M. (2011a). A multi-feature tracking algorithm enabling

adaptation to context variations. InThe International Conference on Imaging for Crime

Detection and Prevention (ICDP), London, UK.

Chau, D. P., Bremond, F., Thonnat, M., & Corvee, E. (2011b). Robust mobile object tracking

based on multiple feature similarity and trajectory filtering. InThe International Conference

on Computer Vision Theory and Applications (VISAPP), Algarve, Portugal.

38

Conte, D., Foggia, P., Percannella, G., & Vento, M. (2010). Performance evaluation of a people

tracking system on pets2009 database. InThe International Conference on Advanced Video

and Signal Based Surveillance (AVSS).

Corvee, E., & Bremond, F. (2010). Body parts detection for people tracking using trees of

histogram of oriented gradient descriptors. InThe International Conference on Advanced

Video and Signal-based Surveillance (AVSS).

Everitt, B. S., Landau, S., & Leese, M. (2001). Inbook: Cluster Analysis (Fourth ed.), London:

Arnold. ISBN 0-340-76119-9.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning

and an application to boosting. InThe Journal of Computer and System Sciences(pp. 522–

536).

Ge, W., & Collins, R. T. (2009). Evaluation of sampling-based pedestrian detection for crowd

counting. InThe International Workshop on Performance Evaluation of Tracking and Surveil-

lance (PETS), in conjunction with CVPR.

Georis, B., Bremond, F., & Thonnat, M. (2007). Real-time Control of Video Surveillance

Systems with Program Supervision Techniques. InThe Journal of Machine Vision and Ap-

plications(pp. 189–205).

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning

(1st ed.). Addison-Wesley Longman Publishing Co., Inc.,. Boston, MA, USA.

Hall, D. (2006). Automatic parameter regulation of perceptual system. InThe Journal of Image

and Vision Computing(pp. 870–881).

Henriques, J. F., Caseiro, R., & Batista, J. (2011). Globally optimal solution to multi-object

tracking with merged measurements. In ICCV.

Heyer, L. J., Kruglyak, S., & Yooseph, S. (1999). Exploring expression data: Identification and

analysis of coexpressed genes. InThe Journal of Genome Research(pp. 1106–1115).

Huang, C., Wu, B., & Nevatia, R. (2008). Robust object tracking by hierarchical association of

detection responses. InThe European Conference on Computer Vision (ECCV).

39

Kasturi, R., Goldgof, D., Soundararajan, P., Manohar, V., Garofolo, J., Bowers, R., Boonstra,

M., Korzhova, V., & Zhang, J. (2009). Framework for Performance Evaluation of Face, Text,

and Vehicle Detection and Tracking in Video: Data, Metrics,and Protocol . InThe IEEE

Transactions on Pattern Analysis and Machine Intelligence(TPAMI) (pp. 319–336).

Kim, K., Chalidabhongse, T., Harwood, D., & Davis, L. (2004). Background modeling and

subtraction by codebook construction. InThe International Conference on Image Processing

(ICIP), Singapore.

Kuo, C., & Nevatia, R. (2011). How does person identity recognition help multi-person track-

ing? In CVPR.

Kuo, C. H., Huang, C., & Nevatia, R. (2010). Multi-target tracking by online learned discrimi-

native appearance models. InThe International Conference on Computer Vision and Pattern

Recognition (CVPR), San Francisco, CA, USA.

Li, Y., Huang, C., & Nevatia, R. (2009). Learning to associate: Hybridboosted multi-target

tracker for crowded scene. InThe International Conference on Computer Vision and Pattern

Recognition (CVPR).

Nievergelt, J. (2000). Exhaustive search, combinatorial optimization and enumeration: Explor-

ing the potential of raw computing power. InThe Conference on Current Trends in Theory

and Practice of Informatics.

Santner, J., Leistner, C., Saffari, A., Pock, T., & Bischof,H. (2010). PROST: Parallel Robust

Online Simple Tracking. InThe International Conference on Computer Vision and Pattern

Recognition (CVPR), San Francisco, CA, USA.

Sherrah, J. (2010). Learning to Adapt: A Method for Automatic Tuning of Algorithm Param-

eters. InThe International Conference on Advanced Concepts for Intelligent Vision Systems

(ACIVS), Sydney, Australia(pp. 414–425).

Shi, J., & Tomasi, C. (1994). Good features to track. InThe International Conference on

Computer Vision and Pattern Recognition (CVPR).

40

Shitrit, H. B., Berclaz, J., Fleuret, F., & Fua, P. (2011). Tracking multiple people under global

appearance constraints. In ICCV.

Souded, M., Giulieri, L., & Bremond, F. (2011). An object tracking in particle filtering and data

association framework, using sift features. InThe International Conference on Imaging for

Crime Detection and Prevention (ICDP), London, UK.

Thonnat, M., Moisan, S., & Crubezy, M. (1999). Experience inIntegrating Image Processing

Programs. InICVS, Lecture Notes in Computer Science, Spain.

Wu, B., & Nevatia, R. (2007). Detection and tracking of multiple, partially occluded humans

by bayesian combination of edgelet based part detectors.In The International Journal of

Computer Vision, 75, 247–266.

Xing, J., Ai, H., & Lao, S. (2009). Multi-object tracking through occlusions by local track-

lets filtering and global tracklets association with detection responses. InThe International

Conference on Computer Vision and Pattern Recognition (CVPR).

Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: A survey. InThe ACM Computing

Surveys (CSUR).

41

