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ABSTRACT

Due to the remarkable progress of Generative Adversarial Networks (GANs) and
auto-encoder animating images has become increasingly efficient, whereas asso-
ciated results have become increasingly realistic. Current animation-approaches
commonly exploit structure representation extracted from driving videos. Such
structure representation (e.g., keypoints or regions) is instrumental in transferring
motion from driving videos to still images. However, such approaches fail in
case that a source image and driving video encompass large appearance variation.
Moreover, the extraction of structure information requires additional modules that
endow the animation-model with increased complexity. Deviating from such mod-
els, we here introduce the Latent Image Animator (LIA), a self-supervised auto-
encoder that evades need for structure representation. LIA is streamlined to ani-
mate images by linear navigation in the latent space. Specifically, motion in gen-
erated video is constructed by linear displacement of codes in the latent space.
Towards this, we learn a set of orthogonal motion directions simultaneously, and
use their linear combination, in order to represent any displacement in the latent
space. Extensive quantitative and qualitative analysis suggests that our model
systematically and significantly outperforms state-of-art methods on VoxCeleb,
Taichi and TED-talk datasets w.r.t. generated quality.

Figure 1: LIA animation examples. Two example images animated by LIA, which transfers motion
of a driving video (smaller images on the top) from VoxCeleb dataset (Chung et al., 2018) onto still
images of two celebrities, Marilyn Monroe and Emmanuel Macron. LIA is able to successfully ani-
mate these two images without relying on any explicit structure representations, such as landmarks
and region representations
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1 INTRODUCTION

In the series of science fiction books Harry Potter (Rowling et al., 2016; Rowling, 2019), wizards
and witches were able to magically enchant portraits, bringing them to life. Remarkable progress of
deep generative models has recently turned this vision into reality. This work examines the scenario
where a framework animates a source image by motion representations learned from a driving video.
Existing approaches for image animation are classically related to computer graphics (Cao et al.,
2014; Thies et al., 2016; 2019) or exploit explicit structure representations such as labels (Wang
et al., 2020a), semantic maps (Pan et al., 2019; Wang et al., 2018; 2019), human key-points (Jang
et al., 2018; Yang et al., 2018; Walker et al., 2017; Chan et al., 2019; Zakharov et al., 2019; Wang
et al., 2019; Siarohin et al., 2019), 3D face mesh (Zhao et al., 2018) and optical flow (Li et al.,
2018; Ohnishi et al., 2018). We note that the ground truth of such structure representations is being
computed a-priori for the purpose of supervised training. This poses constraints on applications,
where such representations of unseen testing images might be fragmentary or missing.
Self-supervised motion transfer approaches (Wiles et al., 2018; Siarohin et al., 2019; 2021) accept
raw videos as input and learn to reconstruct driving images by warping source image with predicted
dense flow fields. While the need for domain knowledge or labeled ground truth data has been
obviated (improving performance on in-the-wild testing images), such methods entail necessity of
explicit structure representations as motion guidance. Prior information such as keypoints or regions
are learned in an end-to-end training manner by additional networks as intermediate features, in
order to predict target flow fields. Although online prediction of such representations is less tedious
than the acquisition of ground truth labels, it still strains the complexity of networks.
Deviating from such approaches, we here aim to fully eliminate the need of explicit structure repre-
sentations by directly manipulating the latent space of a deep generative model. To the best of our
knowledge, this constitutes a new direction in the context of image animation. Our work is moti-
vated by interpretation of GANs (Shen et al., 2020; Goetschalckx et al., 2019; Jahanian et al., 2020;
Voynov & Babenko, 2020), showcasing that latent spaces of StyleGAN (Karras et al., 2019) and
BigGAN (Brock et al., 2019) contain rich semantically meaningful directions. Given that walking
along such directions, basic visual transformations such as zooming and rotation can be induced in
generated results. As in image animation, we have that motion between source and driving images
can be considered as higher-level transformation, a natural question here arises: can we discover
a set of directions in the latent space of an image animator that induces high-level transformations
collaboratively?
Towards answering this question, we introduce a novel Latent Image Animator (LIA), constituting
of an auto-encoder for animating still images via latent space navigation. LIA seeks to animate a
source image via linearly navigating associated source latent code along a learned latent path to
reach a target latent code, which represents the high-level transformation for animating the source
image. We introduce a Linear Motion Decomposition (LMD) approach aiming to represent a latent
path via a linearly combination of a set of learned motion directions and associated magnitudes.
Specifically, we constrain the set as an orthogonal basis, where each vector indicates a basic visual
transformation. By describing the whole motion space using such learned basis, LIA eliminates the
need of explicit structure representations.
In addition, we design LIA to disentangle motion and appearance within a single encoder-generator
architecture. Deviating from existing methods using separate networks to learn disentangled fea-
tures, LIA integrates both, latent motion code, as well as appearance features in a single encoder,
which highly reduces the model complexity and simplifies training.
We provide evaluation on multiple datasets including VoxCeleb, TaichiHD and TED-talk. In addi-
tion, we show that LIA outperforms the state-of-the-art in preserving the facial structure in generated
videos in the setting of one-shot image animation on unseen dataset (FFHQ and GermanAudio).

2 RELATED WORK

Video generation Generative adversarial networks (GAN)-based video generation is aimed at
mapping Gaussian noise to video, directly and in the absence of prior information (Vondrick et al.,
2016; Saito et al., 2017; Tulyakov et al., 2018; Wang et al., 2020b). Recently, with the progress of
GANs in photo-realistic image generation (Brock et al., 2019; Karras et al., 2019; 2020), a series
of works (Clark et al., 2019; Wang et al., 2021b) explored production of high-resolution videos by
incorporating the architecture of an image generator into video GANs, trained jointly with RNNs.
Tian et al. (2021) directly leveraged the knowledge of a pre-trained StyleGAN to produce videos of
resolution up to 1024 × 1024. Unlike these approaches, which generate random videos based on
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Figure 2: General pipeline. Our objective is to transfer motion via latent space navigation. The
entire training pipeline consists of two steps. In the first step, we encode a source image xs into
a latent code zs→r. By linearly navigating zs→r along a path wr→d, we reach a target latent code
zs→d. The latent paths are represented by a linear combination between a set of learned motion
directions, which is an orthogonal basis, and associated magnitudes. In the second step, we decode
zs→d to a target dense optical flow field φs→d, which is used to warp xs into a driving image xd.
While we train our model using images from the same video sequence, in the testing phase xs and
xd generally pertain to different identities.

noise vectors in an unconditional manner, in this paper, we focus on conditionally creating novel
videos by transferring motion from driving videos to input images.

Latent space editing In an effort to control generated images, recent works explored the discovery
of semantically meaningful directions in the latent space of pre-trained GANs, where linear navi-
gation corresponds to desired image manipulation. Supervised (Shen et al., 2020; Jahanian et al.,
2020; Goetschalckx et al., 2019) and unsupervised (Voynov & Babenko, 2020; Peebles et al., 2020;
Shen & Zhou, 2021) approaches were proposed to edit semantics such as facial attributes, colors and
basic visual transformations (e.g., rotation and zooming) in generated or inverted real images (Zhu
et al., 2020; Abdal et al., 2020). In this work, as opposed to finding directions corresponding to
individual visual transformations, we seek to learn a set of directions that cooperatively allows for
high-level visual transformations that can be beneficial in image animation.

Image animation Related approaches (Chan et al., 2019; Wang et al., 2018; Zakharov et al., 2019;
Wang et al., 2019) in image animation required strong prior structure labels as motion guidance. In
particular, Chan et al. (2019) and Wang et al. (2018) proposed to map representations such as hu-
man keypoints and facial landmarks to videos in the setting of image-to-image translation proposed
by Isola et al. (2017). However, such approaches were only able to learn an individual model for a
single identity. Transferring motion on new appearances requires retraining the entire model from
scratch by using videos of target identities. Several recent works (Zakharov et al., 2019; Wang et al.,
2019) explored meta learning in fine-tuning models on target identities. While only few images of
target identities were required during inference time, it was still compulsory to input pre-computed
structure representations in those approaches, which usually are hard to access in many real-world
scenarios.
Towards addressing this issue, very recent works (Siarohin et al., 2019; 2021; Wang et al., 2021a;
Wiles et al., 2018) proposed to learn image animation in self-supervised manner, only relying on
RGB videos for both, training and testing without any priors. They firstly predicted dense flow fields
from input images, which were then utilized to warp source images, in order to obtain final generated
results. Inference only required one image of a target identity without any fine-tuning step on pre-
trained models. While no priors were required, state-of-the-art methods still followed the idea of
using explicit structure representations. FOMM (Siarohin et al., 2019) proposed a first order motion
approach to predict keypoints and local transformations online to generate flow fields. Siarohin
et al. (2021) developed this idea to model articulated objects by replacing a keypoints predictor by
a PCA-based region prediction module. Wang et al. (2021a) extended FOMM by predicting 3D
keypoints for view-free generation. We note though that in all approaches, given that keypoints or
regions are inadequately predicted, the quality of generated images drastically decreases. In contrast
to such approaches, our method does not require any explicit structure representations. We dive into
the latent space of the generator and self-learn to navigate motion codes in certain directions with
the goal to reach target codes, which are then decoded to flow fields for warping.
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Figure 3: Overview of LIA. Our model is an auto-encoder consisting of two networks, an encoder
E and a generator G. In the latent space, we apply Linear Motion Decomposition (LMD) towards
learning a motion dictionary Dm, which is an orthogonal basis where each vector represents a basic
visual transformation. LIA takes two frames sampled from the same video sequence as source image
xs and driving image xd respectively during training. Firstly, it encodes xs into a source latent code
zs→r and xd into a magnitude vector Ar→d. Then, it linearly combines Ar→d and a trainable Dm

using LMD to obtain a latent path wr→d, which is used to navigate zs→r to a target code zs→d.
Finally, G decodes zs→d into a target dense flow field and warps xs to an output image xs→d. The
training objective is to reconstruct xd using xs→d.

3 METHOD

Self-supervised image animation aims at learning to transfer motion from a subject of a driving video
to a subject in a source image based on training with a large video dataset. In this work, we propose
to model such motion transformation via latent space navigation. The general pipeline is illustrated
in Fig. 2. Specifically, for training, our model takes in a pair of source and driving images, randomly
sampled from one video sequence. These two images are encoded into a latent code which is used
to represent motion transformation in the image space. The training objective is to reconstruct the
driving image by combining source image with learned motion transformation. For testing, frames
of a driving video are sequentially processed with the source image to animate the source subject.
We provide an overview of the proposed model in Fig. 3. Our model is an auto-encoder, consisting
of two main networks, an encoder E and a generator G. In general, our model requires two steps to
transfer motion. In the first step, E encodes source and driving images xs, xd ∼ X ∈ R3×H×W into
latent codes in the latent space. The source code is then navigated into a target code, which is used
to represent target motion transformation, along a learned latent path. Based on proposed Linear
Motion Decomposition (LMD), we represent such a path as a linear combination of a set of learned
motion directions and associated magnitudes, which are learned from xd. In the second step, once
the target latent code is obtained, G decodes it as a dense flow field φs→d ∼ Φ ∈ R2×H×W and
uses φs→d to warp xs and then to obtain the output image. In the following, we proceed to discuss
the two steps in detail.

3.1 LATENT MOTION REPRESENTATION

Given a source image xs and a driving image xd, our first step constitutes of learning a latent code
zs→d ∼ Z ∈ RN to represent the motion transformation from xs to xd. Due to the uncertainty
of two images, directly learning zs→d puts forward a high requirement on the model to capture a
complex distribution of motion. Mathematically, it requires modeling directions and norms of the
vector zs→d simultaneously, which is challenging. Therefore, instead of modeling motion transfor-
mation xs → xd, we assume there exists a reference image xr and motion transfer can be modeled
as xs → xr → xd, where zs→d is learned in an indirect manner. We model zs→d as a target point
in the latent space, which can be reached by taking linear walks from a starting point zs→r along a
linear path wr→d (see Fig. 2), given by

zs→d = zs→r + wr→d, (1)
where zs→r and wr→d indicate the transformation xs → xr and xr → xd respectively. Both zs→r

and wr→d are learned independently and zs→r is obtained by passing xs through E.
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We learn wr→d via Linear Motion Decomposition (LMD). Our idea is to learn a set of motion
directions Dm = {d1, ...,dM} to represent any path in the latent space. We constrain Dm as an
orthogonal basis, where each vector indicates a motion direction di. We then combine each vector
in the basis with a vector Ar→d = {a1, ..., aM}, where ai represents the magnitude of di. Hence,
any linear path in the latent space can be represented using a linear combination

wr→d =

M∑
i=1

aidi, (2)

where di ∈ RN and ai ∈ R for all i ∈ {1, ...,M}. Semantically, each di should represent a basic
visual transformation and ai indicates the required steps to walk in di towards achieving wr→d. Due
to Dm entailing an orthogonal basis, any two directions di,dj follow the constrain

< di,dj >=

{
0 i 6= j
1 i = j. (3)

We implement Dm as a learnable matrix and apply the Gram-Schmidt process during each forward
pass, in order to meet the requirement of orthogonality. Ar→d is obtained by mapping zd→r, which
is the output of xd after E, through a 5-layer MLP. The final formulation of latent motion represen-
tation for each xs and xd is thus given as

zs→d = zs→r +

M∑
i=1

aidi. (4)

3.2 LATENT CODE DRIVEN IMAGE ANIMATION

Once we obtain zs→d, in our second step, we use G to decode a flow field φs→d and warp xs. Our
G consists of two components, a flow field generator Gf and a refinement network Gr (we provide
details in Appendix A).
Towards learning multi-scale features, G is designed as a residual network containing N models
to produce a pyramid of flow fields φs→d = {φi}N1 in different layers of Gf . Multi-scale source
features xencs = {xenci }N1 are obtained from E and are warped in Gf .
However, as pointed out by Siarohin et al. (2019), only relying on φs→d to warp source features is
insufficient to precisely reconstruct driving images due to the existing occlusions in some positions
of xs. In order to predict pixels in those positions, the network is required to inpaint the warped
feature maps. Therefore, we predict multi-scale masks {mi}N1 along with {φi}N1 in Gf to mask out
the regions required to be inpainted. In each residual module, we have

x′i = T (φi, x
enc
i )�mi, (5)

where � denotes the Hadamard product and T denotes warping operation, whereas x′i signifies the
masked features. We generate both dense flow fields, as well as masks by letting each residual
module output a 3-channel feature map in which the first two channels represent φi and the last
channel mi. Based on an inpainted feature map f(x′i), as well as an upsampled image g(xi−1)
provided by the previous module in Gr, the RGB image from each module is given by

oi = f(x′i) + g(oi−1), (6)

where f and g denote the inpainting and upsampling layers, respectively. The output image oN from
the last module constitutes the final generated image xs→d = oN .

3.3 LEARNING

We train the LIA - framework in a self-supervised manner to reconstruct xd using three losses, i.e.,
a reconstruction loss Lrecon, a perceptual loss Lvgg (Johnson et al., 2016) and an adversarial loss
Ladv . We use Lrecon to minimize the pixel-wise L1 distance between xd and xs→d, calculated as

Lrecon(xs→d, xd) = E[‖xd − xs→d‖1]. (7)

Towards minimizing the perceptual distance, we apply a VGG19-based Lvgg on multi-scale feature
maps between real and generated images, written as

Lvgg(xs→d, xd) = E[

N∑
n

‖Fn(xd)− Fn(xs→d)‖1], (8)
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where Fn denotes the nth layer in a pre-trained VGG19 (Simonyan & Zisserman, 2015). In prac-
tice, towards penalizing real and generated images in multi-scale images, we use a pyramid of four
resolutions, namely 256 × 256, 128 × 128, 64 × 64 and 32 × 32 as inputs of VGG19. The final
perceptual loss is the addition of perceptual losses in four resolutions.
Further, towards generating photo-realistic results, we incorporate a non-saturating adversarial loss
Ladv on xs→d, which is calculated as

Ladv(xs→d) = Exs→d∼prec
[−log(D(xs→d)], (9)

where D is a discriminator, aimed at distinguishing reconstructed from original images. Our full
loss function is the combination of three losses with λ as a balanced hyperparameter

L(xs→d, xd) = Lrecon(xs→d, xd) + λLvgg(xs→d, xd) + Ladv(xs→d). (10)

3.4 INFERENCE

In inference stage, given a driving video sequence Vd = {xt}T1 , we aim to transfer motion from Vd
to xs, in order to generate a novel video Vd→s = {xt→s}T1 . If Vd and xs stem from the same video
sequence, i.e., xs = x1, our task comprises of reconstructing the entire original video sequence.
Therefore, we construct the latent motion representation of each frame using absolute transfer,
which follows the training process, given as

zs→t = zs→r + wr→t, t ∈ {1, ..., T}. (11)
However, in real world applications, interest is rather placed on the scenario, where motion transfer
between xs and Vd, the latter stemming from different identities, i.e., xs 6= x1. Taking a talking
head video as an example, in this setting, beyond identity, x1 and xs might also differ in pose and
expression. Therefore, we propose relative transfer to eliminate the motion impact of wr→1 and
involve motion of wr→s in the full generated video sequence. Owing to a linear representation of
the latent path, we can easily represent zs→t for each frame as

zs→t = (zs→r + wr→s) + (wr→t − wr→1)

= zs→s + (wr→t − wr→1), t ∈ {1, ..., T}.
(12)

In the first part of Eq. (12), zs→s indicates the reconstruction of xs, while the second part
(wr→t − wr→1) represents the motion from x1 to xt. This equation indicates that the original
pose is preserved in xs, at the same time motion is transferred from Vd. We note that in order
to completely replicate the position and pose in Vd, relative motion transfer requires xs and x1 to
contain similar poses, else face will have as starting image the pose from xs rather than x1.

4 EXPERIMENTS

In this section, we firstly describe our experimental setup including implementation details and
datasets. Secondly, we qualitatively demonstrate generated results based on testing datasets. Then,
we provide quantitative evaluation w.r.t. image quality on (a) same-identity reconstruction, (b) cross-
video motion transfer, presenting (c) a user study. Next, we conduct an ablation study that demon-
strates (d) the effectiveness of our proposed motion dictionary, as well as (e) associated size. Finally,
we provide an in-depth analysis of our (f) latent codes and (g) motion dictionary to interpret their
semantic meanings.

Datasets Our model is trained on the datasets VoxCeleb (Chung et al., 2018), TaichiHD (Siarohin
et al., 2019) and TED-talk (Siarohin et al., 2021). We follow the pre-processing method in (Siarohin
et al., 2019) to crop frames into 256 × 256 resolution for quantitative evaluation. In addition, we
process a 512×512 version of VoxCeleb towards qualitatively demonstrating the capacity of method
on high resolution generation (see Appendix B.1).

Implementation details Our model is implemented in PyTorch (Paszke et al., 2019). All models
are trained on four 16G NVIDIA V100 GPUs. The total batch size is 32 with 8 images per GPU.
We use a learning rate of 0.002 to train our model with the Adam optimizer (Kingma & Ba, 2014).
The dimension of all latent codes, as well as directions in Dm are set to be 512. In our loss function,
we use λ = 10 in order to penalize more on the perceptual loss. It takes around 150 hours to fully
train our framework.

Evaluation metrics We evaluate our model w.r.t. (i) reconstruction faithfulness using L1, LPIPS,
(ii) generated video quality using video FID, as well as (iii) semantic consistency using average
keypoint distance (AKD), missing keypoint rate (MKR) and average euclidean distance (AED).
Details are available in Appendix B.2.
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Figure 4: Qualitative results. Examples for same-dataset absolute motion transfer on TaichiHD
(top-right) and TED-talk (bottom-right). On VoxCeleb (left), we demonstrate cross-dataset relative
motion transfer. We successfully transfer motion between x1 and xt from videos in VoxCeleb to xs
from FFHQ, the latter not being used for training.

4.1 QUALITATIVE RESULTS

Firstly, we evaluate the ability of LIA to generate realistic videos and compare related results with
four state-of-the-art methods. For TaichiHD and TED-talk datasets, we conduct an experiment re-
lated to cross-video generation. Corresponding results (see Fig. 4) confirm that our method is able
to correctly transfer motion on articulated human bodies, in the absence of explicit structure repre-
sentations. For the VoxCeleb dataset, we conduct a cross-dataset generation-experiment, where we
transfer motion from VoxCeleb to images of the FFHQ dataset (Karras et al., 2019). We observe
that our method outperforms FOMM and MRAA w.r.t. image quality, as both approaches deform the
shape of original faces visibly. This is specifically notable in the case that source and driving images
entail large pose variations. At the same time, LIA is able to successfully tackle this challenge and
no similar deformations are visible.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We quantitatively compare our method with the state-of-art approaches X2Face, Monkey-Net,
FOMM and MRAA on two tasks, namely (a) same-identity reconstruction and (b) cross-video mo-
tion transfer. Additionally, we conduct a (c) user study.

(a) Same-identity reconstruction We here evaluate the reconstruction ability of our method.
Specifically, we reconstruct each testing video by using the first frame as xs and the remain-
ing frames as xd. Results on three datasets are reported in Table 1. Focusing on foreground-
reconstruction, our method outperforms the other approaches w.r.t. all metrics. More results are
presented in Appendix B.3, discussing background-reconstruction.

Table 1: Same-identity reconstruction. Comparison with state-of-the-art methods on three
datasets.

VoxCeleb TaichiHD TED-talks
Method L1 AKD AED LPIPS L1 (AKD, MKR) AED LPIPS L1 (AKD, MKR) AED LPIPS

X2Face 0.078 7.687 0.405 - 0.080 (17.654, 0.109) - - - - - -
Monkey-Net 0.049 1.878 0.199 - 0.077 (10.798, 0.059) - - - - - -

FOMM 0.046 1.395 0.141 0.136 0.063 (6.472, 0.032) 0.495 0.191 0.030 (3.759, 0.0090) 0.428 0.13
MRAA w/o bg 0.043 1.307 0.140 0.127 0.063 (5.626, 0.025) 0.460 0.189 0.029 (3.126, 0.0092) 0.396 0.12

Ours 0.041 1.353 0.138 0.123 0.057 (4.823, 0.020) 0.431 0.180 0.027 (3.141, 0.0095) 0.399 0.11

(b) Cross-video motion transfer Next, we conduct experiments, where source images and driving
videos stem from different video sequences. In this context, we mainly focus on evaluating talking
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Table 2: Cross-video generation. We report
video FID for both inner-dataset and cross-dataset
tasks on VoxCeleb and GermanAudio datasets.

VoxCeleb GermanAudio
FOMM 0.323 0.456
MRAA 0.308 0.454

Ours 0.161 0.406

Table 3: User study

VoxCeleb(%) TaichiHD(%) TED-talk(%)
Ours/FOMM 92.9/7.1 64.5/35.5 71.4/28.6
Ours/MRAA 89.7/10.3 60.7/39.9 54.8/45.2

Table 4: Ablation study on effectiveness of
motion dictionary. We conduct experiments
on three datasets with and without Dm and
show reconstruction results.

VoxCeleb TaichiHD TED-talks
Method L1 LPIPS L1 LPIPS L1 LPIPS

w/o Dm 0.049 0.165 0.062 0.186 0.031 0.12
Full 0.041 0.123 0.057 0.180 0.028 0.11

Table 5: Ablation study on Dm size.

VoxCeleb TaichiHD TED-talks
M L1 LPIPS L1 LPIPS L1 LPIPS

5 0.051 0.15 0.070 0.22 0.037 0.15
10 0.043 0.13 0.065 0.20 0.036 0.13
20 0.041 0.12 0.057 0.18 0.028 0.11
40 0.042 0.12 0.060 0.19 0.030 0.12
100 0.041 0.12 0.058 0.18 0.028 0.11

head videos and explore two different cases. In the first case, we generate videos using the VoxCeleb
testing set to conduct motion transfer. In the second case, source images are from an unseen dataset,
namely the GermanAudio dataset (Thies et al., 2020), as we conduct cross-dataset motion transfer.
In both experiments, we randomly construct source and driving pairs and transfer motion from
driving videos to source images to generate a novel manipulated dataset. Since ground truth data for
our generated videos is not available, we use video FID (as initialized by Wang et al. (2020b)) to
compute the distance between generated and real data distributions. As shown in Tab. 2, our method
outperforms all other approaches w.r.t. video FID, indicating the best generated video quality.

(c) User study We conduct a user study to evaluate subjective video quality. Towards this, we
displayed paired videos and asked 20 human raters ‘which clip is more realistic’. Each video-
pair contains a generated video from our method, as well as a video generated from FOMM or
MRAA. Results suggest that our results are more realistic in comparison to FOMM and MRAA
across all three datasets (see Tab. 3). Hence, the obtained human preference is in accordance with
our quantitative evaluation.

4.3 ABLATION STUDY

We here analyze our proposed motion dictionary and focus on answering following two questions.

(d) Is the motion dictionary Dm beneficial? We here explore the impact of proposed Dm, by
training our model without Dm. Specifically, we output wr→d directly from MLPs, without using
LMD to learn an orthogonal basis. From the evaluation results reported in Tab. 4, we observe that
in the absence of Dm, LIA fails to generate high-quality images, which proves the effectiveness of
Dm, consistently on all datasets. We show qualitative results in Appendix B.7.

(e) How many directions are required in Dm? Towards finding an effective size of Dm, we
empirically test three different M , viz. 5, 10, 20, 40 and 100. Quantitative results in Tab. 5 show
that when using 20 directions, we obtain the best reconstruction results.

4.4 FURTHER ANALYSIS

(f) Latent code analysis. While our method successfully transfers motion via latent space navi-
gation, we here aim at answering the question — what does xr represent? Towards answering this
question, we proceed to visualize xr. We firstly decode zs→r into a dense flow field φs→r, which
then warps xs. Fig. 5 shows examples of xs and xr. Interestingly, we observe that xr represents
the canonical pose of xs, regardless of original poses of the subjects. And for all datasets, reference
images resemble each other w.r.t. pose and scale. As such reference images can be considered as
a normalized form of xs, learning transformations between xs and xd using xs → xr → xd is
considerably more efficient than xs → xd, once xr is fixed.
Noteworthy, we found a similar idea of learning a ‘reference image’ explored by Siarohin et al.
(2019) (FOMM) and by Wiles et al. (2018) (X2Face). However, deviating from our visualized ‘ref-
erence image’, in FOMM it refers to a non-visualized and abstract concept. In contrast to X2Face,
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Figure 5: Visualization of reference images. Example source (top) and reference images (down)
from VoxCeleb, TaichiHD and TED-talk datasets. Our network learns reference images of a consis-
tently frontal pose, systematically for all input images of each dataset.

Figure 6: Linear manipulation of four motion directions on the painting of Mona Lisa. Manip-
ulated results indicate that d6 represents eye movement, d8 represents head nodding, whereas d19
and d7 represent facial expressions.

we only require a latent code zs→r, rather than its explicit form φs→r and xr during both, training
and testing.

(g) Motion dictionary interpretation. Towards further interpretation of directions in Dm, we
conduct linear manipulations on each di. Details of the analysis are provided in Appendix B.5.
Images pertained to manipulating four motion directions are depicted in Fig. 6. The results suggest
that the directions inDm are semantically meaningful, as they represent basic visual transformations
such as head nodding (d8), eye movement (d6) and facial expressions (d19 and d7).

5 CONCLUSIONS

In this paper, we presented a novel self-supervised auto-encoder LIA, aimed at animating images
via latent space navigation. By the proposed Linear Motion Decomposition (LMD), we were able
to formulate the task of transferring motion from driving videos to source images as learning lin-
ear transformations in the latent space. We evaluated proposed method on real-world videos and
demonstrated that our approach is able to successfully animate still images, while eliminating the
necessity of explicit structure representations. In addition, we showed that the incorporated motion
dictionary is interpretable and contains directions pertaining to basic visual transformations. Both
quantitative and qualitative evaluations showed that LIA outperforms state-of-art algorithms on all
benchmarks. We postulate that LIA opens a new door in design of interpretable generative models
for video generation.
Public release. We intend to release our source code, as well as trained models. Moreover, we will
release a dataset of videos, generated by LIA, in order to facilitate research on deepfake detection.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan++: How to edit the embedded im-
ages? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satyanarayanan. Openface: A general-purpose
face recognition library with mobile applications. Technical report, CMU-CS-16-118, CMU
School of Computer Science, 2016.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
natural image synthesis. In ICLR, 2019.

Adrian Bulat and Georgios Tzimiropoulos. How far are we from solving the 2d & 3d face alignment
problem? (and a dataset of 230,000 3d facial landmarks). In ICCV, 2017.

Chen Cao, Qiming Hou, and Kun Zhou. Displaced dynamic expression regression for real-time
facial tracking and animation. ACM Transactions on graphics (TOG), 33(4):1–10, 2014.

Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. Openpose: Realtime multi-person
2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2019.

Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A Efros. Everybody dance now. In ICCV,
2019.

J. S. Chung, A. Nagrani, and A. Zisserman. Voxceleb2: Deep speaker recognition. In INTER-
SPEECH, 2018.

Aidan Clark, Jeff Donahue, and Karen Simonyan. Adversarial video generation on complex datasets.
arXiv preprint arXiv:1907.06571, 2019.

Lore Goetschalckx, Alex Andonian, Aude Oliva, and Phillip Isola. Ganalyze: Toward visual defini-
tions of cognitive image properties. In ICCV, pp. 5744–5753, 2019.

Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns retrace the history
of 2d cnns and imagenet? In CVPR, 2018.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NIPS, 2017.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-Image Translation with
Conditional Adversarial Networks. In CVPR, 2017.

Ali Jahanian, Lucy Chai, and Phillip Isola. On the ”steerability” of generative adversarial networks.
In ICLR, 2020.

Yunseok Jang, Gunhee Kim, and Yale Song. Video Prediction with Appearance and Motion Condi-
tions. In ICML, 2018.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In European conference on computer vision, pp. 694–711. Springer, 2016.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In CVPR, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of StyleGAN. In CVPR, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (eds.),
Advances in Neural Information Processing Systems, 2012.

10



Under review as a conference paper at ICLR 2022

Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang. Flow-grounded
spatial-temporal video prediction from still images. In ECCV, 2018.

Arsha Nagrani, Joon Son Chung, Weidi Xie, and Andrew Zisserman. Voxceleb: Large-scale speaker
verification in the wild. Computer Science and Language, 2019.

Katsunori Ohnishi, Shohei Yamamoto, Yoshitaka Ushiku, and Tatsuya Harada. Hierarchical video
generation from orthogonal information: Optical flow and texture. In AAAI, 2018.

Junting Pan, Chengyu Wang, Xu Jia, Jing Shao, Lu Sheng, Junjie Yan, and Xiaogang Wang. Video
generation from single semantic label map. arXiv preprint arXiv:1903.04480, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
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A DETAILS OF MODEL ARCHITECTURE

We proceed to describe the model architecture in this section. Fig. 7 shows details of our E. In
each ResBlock in E, spatial size of input feature maps are downsampled. We take feature maps of
spatial sizes from 8 × 8 to 256 × 256 as our appearance features xenci . We use a 5-layer MLP to
predict a magnitude vector Ad→r from zd→r. Fig. 8 (a) shows the general architecture of our G,
which consists of two components, a flow field generator Gf and a refinement network Gr. We
apply StyleConv (Upsample + Conv3 × 3), which is proposed by StyleGAN2, in Gf . StyleConv
takes latent representation zs→t as style code and generates flow field φi and corresponding mask
mi. Gr uses UpConv (Conv1 × 1 + Upsample) to upsample and refine inpainted feature maps to
target resolution. We show details pertaining to G block in Fig. 8 (b). Each G block is used to
upsample ×2 the previous resolution. We stack 6 blocks towards producing 256 resolution images.

Figure 7: Encoder architecture. We show details about architecture of E in (a) and ResBlock in
(b).

B EXPERIMENTS

We proceed to introduce details of datasets and evaluation metrics used in our experiments.

B.1 DATASETS

VoxCeleb (Nagrani et al., 2019) consists of a large amount of interview videos of different celebri-
ties. Following the process of FOMM (Siarohin et al., 2019), we extract frames and crop them into
256×256 resolution. In total, VoxCeleb contains a training set of 17928 videos and a test set of 495
videos.
TaiChiHD (Siarohin et al., 2019) consists of videos of full human bodies performing Tai Chi actions.
We follow the original pre-processing of FOMM (Siarohin et al., 2019) and utilize its 256 × 256
version. TaiChiHD contains 1096 training videos and 115 testing videos.
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Figure 8: Generator architecture. We show details about architecture of G in (a) and G block in
(b).

TED-talk is a new dataset proposed in MRAA (Siarohin et al., 2021). It comprises a number of
TED-talk videos, where the main subjects have been cropped out. We resize the original version
into 256 × 256 resolution to train our model. This dataset includes 1124 training videos and 130
testing videos.

B.2 EVALUATION METRICS

We use five different metrics to evaluate our experimental results, namely L1, LPIPS, AKD, MKR
and AED that quantify the reconstructed results. In addition, we compute video FID to evaluate
video quality in motion transferring tasks.

L1 represents the mean absolute pixel difference between reconstructed and real videos.
LPIPS (Zhang et al., 2018) aims at measuring the perceptual similarity between reconstructed and
real images by leveraging the deep features from AlexNet (Krizhevsky et al., 2012).
Video FID is a modified version of original FID (Heusel et al., 2017). We here follow the same
implementation as Wang et al. (2020b) and utilize a pre-trained ResNext101 (Hara et al., 2018) to
extract spatio-temporal features to compute the distance between real and generated videos distri-
butions. We take the first 100 frames of each video as input of the feature-extractor to compute the
final scores.
Average keypoint distance (AKD) and missing keypoint rate (MKR) evaluate the difference be-
tween keypoints of reconstructed and ground truth videos. We extract landmarks using the face
alignment approach of (Bulat & Tzimiropoulos, 2017) and extract body poses for both TaiChiHD
and TED-talks using OpenPose (Cao et al., 2019). AKD is computed as the average distance be-
tween corresponding keypoints, whereas MKR is the proportion of keypoints present in the ground-
truth that are missing in a reconstructed video.
Average Euclidean distance (AED) measures the ability of preserving identity in reconstructed
video. We use a person re-identification pretrained model (Zheng et al., 2020) for measuring human
bodies (TaichiHD and TED-talk) and OpenFace (Amos et al., 2016) for faces to extract identity em-
beddings from reconstructed and ground truth frame pairs, then we compute MSE of their difference
for all pairs.

B.3 COMPARISON WITH FULL MRAA
We show quantitative evaluation results with the full MRAA model in Tab. 6. We observe that our
method achieves competitive results in reconstruction and keypoint evaluation. W.r.t. the TaichiHD
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dataset, while we do not explicitly predict keypoints, interestingly we outperform MRAA in both,
AKD and MKR. Such results showcase the effectiveness of our proposed method on modeling ar-
ticulated human structures. However, reconstruction evaluation cannot provide a completely fair
comparison on how well the main subjects (e.g., faces and human bodies) are generated in videos.
This is in particular the case for TaichiHD and TED-talk, where backgrounds have large contribu-
tions to the final scores.

Table 6: Comparison with full MRAA.

VoxCeleb TaichiHD TED-talks
Method L1 AKD AED LPIPS L1 (AKD, MKR) AED LPIPS L1 (AKD, MKR) AED LPIPS

MRAA 0.041 1.303 0.135 0.124 0.045 (5.551, 0.025) 0.431 0.178 0.027 (3.107, 0.0093) 0.379 0.11
Ours 0.041 1.353 0.138 0.123 0.057 (4.823, 0.020) 0.431 0.180 0.027 (3.141, 0.0095) 0.399 0.11

B.4 REFERENCE IMAGE GENERATION.
To produce xr, we use G to decode zs→r into the flow field φs→r. Reference image xr is obtained
by warping xs using φs→r. The entire process is shown in Fig. 9.

Figure 9: Reference image generation.

B.5 MANIPULATION IN MOTION DICTIONARY

Towards interpreting Dm, we firstly obtain zs→r and Ar→s from the encoder by reconstructing xs.
From Eq. (4), we obtain

zs→s = zs→r + wr→s, (13)

wr→s =

M∑
i=1

aidi. (14)

Our interpretation is based on linearly manipulating each di in Dm. We compute amin and amax

for each di for reconstructing the training data and use them as a manipulation range [amin, amax].
The manipulation step size is computed as

amax − amin

n
, (15)

where n indicates the total steps. The manipulated magnitude is then given by

a′ =
s(amax − amin)

n
, s ∈ [1...n]. (16)

We use a′ to replace ai. Hence the latent code for the the manipulated image is given by

zs→m = zs→r + wr→m, (17)

wr→m = a′idi, i ∈ [1...M ]. (18)
When manipulating each di, we eliminate the contributions of other directions by setting

a′j = 0, if j 6= i. (19)

We show more manipulation results in Fig. 10.
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Figure 10: Manipulation of motion dictionary.

Figure 11: High resolution generation Image animation using a real-world driving video.
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Figure 12: Generated results with and without motion dictionary.

B.6 QUALITATIVE RESULTS ON HIGH RESOLUTION GENERATION

We show generated results on 512 × 512 resolution for talking head images. We train LIA using
VoxCeleb, with resolution 512 × 512 and show motion transfer results using a real-world driving
video in Fig. 11.

B.7 QUALITATIVE RESULTS ON EFFECTIVENESS OF USING MOTION DICTIONARY

Fig. 12 illustrates the generated results on transferring motion from VoxCeleb to GermanAudio
with and without motion dictionary. We observe that without the motion dictionary, appearance
information is undesirably transferred from driving videos to generated videos.

B.8 ORTHOGONALITY ANALYSIS IN MOTION DICTIONARY.
We provided comparison in Tab. 7 to analyze the effectiveness of orthogonality in the motion dictio-
nary. In non-orthogonality experiments, we randomly initialize 20 directions without using Gram-
Schmidt process. Tab. 7 shows that models using orthogonal basis perform better than the ones using
non-orthogonal basis. To further analyze the correlation between each direction after training, we
also computed angles between direction pairs in the motion dictionary for three datasets and show
results in Fig. 13, Fig. 14 and Fig. 16. We observe that most of the directions are nearly orthogonal
after training and angles are 90◦ ± 10◦. Therefore we consider on current three training datasets
that employing an orthogonal basis is effective. However, there are other factors that may affect
such choice, e.g., complexity of the datasets and latent code dimension. It remains an open question
whether orthogonality is a general solution for all cases or just in our context.

B.9 LIMITATIONS

For human body, one limitation of our method is dealing with body occlusion. We observe in
Fig. 16 that in taichi videos, in case of occlusion cause by legs and arms, motion is not transferred
successfully. In addition, in TED-talks, transferring hand motion is challenging, as hands are of
small size, articulated and sometimes occluded by human bodies.
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Table 7: Comparison between models using orthogonal and non-orthogonal basises

VoxCeleb TaichiHD TED-talks
L1 LPIPS L1 LPIPS L1 LPIPS

None-orthogonal 0.044 0.13 0.060 0.18 0.030 0.12
Orthogonal 0.041 0.12 0.057 0.18 0.028 0.11

Figure 13: Analysis on non-orthogonal basis. Cross-direction angle (degree) analysis on Vox-
Celeb.

C ETHIC STATEMENT

In this work, we aim to synthesize high-quality videos by transferring motion on still images. Our
approach can be used for movie production, making video games, online education, generating
synthetic data for other computer vision tasks, etc. We note that our framework mainly focuses on
learning how to model motion distribution rather than directly model appearance, therefore it is not
biased towards any specific gender, race, region, or social class. It works equally well irrespective
of the difference in subjects.
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Figure 14: Analysis on non-orthogonal basis. Cross-direction angle (degree) analysis on
TaichiHD.
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Figure 15: Analysis on non-orthogonal basis. Cross-direction angle (degree) analysis on TED-
talks.

Figure 16: Failure cases.
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