
Controlling Background Subtraction Algorithms for Robust Object
Detection

A.T. Nghiem, F. Bremond, M. Thonnat

Project PULSAR, INRIA Sophia Antipolis France

Keywords: Updating background, background subtraction
algorithms, adapting parameters.

Abstract

This paper presents a controller for background subtraction al-
gorithms to detect mobile objects in videos. The controller has
two main tasks.

The first task is to guide the background subtraction algo-
rithm to update its background representation. To realize this
task, the controller has to solve two important problems: re-
moving ghosts (background regions misclassified as object of
interest) and managing stationary objects. The controller de-
tects ghosts based on object borders. To manage stationary ob-
jects, the controller cooperates with the tracking task to detect
faster stationary objects without storing various background
layers which are difficult to maintain.

The second task is to initialize the parameter values of
background subtraction algorithms to adapt to the current con-
ditions of the scene. These parameter values enable the back-
ground subtraction algorithms to be as much sensitive as possi-
ble and to be consistent with the feedback of classification and
tracking task.

1 Introduction

Detecting mobile objects is an important task in many video
analysis applications such as video surveillance, people moni-
toring, video indexing for multimedia. Among various object
detection methods, the ones based on adaptive background sub-
traction [12, 9] are the most popular. However, the background
subtraction algorithm alone could not easily handle various
problems such as adapting to changes of environment, remov-
ing noise, detecting ghosts (defined in section 2) etc. To help
background subtraction algorithms to deal with these problems
we have constructed a controller for managing object detection
algorithms. Being independent from one particular background
subtraction algorithm, this controller has two main tasks:

• Supervising background subtraction algorithms to up-
date their background representation.

• Adapting parameter values of background subtraction al-
gorithms to be suitable for the current conditions of the
scene.

The article is organized as follows. Section 2 describes
the problems the controller has to solve to realize the above
tasks. This section also presents the state of the art related to
these problems. Section 3 describes how the controller detects
ghosts. Section 4 details the method to manage stationary ob-
jects. Section 5 presents our method to adapt the parameter
values of the background subtraction algorithms to the current
conditions of the scene. Several experiments are presented in
section 6. The conclusion is presented in section 7.

2 Problem statement and related work
For object detection algorithms which work with very long
video sequences, they must be able to adapt to various changes
of the scene. To do this, background subtraction algo-
rithms should update their background representation regularly.
Therefore, after a certain number of frames, the changes of
the scene are absorbed into the background representation and
these changes do not occur in the detection results again. How-
ever, in scenes like the one in figure 1, a person can often stay
at the same place for a long time. Consequently, if we do not
distinguish this person from the changes of the scene, after a
while, the person will be absorbed into the background repre-
sentation and the background subtraction algorithm will not be
able to detect this person. In [7], Harville et al propose a sim-
ple solution for this problem. In their framework, whenever
the classification task detects a person from the segmentation
results, the background subtraction algorithm does not update
the corresponding region. However, the classification task may
be wrong, i.e. it misclassifies a background region as a per-
son. For example, in figure 2, at the beginning, the person sits
in the chair and the background subtraction algorithm does not
have the background corresponding to the chair region occu-
pied by the person. As a result, when this person moves to the
table, the background at the chair is viewed by the camera and
the classification task classifies this region as a sitting person
(called a ghost). In this case, the updating strategy of Harville
et al will not update the newly observed region and the “ghost”
person (the background region classified as person) remains in
the detection results forever.

To distinguish ghosts from real mobile objects, some works
employ object borders (i.e. edges). In [4], Connell et al com-
pute the edge energy along the border of each detected object.
A foreground region is considered as a ghost if it does not
have a sufficient amount of edges. In [10], Lu et al use the

(a) (b)

(c)

Figure 1. The effect of uniform updating. Figure (a) is the
original image. The background subtraction algorithm detects
the person in this frame correctly (figure (b)). However, af-
ter 80 frames, the person is absorbed into background and the
background subtraction algorithm cannot detect the person any
more (figure (c)).

in-painting algorithm to fill the region corresponding to each
detected object. If it is a ghost, it does not have strong border
and the algorithm could fill a large part or the whole object. In
general, these techniques can have good results if background
subtraction algorithms can correctly detect the real object bor-
der. However this requirement cannot always be satisfied, for
example in case of shadows.

Our method for detecting ghosts is also based on border
detection. Nevertheless, the proposed method does not require
the background subtraction algorithm to detect the object bor-
der precisely. This method is also fast enough to be included
into a real time object detection system.

Beside detecting ghosts, the controller should also han-
dle stationary objects

¯
. For example in figure 3, the back-

ground subtraction algorithm has to detect both people and
cars. Therefore, the background subtraction algorithm should
not integrate the regions of detected people and cars into back-
ground. However, when a car stops and a person gets out of
the car, the classification task is unable to distinguish the peo-
ple from the car given only the detection results as in figure
3. This problem is called stationary object problem. To solve
this problem, in [5], the authors create a temporal background
layer containing the pixel values of the car. Then when peo-
ple passing in front of the car, the background subtraction al-
gorithm uses this temporal background layer to extract these
people from the car detection. When the car moves again, the
background subtraction algorithm removes the corresponding
temporal background layer. In general, these algorithms per-
form well when the illumination of the scene does not change
much. When such a change happens, these algorithms could
have difficulties in maintaining the lighting consistency of the
background layers. Moreover, these multi-layer frameworks
cannot be applied directly to many background subtraction al-
gorithms such as Gaussian Mixture Model (GMM).

In this article we propose a method to solve the station-
ary object problem. Unlike the above methods, the proposed

(a) (b)

(c)

Figure 2. The “ghost” problem of selective updating strategy.
At the beginning (figure (a)), the person sits in the chair and the
background subtraction algorithm does not see the background
occupied by the person. Then, when the person moves to the
table (figure (b)), the background at the chair can be observed
and the classification task classifies it as a person. Therefore,
the background subtraction algorithm does not update the cor-
responding region. Then the “ghost” person stays forever in the
detection results.

(a) (b)

Figure 3. The stationary object problem. Figure (a) is the orig-
inal frame. Figure (b) shows the detection results of this frame.
The background subtraction algorithm should detect both cars
and people. Therefore it should not update the regions corre-
sponding to detected cars or people. However, given only the
detection result of the background subtraction algorithm, the
classification task cannot distinguish the person from the car.

method employs only one one single background representa-
tion (single layer) to better adapt to illumination changes. The
management of stationary objects is delegated to the tracking
task. This task will guide the background subtraction algo-
rithm to update the background representation when necessary.
Therefore the proposed method does not have to maintain mul-
tiple background layers.

Another problem of background subtraction algorithms is
to adapt the parameters of the background subtraction algo-
rithms to the scene conditions. For example, with a background
subtraction algorithm such as GMM in [12], the parameter T is
a sensitive parameter and its value depends on the type of the
background. A small value of T is suitable for static back-
ground and a high value of T is suitable for background con-
taining motion such as waves, wind in trees, etc. Selecting the
wrong value of T may degrade the performance of GMM seri-
ously as in figure 6. Therefore, a parameter adapting algorithm

is necessary for background subtraction algorithms. In the lit-
erature, there are two main approaches to address this problem:
online and offline adaptation.

In the offline approach [11, 3], the adaptation algorithm first
collects a set of reference videos representing every possible
conditions of the scene with ground truth information on the
mobile objects. After that, optimization algorithms are used to
find optimal parameter value for each reference video. Then
for the current scene, the adaptation algorithm finds a similar
reference video and applies the optimized parameter value of
the reference video to the background subtraction algorithm to
process the current scene. The method in [11] is an example of
this approach which uses a large amount of ground truth and
reference videos illustrating all variations within 24 hours of
recording.

In the online approach, to avoid the reference videos which
are difficult to construct, the adaptation algorithm uses the cur-
rent video with the feedback from higher level tasks to evaluate
the object detection results. For example, in [6], Hall evalu-
ates object detection results based on the similarity between
the trajectory and size of detected mobile objects to the refer-
ence model (clusters of trajectories and sizes of mobile objects,
learned over long sequences). This method is complicated and
the parameter optimization must be run on a separated process
(on a different computer in the network for example). More-
over, this controlling algorithm is only able to find a global pa-
rameter value set for the whole image since trajectories spread
over the scene throughout the video. This global value is not
desirable especially if the scene is complex and each region
needs a different parameter value. This global value corre-
sponds also to a compromise between all the trajectories de-
tected within the last period of time, thus this parameter value
is not necessarily optimal.

In this article, we propose an online parameter adaptation
algorithms. Our approach evaluates directly the detection re-
sults based on the feedback from the classification and tracking
task. Because this method only selects the parameter values
among several predefined values, it is fast enough to be in-
cluded in the object detection system. Finally, it is capable of
finding good parameter values for each individual pixel in the
image.

3 Removing ghosts

The algorithm for detecting ghosts is based on the heuristic
that if we draw a horizontal line cutting a real object, this line
(called cut) will intersect with the object border at at least 2
points. Moreover, the distance between these 2 points must
be large compared to the object model. For example, with the
calibrated camera, in case of people, the 3D distance between
these two border points must be larger than 0.2 meter (in case
of neck or leg).

Based on this heuristic, the following algorithm is proposed
to detect ghosts:

1. Take n horizontal cuts from current object

2. For each cut, verify if it satisfies the heuristic. If yes,

Figure 4. If a detected person is a real person (not a ghost),
each line (cut) should cross the person border at at least two
points (intersection points).

increase the number of valid cuts by 1

3. If there are more than n− k valid cuts, the object is con-
sidered as a real object. Otherwise, it is classified as a
ghost.

To check the validity of each cut, the algorithm must be
able to find the intersection points with border. At the border,
there is often a large difference between the values of adjacent
pixels. Formally, a pixel at position (x, y) can be classified as
a Vertical Border Point (V BP) as follow:

V BP (x, y) =

1 if ∃i ∈ (R,G,B),
abs(Ii(x,y) − Ii(x+1,y)) > τ

∨abs(Ii(x,y) − Ii(x−1,y)) > τ

0 otherwise

(1)

where Ii(x,y) is the channel i value at position (x, y), τ is the
threshold for the intensity difference, V BP (x, y) = 1 means
the pixel at the position (x, y) is a possible border pixel.

Among possible border pixels, the algorithm takes the left
most and the right most pixels as the real border pixels to verify
the lower bound of the distance between border points accord-
ing to the reference model.

4 Managing stationary objects

As presented earlier, the background subtraction algorithm co-
operates with the tracking task to manage stationary objects.
To simplify the presentation, we suppose that the type of the
stationary objects is car. To detect stationary cars, we use two
lists: TrackedCarPos and CurrentCarPos. Each element
of the TrackedCarPos list contains the bounding box of a
car which can become stationary in association with a counter
which stores the number of consecutive frames when this car
does not move. The CurrentCarPos list contains the bound-
ing box of cars detected in the current frame. At the beginning,
both of these lists are empty. The controller tracks the station-
ary cars as follows:

• In the current frame, whenever a car is detected, its
bounding box is pushed into the CurrentCarPos list.
The background inside this bounding box is not updated.

• For each element in the TrackedCarPos list:

– If the bounding box of this element matches exactly
one bounding box in the CurrentCarPos list (i.e.
the car has not moved), remove the corresponding
bounding box from the CurrentCarPos list and
increase the stationary counter of the element by 1.
If the stationary counter is higher than a threshold,
a stationary car is detected.

– If not, (i.e. when the car moves or when the car has
stopped but it is merged with another moving ob-
ject) decrease the stationary counter. If this counter
is still greater than 1, perhaps the car has stopped,
so keep this element in the TrackedCarPos list.
Otherwise remove this element.

• Insert the bounding boxes which still exist in the
CurrentCarPos list into the TrackedCarPos list
with stationary counter equal to 1.

A bounding box is represented by two corner points: top
left corner (xTL, yTL) and bottom right corner (xBR, yBR).
Then a bounding box R1 matches exactly another one R2 if:

ExactMatch(R1, R2) =

1 if abs(xTLR1
− xTLR2

) < τd
∧abs(yTLR1

− yTLR2
) < τd

∧abs(xBRR1
− xBRR2

) < τd
∧abs(yBRR1

− yBRR2
) < τd

0 otherwise
(2)

When the controller detects a stationary car, it orders the
background subtraction algorithm to absorb immediately the
region inside the car bounding box into background. Therefore,
the background subtraction algorithm can detect other mobile
objects passing in front of the stationary car. At the same time,
it informs the tracking task that there is a stationary car at the
location of the bounding box. When the stationary car moves
again, a ghost car can occur in the detection results. The track-
ing task in this case compares the location of the ghost with the
list of stationary cars. If it can find a corresponding car, the
tracking task removes the ghost as well as the stationary object
from its output and informs the background subtraction algo-
rithm to integrate the ghost into the background. As a result, the
background subtraction algorithm does not have to take care of
storing and updating the old background if the illumination of
the scene has changed as this is the case in [5].

5 Tuning parameter for background
subtraction algorithms

The tuner aims at evaluating and changing current background
subtraction algorithm parameters for every pixel in the image.

To tune the parameters of background subtraction algo-
rithms, the tuner has to evaluate their detection results. How-
ever, the background subtraction algorithm alone cannot eval-
uate its own detection results. Therefore, we employ the feed-
back information from the classification and tracking task. For

Figure 5. Tuning parameter values for single pixel

example, the classification task may classify a detected fore-
ground region as noise if the size of this region is too small.
Then, if the noise level at one particular pixel is too high, we
can order the background subtraction algorithms to change its
parameter value at this pixel to reduce the noise. On the other
hand, if the noise level is too low, perhaps the background sub-
traction algorithm may be not sensitive enough for detecting
mobile objects. Therefore, we tune the background subtraction
algorithm to change its parameter value to increase the sen-
sitivity in detecting mobile objects while still maintaining an
acceptable noise level.

The tuner takes as input the current pixel value, the cor-
responding background subtraction algorithm results (i.e. the
pixel label background or foreground), and the feedback of the
classification and tracking tasks. The output of the tuner is the
most suitable parameter value for each pixel in the image. This
parameter value enables the background subtraction algorithm
to be as much sensitive in detecting mobile objects as possible
and more consistent with the feedback from classification and
tracking.

As described in figure 2, the algorithm for parameter tun-
ing consists of two main components: pixel label coherence
checker and a group of n detectors. These detectors are the
same background subtraction algorithm with different parame-
ter values. The tuning algorithm is composed of 3 steps:

1. The tuner verifies the consistence of the current pixel la-
bel provided by the current background subtraction al-
gorithm (called current label) with the feedback informa-
tion from classification. If the current label is foreground
(FG) and the classification task indicates that this pixel
value is noise, the pixel value is labeled as background
for the next step. If the classification task indicates that
this pixel belongs to a detected object, this pixel value is
discarded and not used for next step. Therefore, the next
step contains only pixel values with label background
(BG).

2. The tuner feeds n detectors with the current pixel value
and builds a statistical information on the number of time
the detector classifies pixel values as BG. This informa-
tion is called Statistic for Local Evaluation (SLE).

3. The tuner chooses the parameter value of the best detec-
tor as the tuned parameter value depending on an evalu-
ation function using SLE and the parameter value.

The evaluation function is:

ES = (SLE) + αf (p) (3)

Where α is the importance of the parameter value, f (p) is the
function in the range [0, 1] quantifying the user’s preference of
parameter value given the parameter value p. For example in
case of Gaussian Mixture Model, we prefer low values of T
because they make the algorithm more sensitive in detecting
mobile objects. Therefore, f (T) can be defined as f (T) =
1− T with T ∈ [0, 1].

SLE is defined as:

SLE = nCoherence

|Window| (4)

where nCoherence is the number of times the detector classi-
fies the pixel values as background and |Window| is the size
of temporal window we use to construct SLE.

To make the tuning algorithm suitable for the real time re-
quirement, instead of tuning parameters for every pixel in the
image, the tuner only work on m pixels distributed as a grid
over the image. After finding the suitable parameter value for
these pixels, the tuner generalizes the tuned parameter values
to the other pixels in the image. Particularly, to find a suitable
parameter value for pixel A, the tuner firsts find the 4 closest
pixels (using Euclid distance) on the grid. Then among these 4
pixels, the tuner finds the pixel (called pixel B) whose the back-
ground representation is closest to the background representa-
tion of pixel A. If the distance between the two background
representation at pixel A and B is small enough, the tuner as-
signs the tuned parameter value of pixel B to the same parame-
ter of pixel A. The background representation distance depends
on the underlying background subtraction algorithm. For ex-
ample, in case of GMM, the distance D(BR1, BR2) between
two background representations BR1, BR2 can be computed
as follows:

D(BR1, BR2) =
n∑

i=0
|w1
i − w2

i | (5)

where n is the number of Gaussian components corresponding
to background inBR1 andwji is the normalized weight of com-
ponents i in BRj . According to this formula, two background
representations are said to be close if they have a similar form
(similar number of background components, similar ratios be-
tween different component weight).

6 Experimental results
To assess the performance of the controller, we perform two
experiments. The first experiment validates the effectiveness
of the controller in guiding the background update. In this ex-
periment, the background subtraction algorithm is GMM [12]
and the testing video is one of the videos from homecare project
[2]. Figure 1 shows a sample image from this video. This video
shows a person living in an apartment. The video is more than
1h long (40800 frames). The ground truth has been constructed
by annotating a frame every other 200 frames and by drawing

bounding boxes around the person inside that frame. The met-
ric M.1.2.1. of ETISEO project [1] is used to measure the algo-
rithm performance. This metric counts the number of physical
objects in the ground truth that are detected by the background
subtraction algorithm. To match the detected objects with the
ground truth objects, the metric uses the bounding box. The
Precision (P), Sensitivity (S), and F-Score are computed based
on True Positive (TP), False Positive (FP), and False Negative
(FN) as shown below:

P = TP

TP + FP
, S = TP

TP + FN
,F − Score = 2× P × S

P + S
(6)

Detection results Performance indexes
P(%) S(%) F-Score(%)

GMM1 77 13 23
GMM2 56 75 64
GMM3 72 78 75

Table 1. Detection results of the GMM algorithm alone
(GMM1), of the GMM algorithm with an updating controller
without ghost removal (GMM2), and of the GMM algorithm
with an updating controller with ghost removal (GMM3). P:
Precision, S: Sensitivity, F-Score: balance between P and S.

Table 1 shows the detection results of the GMM algorithm
alone, the GMM algorithm with an updating controller but
without ghost removal, and the GMM algorithm with an updat-
ing controller including ghost removal. In this sequence, the
person often stays at the same place for a long time. Therefore,
the GMM algorithm alone updates the regions corresponding to
the person and after several frames, it cannot detect the person
any more (sensitivity = 13%). On the other hand, with the help
of updating controller not including ghost removal, the GMM
algorithm can increase its sensitivity (from 13% to 75%) but
at the expense of reducing precision (from 77% down to 56%)
because there are many ghosts in the detection results. With
the updating controller including a ghost removal, the GMM
algorithm increases the sensitivity (from 13% to 78%) without
reducing much the precision. However the sensitivity is still
low because either the GMM cannot detect mobile objects or
the classification task cannot classify detected foreground re-
gions as person.

The second experiment verifies the performance of the pa-
rameter tuner for the parameter T of GMM with the video of a
waving tree in [8]. As shown in figure 6, the parameter tuner
can successfully set up a suitable T value for each pixel de-
pending on the distribution of this pixel: the background re-
gion corresponding to static background (building, sky) is as-
signed a low T value and the background region corresponding
to the background containing motions (tree) is assigned a high
T value. As a result, the GMM with adaptive T value reduces
the noise inside the tree region.

Figure 6. (a): Sample image from the video of a waving tree
in [8], (b) the image illustrating the value of T for each pixel
computed by the parameter tuner. T value is represented by dif-
ferent colors (green: Low, blue: Medium, red: High). The tun-
ing algorithm has correctly assigned high T value to the region
of the tree which has multimodal distribution. (c) Detection
result of the GMM with constant T value (Medium for every
pixel). (d) Detection result of the GMM with adaptive T value.
The GMM with adaptive T value has reduced the noise inside
the tree regions

7 Conclusion

In this paper, we present a controller that helps background
subtraction algorithms to update their background representa-
tion and to initialize the parameter values to adapt to the cur-
rent conditions of the scene. To guide the background sub-
traction algorithms to update the background representation,
we propose methods to solve 2 important problems: detect-
ing ghosts and managing stationary objects. The algorithm to
detect ghosts relies on object borders (i.e. gradients around the
foreground region) but it does not need to detect precise object
borders. Moreover, the proposed algorithm is efficient because
it does not examine the whole object borders. The algorithm
to manage stationary objects cooperates with the tracking task
to faster detect stationary objects and to avoid the maintenance
of various background layers. To tune the parameter values
of background subtraction algorithms, we select the parameter
value which enables background subtraction algorithms to be
as much sensitive in detecting mobile objects as possible and
at the same time more consistent with feedback from classi-
fication and tracking tasks. However the effectiveness of the
tuning algorithm relies heavily on the quality of the feedback
from the classification and tracking tasks. When these tasks
are wrong, the tuning algorithm cannot find a good parame-
ter value for background subtraction algorithms. Therefore the
proposed algorithm can serve as a complement for the offline
tuning algorithms as in [11, 3] when we do not have training
video whose conditions are similar to the current conditions of
the scene. The experiments have shown that the controller has
improved the performance of the background subtraction algo-
rithms.

In the future, we will extend the ghost detection algorithm
by taking into account the relative distance between object bor-
der points. For the parameter tuner, we will study the pos-
sibility of combining current method with methods of offline

approach to learn local pixel distribution and to have a more
optimal parameter value.

Acknowledge: This work is support by Project SIC - Se-
curisation des Infrastructures Critiques, France.

References

[1] Project ETISEO-http://www-sop.inria.fr/orion/ETISEO.

[2] Project Gerhome - http://gerhome.cstb.fr.

[3] M. Thonnat B. Georis, F. Bremond. Real-time control
of video surveillance systems with program supervision
techniques. 2007.

[4] J. H. Connell, A. W. Senior, A. Hampapur, Y.L. Tian,
L. M. G. Brown, and S. Pankanti. Detection and track-
ing in the IBM PeopleVision system. In International
Conference on Multimedia and Expo, 2004.

[5] H. Fujiyoshi and T. Kanade. Layered Detection for Mul-
tiple Overlapping Objects. In International Conference
on Pattern Recognition, 2002.

[6] D. Hall. Automatic parameter regulation of perceptual
systems. In Image and Vision Computing, 2006.

[7] A. Harville. A Framework for High-Level Feedback
to Adaptive, Per-Pixel, Mixture-of-Gaussian Background
Models. 2002.

[8] B. Brumitt K. Toyama, J. Krumm and B. Meyers.
Wallflower: Principles and Practice of Background Main-
tenance. In IEEE International Conference on Computer
Vision, 1999.

[9] Kyungnam Kim, T.H. Chalidabhongse, D. Harwood, and
L. Davis. Background modeling and subtraction by code-
book construction. In International Conference on Image
Processing, 2004.

[10] S. Lu, J. Zhang, and D. Feng. An efficient method for
detecting ghost and left objects in surveillance video. In
IEEE International Conference on Advanced Video and
Signal based Surveillance, 2007.

[11] V. Martin and M. Thonnat. Learning Contextual Varia-
tions for Video Segmentation. In International Confer-
ence on Computer Vision System, 2008.

[12] Chris Stauffer and W.E.L. Grimson. Adaptive Back-
ground Mixture Models for Real-Time Tracking. In IEEE
Conference on Computer Vision and Pattern Recognition,
1999.

