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Abstract

To address the Multiple Object Tracking (MOT) chal-
lenge, we propose to enhance the tracklet appearance fea-
tures, given by a Convolutional Neural Network (CNN),
based on the Residual Transfer Learning (RTL) method.
Considering that object classification and tracking are sig-
nificantly different tasks at high level. And that traditional
fine-tuning limits the possible variations in all the layers of
the network since it changes the last convolutional layers.
Beyond that, our proposed method provides more flexibility
in terms of modelling the difference between these two tasks
with a four-stage training. This transfer approach increases
the feature performance compared to traditional CNN fine-
tuning. Experiments on the MOT17 challenge show com-
petitive results with the current state-of-the-art methods.

1. Introduction
Multiple Object Tracking (MOT) is a critical task in the

pipeline of a video monitoring system. A variety of ap-
proaches have been proposed to tackle MOT challenges
such as abrupt object appearance changes, occlusions and
illumination variations. However, these issues remained un-
solved. Tracking-by-detection has become one of the most
popular and effective methods to approach this challenge
[4, 15, 18]. After a detector provides bounding boxes for the
objects, the problems translate to how to model object ap-
pearance adapted to the variety of video scenarios and per-
form data association where the bounding boxes are paired
to a trajectory.

Recent MOT algorithms [6, 11, 16, 21, 22] trend to im-
prove tracking performance by enhancing the appearance
feature quality. However, these trackers may have issues
to represent an object appearance adapting itself to varia-
tion of video scenes, changes in pose, different illumination
and occlusions. In particular, the trackers [6, 11] model the
object appearance by extracting hand-crafted features, and
the trackers do not perform well when complete and long
occlusions change the objects appearance significantly.

Lately, thanks to the increasing amount of annotated

Figure 1. Transfer Learning as a Residual Learning Problem

and available data, multi-object tracking has seen many im-
provements with deep learning approaches. With the suc-
cess of deep learning in solving classification problems,
more and more trackers such as [16, 21, 22] extract deep
appearance features to describe objects and obtain signif-
icantly higher performance in both online and offline set-
tings. Authors in [20] propose a novel and efficient way
to obtain discriminative appearance-based tracklet affinity
models. In this framework, each sample pair is passed to a
Siamese CNN including two sub-CNNs to extract the fea-
ture vectors. Then, based on the feature vectors obtained
from the last layer of both sub-CNNs in each video seg-
ment, temporally constrained metrics are learned online to
update the appearance-based tracklet affinity model. Fi-
nally, the MOT problem is formulated as a Generalized
Linear Assignment (GLA) problem which is solved by the
soft-assignment algorithm. The approach in [3] performs
the MOT task by an enhancing detection model. The ob-
ject appearance features are extracted from a CNN fully-
connected layer. To cope data association ambiguities in
crowded scenarios, this approach extended the multiple hy-
pothesis tracking approach by incorporating a novel en-
hancing detection model. This model analyses the correla-
tion of detection-scene and detection-detection. The scene
is modeled by using dense confidential detections and there-
fore handles false trajectories. The latter estimates the cor-
relations between individual detections and improves the
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Figure 2. Training stages of Residual Transfer Learning method. Each stage only trains the layers shown in green, and fixes the layers in
grey. The residual units are added at the second stage.

ability to deal with close object detections in crowded sce-
narios.

These methods learn object features by fine-tuning
mechanisms which mostly change the last convolutional
layers and do not leverage the difference between the clas-
sification and tracking tasks.

In this paper, instead of using the traditional fine-tuning
way of transfer learning, we present a smart-training ap-
proach in four different stages. This alternative strategy
is called Residual Transfer Learning (RTL), and it is done
to better model the difference between two different tasks.
As said before, more robust and discriminative appearance
models will lead to higher performance, and the features
extracted using RTL improve the appearance models.

The rest of the paper is organized as follows: Section
2 presents the limitations of traditional fine-tuning and the
proposed solution with Residual Transfer Learning. In sec-
tion 3, we detail the modifications made to CNN model,
VGG-16 pretrained on ImageNet, and the features extracted
to build the appearance models. The proposed RTL feature
based multi-object tracker is described in section 4. In sec-
tion 5, the experiments and evaluations of our method and
other state-of-the-art trackers are presented. Finally, section
6 concludes the paper.

2. Transfer Learning

One of the main reasons deep learning is popular nowa-
days is the practicality of transferring learned models. For
example, a model trained for classification can be hastily
used for different tasks such as localization, object detec-
tion and instance segmentation. Transfer learning reduces
the time it would take to train a model from scratch. The
traditional way of transfer learning in CNN is to initialize

a model, pretrained with a large dataset such as Imagenet,
and then replace the last layers to fine-tune the new desired
classes with specific datasets. This method mostly changes
the classification or dense layers but not much the initial
convolutional ones, since the classification layers are the
ones giving the high abstract meaning to the classes. Tra-
ditional fine-tuning is efficient when the tasks are similar,
when we want to simply narrow specific classes or target
a dataset. The problem is that classification and tracking
are different tasks, thus assuming the same layers can give
good performance for both, even after fine-tuning, is inher-
ently inaccurate.

2.1. Residual Transfer Learning

Here, we present a smart training alternative for trans-
fer learning based on the concept of ResNet by He et al.
[8]. In ResNet, a layer learns the estimate residual between
the input and output signals. We cast transfer learning as
a residual learning problem, since the objective is to close
the gap between the initial network and the desired one as
shown in Figure 1. Achieving this goal is done by adding
residual units for a number of layers to an existing model
that needs to be transferred from one task to another. The
existing model can thus be able to perform a new task by
adding and optimizing residual units. The main advantage
of using residual units for transfer learning is the flexibility
in terms of modelling the difference between two tasks.

2.2. Training

There is a major problem when adding residual units:
their initialization. The ideal scenario is when the resid-
ual units approximate the identity function in the beginning.
This problem can be overcome by first training the network

2
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Figure 3. Network architecture for Multiple-Object tracking. A total of 10 RTLunits are added to the 16-layer VGG model. The operations
and parameters are shown in each box. Convolutional layers are represented by number of filters x kernel size. Pooling layers use kernel
size 2x2 and stride of 2. Each RLTunit contains 3 convolutional layers and a shortcut. The output of RTLUni10 is divided into 7 part
models simultaneously without parameter sharing. The outputs of fc7, pool5 and pool4 are used to build the appearance models RTLfc7,
RTLpool5 and RTLpool4 respectively.

with a new head - the layers towards the end of the network,
such as classification - and then training the residual units,
keeping the head of the network unchanged. The advantage
of this approach training stage is significantly less training
loss, by having one source of error instead of two per stage.

We propose 4 training stages that ensure a better feature
adaptation of the network as shown in Figure 2.

Stage 1: The first stage is intended to learn the high level
representations of the new specific task at hand. We replace
the head of the original network and initialize it randomly,
training only the new head and keeping the network’s base
unchanged. The residual units are not added at this stage.

Stage 2: In the second stage, we add the residual units
between the convolutional layers and initialize them ran-
domly. In order to approximate to the identity function, we
fix the base and head of the network and train only the resid-
ual units. The residual units are the only source of loss dur-
ing this stage.

Stage 3: In the third stage, we train the head and the
residual units conjointly. This allows us to learn both high
and low representations.

Stage 4: The last stage is optional, as we noticed that the
loss function is low enough after the third stage. Nonethe-
less, further improvement performance can be achieved by
training the whole network.

3. Residual Transfer Learning for Multiple-
Object Tracking

Using RTL, we transfer the VGG-16 layer model, pre-
trained on ImageNet for object classification, into a track-
ing feature extractor. We overlooked ResNet for its extreme
depth because our target dataset is small and do not war-
rant such a deep model for higher performance. Two sets
of modifications are made. The first is to change the input
size of the network and the second is to train 7 different
stripes of a person. The final network architecture is shown
in Figure 3.

3.1. Base model modifications

VGG16 is a pretrained model for 1000-way object clas-
sification with an input of 224x224 pixels. It consists of
5 convolutional groups (conv1-conv5) and two fully con-
nected layers (fc6-fc7) followed by a classification layer.
Each convolutional group is passed trough a max-pool layer
(pool1-pool5). We replace the fully connected layers fc6
and fc7 as well as the classification layer. This allows us
to change the input size to 128x64, a more suitable size for
people tracking. With a smaller receptive field, we remove
the first max-pool layer (pool1), producing 512 filter maps
of 7x3 at the output of max-pool layer pool5.

3.2. Head model modifications

At test time, appearance models are built with the fea-
tures extracted by the embedding layer. We build three
embedding layers from pool4, pool5 and fc7. To accom-
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plish this, we split the output of pool5 in 7 parts, one for
each horizontal stripe of the feature map. And we use two
fully connected layers of size 128 for each part feature map
(partx/fc6,partx/fc7). Dropout layers are interleaved with
fully connected layers followed by a n-way classification
layer. We train all the part models simultaneously by sum-
ming the classification loss for each part. This helps learn-
ing a shared low-level representation via the convolutional
layer groups, and a specific representation via the fully con-
nected layers.

3.3. Residual Units and their placement

The residual units are added across the layers for two rea-
sons. First, to distribute the burden of error compensation
on each specific layer. And second, to reduce the number of
parameters per residual unit, decreasing the computational
and convergence time. We use a residual unit similar to [8].
Each residual unit is composed of three convolutional lay-
ers. The number of filters of the first layer is a quarter (1/4)
of the input layer, the kernel size is 1x1 and a stride of 1.
The second layer uses the same number of filters as the fist
layer, the kernel size is 3x3 and stride of 1. The third layer
uses a kernel size of 1x1 and has the same number of ker-
nels as the input of the residual unit. The output of the third
layer is then added to the input of the residual unit. Finally,
RELU is applied to the combined output.

4. RLT feature based tracker

We define tracklet Tri between consecutive frames <
m,n > as a chain of tracked objects called nodes N t

i , m <
t < n, where i represents the ID of object and N represents
the object bounding-box at time t.

Tri = {Nm
i , Nm+1

i , .., Nn+1
i , , Nn

i } (1)

The appearance of a tracklet is modeled based on the
RTL features of all nodes Ni belonging to the tracklet from
sub-sample pool4.

4.1. Tracklet Representation

The representation of tracklet Tri using the learned RTL
features is defined as follow:

∇Tri = mean(RTLt
i) t ∈< min(m,n−∆), n > (2)

where RTLt
i is the RTL feature extracted from node N t

i .
Assuming that the appearance of recent nodes is more infor-
mative than those in the past, we limit to model the track-
let representation by nodes N t

i appearing in current time-
window ∆: min(m,n − ∆) < t < n. In the experiment,
∆ is set to 50 frames.

4.2. Data association

The framework tries to calculate the similarity scores
of tracklets in every time-window ∆t. The similarity ma-
trix S={mij} is constructed where i=1..Nb, j=1..Nb, and
Nb is the number of tracklets in the current time-window
[t − 2∆t,t]. If tracklet j is a candidate of tracklet i, the
similarity of the pair is calculated using Euclidean distance
mij = Eud(∇Tri ,∇Trj ), otherwise it is set to zero in the
similarity matrix. Once the cost matrix is computed, the op-
timal association pairs, which minimize the data association
cost in S, are determined using Hungarian algorithm.

5. Experiments

In this section, we present the experimental results and
analysis the performance of the proposed online MOT
framework on the challenging dataset MOT17 [14]. Our
approach is compared with hand-crafted feature as well as
traditional fine-tune deep learning feature based trackers. In
order to have a fair comparison of trackers, we use a pub-
licly available detection and evaluation method on website
1.

5.1. Dataset

The benchmark dataset MOT17 consists of 7 sequences
for training and 7 sequences for testing. Each sequence is
provided with 3 sets of detections: DPM, Faster-RCNN,
and SDP. The dataset contains a large diversity of outdoor
scenarios, fixed or moving cameras, crowded scenarios,
person-to-person occlusions and low illumination.

5.2. Implementation details

Using the ground-truth provided by the MOT17 chal-
lenge, we extract all the non-occluded people (accuracy=1),
giving us a total of 519 tracks across all training sets, and
∼ 65K training images. Therefore, the n-way classification
layer we use is 519. We train the network using stochastic
gradient descent with momentum of 0.9 and batch size of
MK where M = 64 persons and K = 2 images per person.
We shuffle the person order after each training person was
selected once. The learning rates for stages 1, 2, 3 and 4 are
correspondingly (0.1, 0.1, 0.01, 0.0001). The number of it-
erations for each stage are respectively (10N,10N,20N,20N)
with N = 500. N is the number of batches needed to cover
all 65K images with the given batch size. We remark that
all images may not be used for training, since we randomly
use sample data for each person. In other words, we train
for as many images in the training set and not all the images
during an epoch.

1https://motchallenge.net/data/MOT17/
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Trackers Method MT↑ ML↓ MOTA↑ MOTP↑ FP↓ FN↓ IDSw↓ Frag↓
pool4 + Euclidean online 34.13 21.60 51.8 80.9 6,795 23,577 855 1,066

RTLPool4 + Euclidean online 35.42 21.60 51.5 80.8 6,986 23,517 910 1,078
RTLPool5 + Euclidean online 35.64 21.81 51.4 80.8 7,158 23,388 904 1,064
RTLfc7 + Euclidean online 34.99 21.17 51.7 80.7 7,131 23,232 901 1070

Table 1. Comparisons of baseline model (pool4 without RTL) and RTL models with Euclidean distance. The experiment is evaluated on
training sequences of MOT17. The best values are marked in red.

Methods Trackers MT↑ ML↓ MOTA↑ MOTP↑ FP↓ FN↓ IDSw↓ Frag↓
Offline EDMT17 [3] 21.6 36.3 50.0± 13.9 77.3 32,279 247,297 2,264 3.260

FWT [9] 21.4 35.2 51.3± 13.1 77.0 24,101 247,921 2,648 4,279
JCC [10] 20.9 37.0 51.2± 14.5 75.9 25,937 247,822 1,802 2,984
MHT DAM [12] 20.8 36.9 50.7± 13.7 77.5 22,875 252,889 2,314 2,865
IOU17 [2] 15.7 40.5 45.5±13.6 76.9 19,993 281,643 5,988 7,404

Online Ours 17.6 36.77 45.6± 13.3 75.9 34,084 268,860 4,276 6,583
PHD DCM [7] 16.9 37.2 46.5±13.8 77.2 23,859 272,430 5,649 9,298
EAMTT [17] 12.7 42.7 42.6±13.3 76.0 30,711 288,474 4,488 5,720
GMPHD KCF [13] 8.8 43.3 39.6± 13.6 74.5 50,903 284,228 5,811 7,414
GM PHD [5] 4.1 57.3 36.4± 14.1 76.2 23.723 330,767 4,607 11,317

Table 2. Quantitative analysis of our MOT framework on MOT17 challenging dataset with state-of-the-art methods. The tracking results
of these methods are public on MOTchallenge website. The best values in both online and offline methods are marked in red.

5.3. Evaluation metrics

In order to evaluate the performance of our multi-
object tracking method, we adopt the widely used CLEAR
MOT metrics [1]: including multiple object tracking accu-
racy (MOTA↑) and the multiple object tracking precision
(MOTP↑) which punish on false positives (FP↓), false neg-
atives (FN↓) and identity switching (IDSw↓). The tracking-
time metrics are also computed: the number of trajectories
in ground-truth (GT), the ratio of mostly tracked trajecto-
ries (MT↑), a ground truth trajectory that is covered by a
tracking hypothesis for at least 80% is regarded as mostly
tracked), the ratio of mostly lost (ML↓), a ground truth tra-
jectory that is covered by a tracking hypothesis for at most
20% is regarded as mostly lost) and the number of times
a trajectory is fragmented (FM↓). Where ↑ indicates that
higher scores lead to better results, and ↓ shows that lower
scores correspond to better results.

5.4. Comparison of features

We present the quantitative comparison of the features
performance from pool4, RTLpool4, RTLpool5 and RTLfc7 in
Table 1. From this table, we can see that RTLpool4 and
RTLpool5 perform better than pool4, 1.29% and 1.49% in-
crease respectively. We can attribute this improvement to
RTL since pool4 is the baseline model and uses the tra-
ditional method of fine-tuning. We use RTLpool4 as the
features for tracklet representation. The reason is that the
higher order of layers we use, the network is prone to over-
fitting since we have a small amount of data to train with.

5.5. Comparisons with the state-of-the-art methods

The table 2 show the quantitative comparison between
our approach and nine state-of-the-art trackers on bench-
mark dataset MOT17. These compared methods are cate-
gorized into offline and online tracking. The tracking per-
formances are computed over 7 testing sequences with 3
different detections: DPM, F-RCNN and SDP. The values
shown in table 2 are computed by the mean of each metric
(ML, ML, MOTA, MOTP) and by the sum of each indica-
tor (FP, NP, IDSw, Frags). As the discussion in [19], met-
rics MT and ML are proved to be closer to user expectations
than the others. Therefore, the performance of all compared
trackers are sorted in descent order by the MT metric. Gen-
erally, offline trackers with their beforehand information of
objects and scenarios have better performance than online
trackers. Comparing two trackers including EDMT17 -
the best offline tracker and our approach - the best online
tracker, we can see the modest increases of around 4.5% of
metrics MT and MOTA, 1.4% of metric MOTP and a slight
decrease of 0.4% of metric ML.

Our approach is also compared with four other online
tracking methods. The results show that our approach has
the best performances on the metrics (MT, ML, FN and
IDSw) and the second best performances on the metrics
(MOTA, Frags). On MOTP metric, there is a slight de-
crease of 1.3% (from 77.2 % to 75.9%) when comparing
our approach and the best performance belonging to tracker
PHD DCM .

It is shown in the table 2 that the performance of state-of-
the-art trackers are modest on this challenging benchmark
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dataset. The best results (only 21.6% and 50% measured
by ML and MOTA metrics, respectively) belong to tracker
EDMT17 which works in the offline mode.

6. Conclusions
In this paper, we have presented a method to render

transfer learning more efficient. This four-stage training
method alleviates the difference between object classifica-
tion and tracking and improves tracklet representation. In
addition, the ability of our approach to generalize well from
small amount of data is crucial for practical applications be-
cause recurrent data collection in large amount to train mod-
els is inconvenient.
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