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ABSTRACT

The universal hypothesis suggests that the six basic emotions - anger, disgust, fear, happiness, sadness,
and surprise - are being expressed by similar facial expressions by all humans. While existing datasets
support the universal hypothesis and comprise of images and videos with discrete disjoint labels of
profound emotions, real-life data contains jointly occurring emotions and expressions of different
intensities. Models, which are trained using categorical one-hot vectors often over-fit and fail to
recognize low or moderate expression intensities. Motivated by the above, as well as by the lack
of sufficient annotated data, we here propose a weakly supervised learning technique for expression
classification, which leverages the information of unannotated data. Crucial in our approach is that
we first train a convolutional neural network (CNN) with label smoothing in a supervised manner and
proceed to tune the CNN-weights with both labelled and unlabelled data simultaneously. Experiments
on four datasets demonstrate large performance gains in cross-database performance, as well as show
that the proposed method achieves to learn different expression intensities, even when trained with
categorical samples.

c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding human emotions is pertinent for the associ-
ated benefits in applications such as human-computer interac-
tion, healthcare, surveillance and driver safety. Facial expres-
sion recognition (FER) aims at inferring emotions based on vi-
sual cues from face images. One major limitation in FER re-
mains the lack of sufficient annotated data. Manual annotation
of expressions is subjective and time-consuming, as well as no-
tably impeded by different subjects (i.e., inter-individual vari-
ation) and different intensity-degrees within expressions (i.e.,
intra-individual variation).

Convolutional neural networks (CNNs) (Goodfellow et al.,
2016) have been efficiently utilized in many machine learning
applications including object detection, image enhancement,
speech analysis, natural language processing, representing the
current state-of-the-art of such applications. Recently, FER -
approaches based on CNNs (Jung et al., 2015; Liu et al., 2014b;
Zhao et al., 2016; Ding et al., 2017; Meng et al., 2017) have at-
tempted to replace classical approaches based on handcrafted
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features. As the majority of expression databases contain im-
ages or videos in the magnitude of few hundreds, this limited
dataset-size poses a severe challenge in training of full-fledged
CNNs. An additional FER - challenge concerns the related
databases, which contain images or videos capturing subjects,
exhibiting discrete emotion categories of high intensity. Mod-
els, trained on such data are predestined to fail when tested
with real-life-data, where e.g., expressions of low-intensity oc-
cur frequently.

In the case of limited dataset-size, unannotated or weakly-
annotated samples have been used in weakly supervised meth-
ods (Papandreou et al., 2015; Lee, 2013; Hong et al., 2015),
achieving performances comparable to these of models, trained
with a large labelled dataset. In weak supervision scenarios, a
portion of training data might not be annotated or wrongly an-
notated (Zhou, 2017). As previously noted, in FER the annota-
tion is categorical (i.e., irrespective of the expression intensity),
as well as subjective. Given the above constraints and chal-
lenges, weakly supervised techniques offer to provide a good
solution, taking advantage of unannotated data.

Contributions
Motivated by the above, we here propose a novel FER

method which addresses both, the limited data-size, as well
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as lack of expression-intensity annotation in the same frame-
work by incorporating both, transfer learning and weakly su-
pervised learning. Firstly, we train an initial CNN model using
the limited labelled data, employing the pre-trained weights of
VGG-Face (Parkhi et al., 2015). Label smoothing is applied
to prevent the model from generating high confidence scores.
Next, the model is updated using both labelled and unlabelled
data. Specifically, a fraction of labelled data is bootstrapped
with high confidence unlabelled data to update the model. Sub-
sequently, the prediction scores of the current model are used as
ground-truth distribution of unlabelled data for the next model
update, by using both labelled and unlabelled data. In addition,
we regulate the prediction confidence of the model on labelled
data in order to have a prediction confidence higher than certain
threshold for supervised data.

In summary, the contributions of the paper is two-fold.
Firstly, we propose a weakly supervised technique to train a
CNN model using both, labelled and unlabelled samples si-
multaneously, leveraging on the information available in large
unannotated data. Secondly, we demonstrate that expression-
intensity can be learned from the data annotated with discrete
expression categories. The proposed method achieves a signifi-
cant improvement in cross-database experiments.

2. Related Work

While methods based on hand-crafted features dominated the
performance in FER (Sariyanidi et al., 2015) for a long time,
recently CNNs have replaced such methods. Jung et al. (Jung
et al., 2015) attempted to encode temporal appearance and ge-
ometry features in a CNN framework. Boosted Deep Belief
Network (Liu et al., 2014b) improved the expression recogni-
tion performance by jointly learning the feature representation,
feature selection, and classification. Peak-piloted deep network
(Zhao et al., 2016) implicitly embedded facial representation
of both, peak and non-peak expression frames. Identity-aware
CNN (Meng et al., 2017) jointly learned expression and iden-
tity related features to improve person independent recognition
performance.

Addressing the above described limited data-size problem,
Oquab et al. (Oquab et al., 2014) proposed the transfer of
mid-level image representation for related source and target do-
mains. The authors showed that transfer of network parame-
ters learned on large-scale annotated data can significantly im-
prove the performance of a task with limited amount of train-
ing data. For example, improved performance was observed in
emotion classification (Ng et al., 2015) using the transfer of net-
work weights trained on ImageNet. Similarly FaceNet2ExpNet
(Ding et al., 2017) fine-tuned the FaceNet in order to capture
high level expression semantics.

Weakly supervised network training methods were reported
in the literature as an additional solution for datasets of lim-
ited size. Unsupervised clustering (for example, K-means clus-
tering (Coates and Ng, 2012)) provided an intuition that data
distribution can be leveraged towards improving model perfor-
mance. Another well received technique relates to the train-
ing of stacked auto-encoders with unlabelled data, further im-
proved using supervised methods (Vincent et al., 2010), (Zhao

Fig. 1. Illustration of the effect of label smoothing and weak supervision.
Top row: example expression-sequence in CK+; second row: prediction-
scores without the use of label smoothing or unlabelled data; third row:
prediction-scores with label smoothing without using unlabelled data;
fourth row: prediction-scores when using label smoothing and weak su-
pervision on unlabelled data. Best viewed in color.

et al., 2015), (Rasmus et al., 2015). Moreover, the use of adver-
sarial networks, learning from abundant unlabelled data (Rad-
ford et al., 2015; Salimans et al., 2016) has been very well ac-
cepted. Decoupled deep neural network (Hong et al., 2015)
involve two separate networks for classification and segmenta-
tion of objects. Apart from these, self-training or incremental
semi-supervised learning methods (Rosenberg et al., 2005; Pa-
pandreou et al., 2015; Lee, 2013) have been well studied. In
this context an initial model was built from the limited labelled
data and it was used to predict the scores of the unlabelled data.
Unlabelled data with high confidence scores was considered as
the ground truth and utilized to further train the model. Similar
semi-supervised or weakly supervised approaches were used in
speech processing (Novotney et al., 2009).

Rosenberg et al.(Rosenberg et al., 2005) proposed a self-
learning object detection model, where the weakly label refers
to the data in which the probability of presence of an object in
the image is provided instead of its exact location in that image.
In case of image segmentation, weak annotation refers to the
availability of object labels as bounding boxes, where the pixel-
wise strong annotation is missing (Hong et al., 2015). In this
manuscript, we refer to the expression ground-truth provided
in the database as weak annotation, as manual labeling of ex-
pressions is subjective. Using weak annotations, we encourage
the CNN to learn the accurate expression representation with
respect to their intensities.

3. Proposed Method

Given the input image x, the classification network learns
to accurately predict the relevance expression scores p(k|x, θ),
where θ are the network parameters and k ∈ {1, 2, ...,K} rep-
resents K classes. For a soft-max layer, we have p(k|x, θ) =

exp(zk)∑K
i=1 exp(zi)

, where zi are the unnormalized log probabilities.
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In supervised learning scenarios, the ground-truth distribution
q(k|x) is used to train the network parameters (θ) by minimiz-
ing the cross-entropy loss function

l = −

K∑
k=1

log(p(k|x, θ))q(k|x). (1)

The one-hot encoding is popular in classification tasks, which
takes the form q(y|x) = 1 and q(k|x) = 0 for all k , y, for a
sample x having class label y.

Unlike object classification, expression categories are highly
related, interconnected, as well as can occur simultaneously.
For example, happy is different from surprise, however, both
can occur jointly and simultaneously. In such cases, a model
should provide prediction-scores of high probability for both
expressions. However, one-hot vectors impose for the CNN to
predict one of the class labels with high confidence, i.e., with
probability 1. We noticed such FER-models, trained with one-
hot encoding over-fit the data in most cases, i.e., they continu-
ously generate high probability score for one of the expressions,
irrespective of the presence of subtle or mixed emotions.

The limitations of over-fitted models, become evident in case
of transition of expressions. Specifically, when facial expres-
sion changes from one expression to another, the probability
score of an over-fitted model suddenly jumps from a negligi-
ble value (near to 0) to a large value (close to 1), or vice-versa
in successive frames. Such an instance is demonstrated in Fig-
ure 1 (second row). However, we aim for our model to adapt
to expression-intensity automatically. We used label smoothing
and particularly a fraction of unlabelled data with replacement
in each epoch to achieve this. The third and fourth row of Figure
1 demonstrate the effectiveness of the above described proposed
technique.

3.1. Label Smoothing
Label smoothing (Szegedy et al., 2016) seeks to replace one-

hot vectors (i.e., 0 and 1 targets) with smoothed values (such
as, 0.1 and 0.9, respectively), allowing for less confident pre-
dictions of the network, as well as to somewhat regularization
of the model. To avoid large loss for erroneous samples, one-
sided label smoothing is proposed in (Salimans et al., 2016),
where the positive labels are smoothed while setting the neg-
ative labels to 0. However, doing so will fail the model to
adapt to mixed expressions. Therefore, we implemented the
label smoothing as,

q′(k|x) =

1 − ε, k = y
ε

K−1 , k , y,
(2)

where ε ∈ [0, 1] is the label smoothing hyperparameter. While
setting ε = 0 refers to one-hot encoding, setting ε a large value
might result in learning a poor performing model. We note that
label smoothing enables the model to be adaptable to unseen
data.

3.2. Using Labelled and Unlabelled Data Simultaneously
A network trained with a limited-sized dataset might pitch

into a local optimum. Assuming the network is already in its

optimal state, the gradient descend algorithm would not change
the network parameters, when unseen samples are used as train-
ing data along with their predicted probability scores as the
ground-truth. For a relatively poor model, this helps the net-
work to jump from the local optimum and reevaluate the state.

The proposed weakly supervised method uses a fraction of
the unlabelled data along with the labelled samples to update
the network. We used a self-training procedure inspired by
(Lee, 2013), where the class labels of the unlabelled data are
estimated using the network predictions. Unlike in (Lee, 2013),
we use the predicted probability distribution as the ground-truth
distribution.

Let us denote the labelled and unlabelled variables using
[.]l and [.]u respectively (for example, Xl - labelled data, ql -
ground-truth distribution of labelled data, pu - network predic-
tion probabilities for unlabelled data, etc.). An initial model
(θ0) is trained with Xl until adequate performance is achieved.
Further, the model parameters are updated in each epoch using
a portion of both, Xl and Xu simultaneously. Maintaining the
proper balance between the number of labelled and unlabelled
data is very crucial for network performance. In our implemen-
tation, we randomly replace a fraction of Xl (typically 5 − 15%
of number of labelled samples in Xl) with the unlabelled data
in each epoch. Moreover, incorrect predictions of unlabelled
samples, that are used for training can deteriorate the model-
performance after subsequent updates. In other words, since
the model is not perfect in the beginning, there is a very high
chance of having inaccurate predictions in the early training
stages. Thus, the model might end up learning with inaccu-
rate annotations in the early stages resulting in error accumu-
lation as training proceeds. Therefore, we used the unlabelled
data with high confidence scores (X̂u), as suggested in (Rosen-
berg et al., 2005). The work flow of the proposed technique is
shown in Figure 2.

After the t-th update, we obtained the prediction scores using
θt for both Xl and Xu, denoted by pt

l and pt
u, respectively. The

unlabelled data with high prediction scores are selected using a
threshold value (τ), given by

X̂t
u = {x|x ∈ Xu and max

k
pt

u(k|x) > τ}; X̂t
u ⊂ Xu. (3)

For the (t + 1)-th iteration, the training set consists of Xl,
with some of its data replaced by the samples from X̂t

u. In other
words, Xt+1 = {Xt+1

l , Xt+1
u }, where Xt+1

l ⊂ Xl and Xt+1
u ⊂ X̂t

u
are selected randomly. Note that the ground-truth distribu-
tion of unlabelled data is additionally updated to its predicted
probabilities, i.e., qt+1

u (k|x) = pt
u(k|x). Thus, the model sees

the unlabelled data with updated ground-truth distribution af-
ter each update. This allows the model to adapt to expression-
intensities.

Choosing τ ≈ 1 refers to adding the unlabelled samples with
absolute dominant class predictions. Such a model would not
be able to adapt to moderate expression intensities. However,
values of τ in the range 0.6 − 0.8 is suitable, as it promises
dominant class structure while adopting to moderate expression
intensities.
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Fig. 2. Workflow of the proposed method.

3.2.1. Maintaining the Confidence of Labelled Samples
By performing successive label smoothing on labelled data,

the model learns the expression intensities correctly. However,
incorrect predictions can collapse the model-performance in
subsequent iterations. It is important to maintain the prediction
confidence of supervised data, while learning the necessary in-
formation from the unlabelled data. In order to achieve that, we
scrutinize pt

l after each iteration and force the model to rectify
its prediction errors on supervised data (Xl). A simple way of
doing so is to maintain a prediction score > α for the positive
labels of supervised data, i.e., by using the following equations
for x ∈ Xl with its ground truth label y.

qt+1
l (k|x) =


pt

l(k|x), if { maxk pt
l(k|x) > α

and argmaxk pt
l(k|x) = y }

f (pt
l(k|x)), otherwise

(4)

where f (pt
l(k|x)) =

α, if k = y
1−α
K−1 , if k , y.

(5)

The model is updated from θt to θt+1 in a supervised manner
using Xt+1 and the corresponding updated ground-truth proba-
bilities: qt+1

l and qt+1
u . This forces the model to generate closely

similar probabilities every time it accepts a particular sample
as input. Intuitively, the model will train itself to correctly clas-
sify the supervised data, while incorporating the variations from
the unlabelled data into the model. Here the parameter α con-
trols the prediction confidence of labelled data. Choosing the
value of α ≈ 1 restricts the model to learn for definite dominant
expressions. However, as discussed before, data of different
expression-intensities might have a similar label and the value
of α should be in the range 0.6 to 0.9, in order to allow the
model to fit such intensities with class dominance.

We use the decrease in average validation accuracy over
last T iterations as the stopping criterion. In other words,
we stop the training process if the trend of average valida-
tion accuracy starts increasing, i.e., Acct

val > Acct−1
val , where

Acct
val = 1

T
∑t

t=t−T+1 Acct
val is the average validation accuracy

over previous T iterations. We used T = 5 in all experiments.

4. Experiments and Results

4.1. Implementation Details
Datasets Experiments are conducted on four publicly avail-

able expression datasets, namely CK+ (Lucey et al., 2010),

RaFD (Langner et al., 2010), lifespan (Minear and Park, 2004),
and FER2013 (Goodfellow et al., 2013). In our experiments,
we use 618, 1407, and 1027 samples from CK+, RaFD, and
lifespan respectively for seven classes. Both RaFD and lifespan
datasets contain static images, while CK+ contains image se-
quences. The image sequences in CK+ start from a neutral face
and end with a peak of the respective expression. Therefore,
we consider the first and last frame of each sequence as anno-
tated with neutral and one of the six basic expressions respec-
tively, while the intermediate frames of the corresponding se-
quence constitute the unlabelled data in our experiments. Lifes-
pan database is particularly challenging, as it contains expres-
sions from subjects of various age groups ranging from ado-
lescents to elderly people. Moreover, it includes a range of
expression-intensities from subtle to intense (as shown in Fig-
ure 3). FER2013 is an in-the-wild dataset containing train, val-
idation, and test splits with 28709, 3589, and 3589 images in
respective splits. In our experiments, the unlabelled data origi-
nates from the test-split during the experiment, unless specified.

Preprocessing steps involve face detection and face align-
ment, in order to position both eyes at a fixed distance paral-
lel to the horizontal axis. The training set is augmented using
slight zooming, horizontal flipping, less than 10% vertical and
horizontal shifting, as well as rotating the images randomly in
the range of ±10 degrees.
Network We use the pre-trained VGG-Face model proposed
by Parkhi et al. (Parkhi et al., 2015) initially introduced for
face recognition. It consists of thirteen convolutional layers fol-
lowed by two fully connected layers. We replace the last two
fully connected layers by one fully connected layer with 128
neural units. Dropout is applied to the FC layer with a probabil-
ity of 0.6. We set the softmax layer to the number of expression
classes (in our case seven: anger, disgust, fear, happy, neutral,
sadness, and surprise). We use adam optimizer (Kingma and
Ba, 2014) with the suggested weights β1 = 0.9, β2 = 0.999 and
a learning rate of 0.00001 in our model. All models are trained
using a batch size of 32. After extensive experimentation, we

Fig. 3. Samples from lifespan database illustrating the variation of expres-
sion intensity.
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(a) (b)

Fig. 4. (a) Performance improvement in FER2013 with/without using la-
bel smoothing and unlabelled data. (b) Impact of varying the amount of
unlabelled data on CK+ and RaFD.

conclude that fine-tuning the last convolutional and the fully
connected layer is suitable for recognizing expressions.
Parameter Settings We conduct several experiments by vary-
ing ε from 0.02 − 0.25, and varying both τ and α in the range
0.5− 0.95 to select the suitable values of corresponding param-
eters. Empirically we find ε = 0.1, τ = 0.7 and α = 0.7 to
be adequate for all the experiments, irrespective of the database
type and mode of evaluation. Percentage of unlabelled data in
the training set is another parameter which we discuss in section
4.3.

4.2. Effect of Label Smoothing and Unlabelled Data

Figure 4(a) illustrates the effect of label smoothing and unla-
belled data. Here the baseline architecture is the VGG-Face
model which achieves an accuracy of 69.57% on FER2013
dataset. When label smoothing is applied to the baseline ar-
chitecture, the model performance is improved by 2% demon-
strating the effectiveness of label smoothing. This suggests that
the use of repetitive supervised label smoothing improves the
model performance by adapting to expression-intensities. Sim-
ilar trends are observed by using only unlabelled data with no
label smoothing. The performance gain achieved by applying
each method independently is close. On the contrary, the ac-
curacy is increased by 4% over the baseline performance when
both the methods are combined. This shows that the use suc-
cessive label smoothing and unlabelled data compliments each
other and helps the model to learn the expression pattern in a
better manner.

4.3. Selecting the Quantity of Unlabelled Data for the
Training-set

Given the equal treatment of labelled and unlabelled sets
during the model update, the choice of the amount of unla-
belled data plays a crucial role in network training. While a
too small number might not result in improvement in perfor-
mance, a large amount might degrade the model performance.
We employ 80%-20% of CK+ as train-test split and also per-
form cross-database evaluation on RaFD. Figure 4(b) illustrates
that the CK+ test-set performance slightly degrades when using
a larger amount of unlabelled data. However, the RaFD accu-
racy decreases continuously by increasing the percentage of un-
labelled data. Therefore, we replace 10% of training data with
unlabelled samples in all our experiments.

4.4. Cross-Database Evaluation

Figure 5 shows results related to the cross-database protocol
(CK+ → RaFD, RaFD → CK+). For example, we train the
model using the train-split of CK+, and test its performance on
RaFD and the test-split of CK+ (see Figure 5(a)). We also re-
port the model performance by, (i) using no unlabelled data, (ii)
using unlabelled data from the test-split of the same dataset, and
(iii) using unlabelled data from other dataset. We performed
the experiments ten times and the average performance is re-
ported. 80%-20% train-test split is used to obtain the results
in Figure 5. As can be seen, the average test-split performance
remains almost the same irrespective of the use of unlabelled
samples. The unlabelled samples randomly replace the labelled
data at each update. Thus, at every update, the network sees a
particular labelled sample with a probability of 0.9 when using
10% unlabelled data. Since the network sees the labelled data
repetitively, its performance is not affected substantially by the
unlabelled data.

When trained on CK+ (see Figure 5(a)) with unlabelled data,
the model-performance improves by 11% in RaFD. We ob-
serve that the use of unlabelled data from either CK+ or RaFD
results in similar performances. Utilizing unlabelled images
from CK+, the network sees varying expression-intensities and
adapts to it. On the other hand, using unlabelled RaFD samples
gradually makes the model aware of the test data, thus resulting
in good accuracy. Similar conclusions can be drawn from Fig-
ure 5(b), where the model is trained on RaFD. The performance
is improved by 7.5% using unlabelled images from CK+ se-
quences. We notice that in best case scenarios, the performance
of the proposed model on CK+ has reached more than 90%.

Table 1 and Table 2 report classification results with respect
to varying number of training samples. Significant classifica-
tion accuracy has been obtained with merely 25% of the train-
ing data. Use of a larger labelled training set strikingly boosts
the cross-database performance.

We observe that the cross-database performance on lifespan
is lower, when trained with RaFD in comparison to CK+. This
might be due to the presence of expressions of varying intensity
in lifespan. However, when unlabelled samples from CK+ are
used, the model learns the expression representation more accu-
rately. Figure 1 depicts the smooth prediction scores, as well as
the related image sequences, indicating how the model learned
expression-intensities. Similar observations can be drawn on

Table 1. Classification results using CK+ database for training.
Test databases Percentage of training data

25% 50% 80%
CK+ (test-set) 88.79% 91.29% 95.16%
RaFD 64.25% 65.25% 78.46%
lifespan 35.13% 40.51% 60.83%

Table 2. Classification results using RaFD database for training.
Test databases Percentage of training data

25% 50% 80%
RaFD (test-set) 94.71% 97.24% 98.5%
CK+ 79.8% 82.41% 86.64%
lifespan 28.24% 29.11% 34.96%
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(a) Trained on CK+ (b) Trained on RaFD

Fig. 5. Cross-database experiments show significant performance improvement. Best viewed in color.

Table 3. Comparison of average classification accuracy on CK+ database.

Methods
Validation

settings Accuracy

STM-ExpLet (Liu et al., 2014a) 7 class 94.19
LOMo (Sikka et al., 2016) 7 class 95.1
IACNN (Meng et al., 2017) 7 class 95.37
BDBN(Liu et al., 2014b) 6 class 96.7
Facenet2expnet (Ding et al., 2017) 8 class 96.8
DTAGN (Jung et al., 2015) 7 class 97.25
PPDN (Zhao et al., 2016) 6 class 97.3
facenet2expnet (Ding et al., 2017) 6 class 98.6
PPDN (Zhao et al., 2016) 7 class 99.3
Proposed 7 class 99.35

Table 4. Comparison of seven class classification accuracy on RaFD
database.

Methods
Validation

settings Accuracy

Metric learning(Jiang and Jia, 2016) 10 fold 95.95
W-CR-AFM (Wu and Lin, 2018) train-test split 96.27
BAE-BNN-3(Sun et al., 2017) 5 fold 96.93
TLCNN+FOS(Zhou and Shi, 2017) 4 fold 97.75
Carcagni et al.(Carcagnı̀ et al., 2015) 10 fold 98.5
Proposed 5 fold 98.5
Proposed 10 fold 98.58

Table 5. Comparison of average accuracy on FER2013 database.
Methods Accuracy
Hand-crafted feature guided CNN (Zeng et al., 2018) 61.86
AlexNet (Guo et al., 2016) 64.8
DNNRL (Guo et al., 2016) 70.6
ResNet (Pramerdorfer and Kampel, 2016) 72.4
VGG (Pramerdorfer and Kampel, 2016) 72.7
Ensemble of deep networks (Kim et al., 2016) 73.31
Alignment mapping networks + ensemble (Kim et al., 2016) 73.73
Single CNN (Gan et al., 2019) 71.47
Ensemble CNN (Gan et al., 2019) 73.73
Proposed 73.58

Fig. 5(b), where accuracy on CK+ is not affected when unla-
belled data from RaFD is used. However, when the moderate
intensity images (not coming from test sequences) from CK+

are used for training, the accuracy on CK+ improved by 10%.
These observations demonstrate the adaptability of the network
to the concerned task in a more regularized manner, instead of
over-fitting for the database samples.

4.5. Comparison with Other Methods

The performance of the proposed approach is compared with
other recent CNN-based methods and state-of-the-art results.
However, we note that the validation strategy varies depend-
ing on the source-literature. Therefore, we report both, per-
formance and validation settings in Table 3 and 4. We note
that most of the literature used the last three images of the se-
quences of CK+ to report classification accuracy. For a fair
comparison, we follow a similar protocol and considered 1236
labelled samples for CK+. Similar to our previous experiments,
the unlabelled data consist of the intermediate frames excluding
the labelled samples. The inclusion of more labelled samples
in the training set improves the performance from 95.56% to
99.35% in CK+. As can be observed in Table 3, this perfor-
mance is higher than the previously reported results. Further,
we notice that the inclusion of neutral-class decreased the per-
formance of Facenet2expnet (Ding et al., 2017). However, the
proposed method achieves significant improvements, while us-
ing the neutral expression as one of the classes.

Similar observations are inferred on RaFD evaluation. Here
the validation setting differs in literature in terms of the number
of cross-validation folds. We perform both, 5-fold and 10-fold
cross validation as shown in Table 4. Our approach outperform
the previously reported performances in both cross-validation
settings. Table 5 reports the performance of the proposed model
on FER2013 dataset. As can be observed, our model achiev
close to the state-of-the-art performance using a single frame-
work.
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5. Conclusions

In this paper, we propose a weakly supervised learn-
ing method that allows a CNN-model to adapt to different
expression-intensities in addition to classifying them into dis-
crete categories. Crucial in our approach is the utilized label
smoothing and bootstrapping of a fraction of unlabelled sam-
ples, replacing labelled data for model-update, while main-
taining the confidence level of the supervised data. Exper-
iments conducted on four public datasets indicate (a) large
performance-gain in cross-database evaluation, and (b) the self-
adjustment of the network to different expression intensities.
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