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Abstract

Pose Transfer has recently gained significant attention, particularly for its user-friendly

applications in the animation industry. The primary objective is to transform a given

RGB image into a new target pose. This process involves two consecutive tasks: ini-

tially, warping the image to approximately align with the target pose, and subsequently

using this rough estimation to generate a photorealistic image of the input in the desired

pose.

The primary challenge lies in the first task, where the image undergoes a rough

transformation to its new location in the target pose. Current deep learning approaches

rely on first-order warping, employing an affine transformation to move all image pix-

els. Despite yielding promising results, this approach has significant challenges when

dealing with complex deformations, mainly due to the simplistic nature of its linear

function. In contrast, we suggest transferring patches using a set of correlation layers.

In each layer, the warping for each pixel of the image is individually estimated. We ad-

ditionally introduce a constraint aimed at minimizing the energy of second derivatives

across the entire warping map of the pixels. This allows for keeping the integration of

local textures following the warping process, a feature already ensured in the affine-

based transformation by restricting the transition to a linear function for all the image

pixels. Our approach not only preserves the integrity of local textures, akin to the affine

transformation, but achieves this by individually estimating the warping for each image
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pixel, thereby enabling finer adjustments of the input sample to the target pose. We il-

lustrate the superior performance of this technique compared to affine-based strategies

on the renowned DeepFashion database.

Keywords: Pose transfer, Image to image translation, Deep spatial transformation

1. Introduction

Deep learning has become a prominent topic in both science and technology, demon-

strating widespread applicability across various fields He et al. (2023); Liu & Zhang

(2024); Dhar et al. (2023); Al Ka’bi (2023), including the animation industry Mourot

et al. (2022); Pham et al. (2017); Wan & Ren (2021). Notably, Pose Transfer Zhang

et al. (2021); Ren et al. (2020); Zhang et al. (2022); Zhou et al. (2022); Ren et al. (2022)

has emerged as a focal point within animation, drawing attention for its user-friendly

application and potential transformative effects on animation processes.

Animation is a method for introducing movement into a static drawing, wherein a

series of consecutive drawings are produced and captured as a complete video. The

generation of movement typically involves maintaining the constant shape of the pri-

mary drawing and implementing alterations only at key positions within the scene.

Computer animation, an emerging form of mixed media art, empowers animating ob-

jects in real-world images and not just drawings, with diverse applications in the realms

of entertainment, education, and training. The process of crafting a single frame of an-

imated video from a static image is known as pose transfer, where the new pose is

determined by a set of spatial landmarks, such as skeletal keypoints (Figure 1). It

has been shown that other specialized guides, including depth, edge, and segmentation

maps, can also function as a pose guide. However, the generation of these alternative

maps necessitates substantial manual efforts, impeding their practical implementation

in real-time systems.

Pose transfer typically involves two distinct tasks: (i) relocating those regions of

the input image that are visible in both the source and target poses. To do so, we

simply displace thses regions to their respective positions in the target pose, and (ii)
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Figure 1: The overarching structure of our approach involves taking an image, its cor-

responding skeletal pose, and a driving pose as inputs. Following a series of Texture

Selection Blocks, the image undergoes deformation to align with the pose depicted in

the driving map. Subsequently, the deformed image, along with the source pose and

the driving pose, is processed through a generator. This generator encompasses the

encoders EI and Ep, in addition to a collection of combination blocks (Ui and T i).

inpaiting those parts that are visible in the target pose but not in the source pose. The

primary challenge in pose transfer networks lies in accurately displacing each visible

region to its corresponding part, a task referred to as spatial transformation. Current

methodologies for implementing spatial transformations in deep neural networks in-

clude affine-based image warping and Transformers. However, affine-based warping

faces significant challenges in generating complex poses, primarily due to the simplic-

ity of its affine transformation. Moreover, retrieving image patches becomes imprac-

tical after passing through a transformer1. Consequently, this results in a sub-optimal

transformation with no discernible similarity between the patches of the source sample

and their estimations in the target pose.

In this paper, we propose a novel pose transfer network that leverages a set of non-

affine deformation blocks as opposed to the commonly employed affine transformation.

Our warping scheme capitalizes on correlation layers, wherein each layer computes a

cost volume of matches between the source and target pose of a given sample. This

1In transformers, each patch of the output sample is a combination of all the pixels in the source image.
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approach ensures coverage of all potential displacements for each image patch. Next,

we propose to minimize the energy of the second derivative for the estimated warping

map across all pixels which ensures to keep the locality of textures after the warping.

Subsequently, like the affine-based strategies we employ an image matching task as a

measure for estimating the parameters of our pixel displacement blocks.

Additionally, our approach leverages a gradual estimation of warping maps instead

of relying on a single-shot estimation. This choice is made due to the inherent limi-

tation of skeletal poses, which lack sufficient information about the body volume in a

target pose.

The overall structure of our method is illustrated in Figure 1. It incorporates a series

of Texture Selection Blocks (TSBs), each responsible for a localized transformation on

the coordinates of the source pixels. The sequential application of these local blocks

enables a more versatile transformation, enhancing the model’s ability to learn a broad

spectrum of displacements without confusion between small and large displacements.

Each TSB takes multiple inputs, including the source image, source pose, and target

pose. Subsequently, a local transformation is derived from this input set and applied

to the source sample, resulting in a transferred image that serves as an estimate of

the source sample in the target pose. This estimation includes the body volume in the

target pose (pd), providing a novel representation of the source sample that incorporates

the body volume rather than relying solely on the skeletal representation of ps. In

summary, the output of each TSB consists of a novel estimation of the source image,

along with updated source and target poses. Following the application of n TSBs, the

source image is entirely displaced to the target pose. This displaced image is then fed

into a generator to incorporate regions that are not visible in the source sample but are

introduced in the target pose.

The effectiveness of our method is verified through a set of extensive experiments

across two different applications, including a pose transfer and a novel view synthesis

task. This way, we demonstrate that our network is not an application-oriented frame-

work specifically designed for a single task. This evaluates the ability of our method

both to add extra details on the same view of a scene and also to generate the scene
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Figure 2: Estimation of deformation indices using a correlation layer. The correlation

tensor K is headed by a softargmax operation which ensures a one-to-one correspon-

dence between the patches of the target and the patches of the source samples. Two

sets of deformation indices (ge and (xs, ys)) are predicted by our method.

from a novel viewpoint. However, other competing pose transfer strategies can not be

applied to a novel view synthesis task.

Our contributions can be outlined as follows:

• We introduce a novel approach that spatially displaces image pixels to align with

their target positions. In contrast to affine-based transformations, our method

avoids applying a uniform spatial operation to all the image pixels.

• We introduce a softargmax-based operation for aligning the corresponding parts

of two skeletal images. In contrast to widely used softmax-based operations,

our approach relies solely on the positional information of the matching points,

without considering their specific values.

• We suggest a hierarchical warping map estimation, enabling the incorporation of

the target body volume in the warping map estimation process.

2. Related work

Pose transfer: Deep pose transfer was initially introduced by Ma et al. Ma et al.

(2017). In their approach, a primary network offers a comprehensive estimation of the

image in the target pose, while a secondary network supplements this estimate with
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image details. Despite yielding promising results, the absence of mutual influence be-

tween these networks leads to suboptimal texture generation. Several methods, such as

Li et al. (2019); Ren et al. (2020); Tabejamaat et al. (2021), incorporate a flow estima-

tor predicting clothing textures at the target pose location, followed by a network that

adds the human body details onto these textures. Alternatively, approaches like Tang

et al. (2020b); Esser et al. (2018) propose separate streams within a unified network

to estimate clothing texture and body appearance. This design allows for the inclusion

of texture-appearance correlation in the image generation task. For example, Tang et

al. Tang et al. (2020b) proposed a dual-stream network that generates the pose and

appearance of samples using a Siamese network. To increase the diversity of the gen-

erated samples, Esser et al. Esser et al. (2018) proposed to combine these appearance

and pose features in the latent space of a variational autoencoder Kingma & Welling

(2013). Pose Attention Transfer Network (PATN) Zhu et al. (2019), Patch Transfer

(PT) Tabejamaat et al. (2021), and CoCosNet Zhou et al. (2021) employ an attention

mechanism Bahdanau et al. (2014) for the fusion task, leading to enhanced perfor-

mances. Ren et al. Ren et al. (2022) introduce a double attention approach to extract

semantic entities from the source image, using each as a dictionary element for target

sample generation. Additionally, Roy et al. Roy et al. (2023) incorporate multi-scale

attention to enhance the image quality in a pose transfer scenario.

Recent research predominantly leverages additional human parsing to enhance the

quality of semantic image generation. In this vein, PISE Zhang et al. (2021), SPGnet

Cheng et al. (2019), CASD Zhou et al. (2022), and ADGAN Men et al. (2020) propose

incorporating semantic segmentation of samples as an additional input for pose trans-

fer models. This approach simplifies the matching operation between corresponding

areas of the source and target samples. However, it necessitates the estimation of se-

mantic segmentation for the target sample based on a sparse set of skeletal keypoints,

presenting an under-constrained problem. Furthermore, pixel annotation is required for

supervision, posing challenges, particularly for more intricate garments.

Additionally, Albahar et al. AlBahar et al. (2021), Neverova et al. Neverova et al.

(2018), and Chang et al. Chen et al. (2022) advocate for the estimation of a dense UV

map for individual input samples. This approach facilitates a precise transformation
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of clothing items to their target positions. However, the challenge lies in estimating

a comprehensive dense UV map that encompasses all body parts and clothing items,

making it notably more intricate than estimating a semantic segmentation map in the

target pose. Consequently, this requires the utilization of large networks that consume

substantial amounts of memory.

Recently, diffusion models Sohl-Dickstein et al. (2015) have achieved significant inter-

est due to their capacity to synthesize high-fidelity images Rombach et al. (2022). In

contrast to Generative Adversarial Networks (GANs) Goodfellow et al. (2014), these

models excel at generating uncommon textures, a valuable trait in tasks like pose trans-

fer, where clothing textures may be infrequent in the training data. Bhunia et al. Bhu-

nia et al. (2023) introduced a pose-guided diffusion model specifically designed for the

pose transfer task.

Novel view synthesis: Novel View Synthesis involves estimating the appearance of a

scene from a novel viewpoint. The process can be supervised by a variety of guiding

points including 3D points Huang et al. (2023); Zhang et al. (2023) and camera angle

Wiles et al. (2020). InfoGAN Chen et al. (2016) suggests manipulating the latent space

of an image’s view. Kulkarni et al. Kulkarni et al. (2015) introduce a unique approach

that learns a transformation by averaging the latent space values when applying a spe-

cific transformation to various training samples. Park et al. Park et al. (2017) present

a disocclusion-aware appearance flow network, which learns a visibility map and a ro-

tation matrix to shift visible parts of an image to corresponding positions in another

view of that image. Sun et al. Sun et al. (2018) adopt a similar strategy but utilize a set

of viewpoints instead of a single view from a source sample, enabling a more accurate

estimation of the flow map. They also propose replacing the rotation matrix with an

unsupervised flow estimation network, closely resembling the approach in Park et al.

(2017). In Tatarchenko et al. (2016), a set of depth maps is predicted from a given

image, each corresponding to a specific viewpoint. These maps are then utilized to

estimate a point cloud of the object, which is subsequently rendered from the target

viewpoint of the sample. Similar to Kulkarni et al. (2015), Worrall et al. Worrall et al.

(2017) proposed applying a 3D transformation to the latent space of an autoencoder

network. Sitzmann et al. Sitzmann et al. (2019) suggested mapping arbitrary points

7



in world coordinates to a feature representation and then employing a ray-marching

LSTM and a convolutional pixel generator to render this feature representation from

a novel viewpoint. Notably, these approaches all rely on synthetic datasets containing

single-object images captured at various view angles.

Deep warping estimation: In recent years, the application of deep neural networks for

estimating the flow function between two signals or images has gained attention. For

instance, Kazlauskait et al. Kazlauskaite et al. (2019) introduced a method based on a

probabilistic model constructed with nonparametric priors, offering general estimates

for the matching of two signals. Another approach, Deep Canonical Time Warping

(DCTW) Trigeorgis et al. (2017), focuses on estimating the temporal alignment of

time series within a common subspace. Oh et al. Oh et al. (2018) utilized sequence

transformers to learn functions for stretching, compressing, rotating, and/or transform-

ing signals to fit clinical time series data. For the pose transfer task, the flow function is

computed between two sets of skeletal joints and then applied to the source sample to

shift it to the position of the target pose. Early work on this was introduced by Siarohin

et al Siarohin et al. (2018). The authors suggested estimating an affine transformation

for each subset of skeletal joints and predicting the overall flow function through soft-

max voting among these local transformations. In Siarohin et al. (2019), the authors

presented a first-order warping strategy closely linked to Siarohin et al. (2018). Mean-

while, in Zhao & Zhang (2022), the authors propose using a thin plate spline for flow

estimation between two RGB images, which has demonstrated greater effectiveness

than the first-order modeling of motions. However, it involves matrix inversion, posing

challenges with certain complex motions.

Similarities and Deviations: Our approach is a pose transfer network, distinguishing

itself from existing strategies by introducing a constrained warping maps rather than

the widely used affine transformations. This feature ensures accurate deformation even

for complex deformations between the source and target poses of the samples. Similar

to previous approaches, we conduct our evaluations using the established Deepfashion

database.
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3. Method

Given a source image Is along with a source pose ps and a driving pose pd, we

aim to transfer the source image (Figure 4(a)) into the novel pose of pd (Figure 4(b)).

Each pose is a volumetric stack of 2D heatmaps, where each heatmap is a 2D Gaussian

envelope centered at the location of a skeletal keypoint.

Our method consists of two different modules; (a) spatial transformation and (b)

generator. This is illustrated in Figure 1. TSBs indicate the spatial transformation,

outputting a Spatially transferred image. This image along with the source and the

target pose is given to the generator to add the photorealistic details on top of the spa-

tially transferred image. The network in Figure 2 is the lower stream of the network

in Figure 1 (overall network) and Figure 3 depicts the strategy by which we use the

two outputs of Figure 2 to spatially sample the pixels of the input image. The Spatial

Transform learns to displace the patches that are visible in both the source pose and the

driving pose of the sample (Figure 4(c)). Given these transformed patches, our genera-

tor learns to generate the remaining patches that are invisible in the source sample but

newly introduced in the driving pose (Figure 4(d)).

3.1. Spatial transformation

This module includes a cascade of Texture Selection Blocks (TSBs). Each block

takes a collection of the source images, the source pose, and the target pose as input

and makes an update in their representation. The update has two different aspects:

(a) displacing the patches of the source sample according to the driving pose, and (b)

incorporating the body volume of the sample in the source pose and also in the driving

pose.

We first compute a cost volume of matches between the patches of the source pose

ps and the patches in the driving pose pd. This volume is then used to assign a positional

code to each patch of the driving pose. To benefit from a more expressive function, we

first project the pose maps to an intermediate feature space.

ps ∈ Rm×h×w F−→ fps
∈ Rc×h×w

pd ∈ Rm×h×w F−→ fpd
∈ Rc×h×w

(1)
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(1 − 𝑄𝑚)𝒯0(𝑝𝑑) 

𝒰𝑘 𝐸𝐼(𝐼𝑠
𝑛𝑒𝑤,𝑛)  

𝒯𝑘(𝑦𝑘−1) 
𝑄𝑚𝒰𝑘 𝐸𝐼(𝐼𝑠

𝑛𝑒𝑤,𝑛)  

+ 
(1 − 𝑄𝑚)𝒯𝑘(𝑦𝑘−1) 

… 

… 

𝐷𝑆 

𝐷𝑆 

𝐷𝑆: downsampling operation 

𝐼𝑠 

𝑝𝑠 

𝑝𝑑 

𝐸𝐼 

𝐷𝑆 

𝐼𝑠
𝑛𝑒𝑤,2 

𝐸𝑝 

𝐸𝑝 

𝐷𝐼  

 𝒰𝑘 

𝒯𝑘 

𝒥 
Estimation of 

the 
deformation 
indices, Fig. 2 

Deformation 

of the source 

sample, Fig. 3 

𝑓 

𝑓 

 1D Gaussian envelop 

Element-wise 

product 
Grid--sampler  

Figure 3: We consider two spatial deformations of the input sample and try to mini-

mize their difference using an optimization process. The sampling block at the bottom

represents a differentiable sampling operator proposed by Jaderberg et al. (2015). In

the top row, we consider a direct sampling operation based on the multiplication of the

spike vector, denoted by the softtargmax operation, in the pixels of the image.

F is the same for both the maps ps and pd. To capture a one-to-many relation,

we assume each patch of the driving pose fpd
is a linear combination of the entire

patches in the source pose fps
. This is formulated as: f c×hw

pd
= f c×hw

ps
Khw×hw. The

superscripts denote the dimension of the matrices. Accordingly, K ∈ Rhw×h×w is a

correlation tensor whose channels represent the similarity of the driving patches to the

patches of the source pose. Then, we estimate the location of the maximum response in

 
(a)                      (b)                       (c)                      (d)                      (e) 

Figure 4: The deformation and the final result of our strategy, (a) source sample, (b)

target pose, (c) deformation result, (d) final result, (e) ground-truth.
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each spatial location of K ∈ Rhw×i×j , which is computed by the softargmax operation

(Figure 2).

si,j =
∑
µ

eβK(µ,i,j)∑
ρ e

βK(ρ,i,j)
µ (2)

where s(i, j) is the spatial index of the maximum response, indicating the index of the

source patch which is assigned to (i, j)-th patch in the driving pose. In practice, we

consider si,j as the flow value and add it to the coordinate index (xs, ys) to obtain the

novel location of the pixel (sx, sy) after the spatial transformation.

s
′

x = si + xs[i]

s
′

y = sj + ys[j]
(3)

Then, we directly sample the source image according to the sampling coordinates

(s
′

x, s
′

y), S is considered as the sampling operation (Figure 3):

Ws(i, j) = S((s
′

x, s
′

y), Is) (4)

We also consider a second form of sampling operation which is directly applied to

the source images. This process is completely inspired by the attention mechanism

in Transformers, considered to stabilize the optimization of the warping operations.

For this purpose, we first create a Gaussian envelope for each of the patches in the

target pose, (i, j). The length of this one-dimensional envelope is equal to hw. The

Gaussian envelope denotes a Gaussian vector peaked at the location of s
′
(i, j). This

vector already denotes the location of the maximum similarity between the ith patch of

the source pose and the jth patch of the target pose.

ge(i, j) = eζ(µ−s(i,j))2 (5)

where ge(i, j) ∈ Rhw. Having this envelope created for the entire locations i, j ∈

{(1, h), (1, w)}, we have a tensor of dimension hw × h × w × 1. Then for sampling,

we simply rescale the source image to the dimension of hw × 1× 1× 3 and multiply

it by this Gaussian envelope. This operation is individually performed on each spatial

location (i, j), where it samples the corresponding location of the source image. This

sampling operation is formulated as follows:

Ms(i, j) =
∑
µ

ge(µ, i, j)Is(µ) (6)
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where Is ∈ Rhw. Ms ∈ R3×h×w is an updated version of the source sample which

is transformed into the target pose. In Section 3.3, we encourage Ms and Ws to be

exactly the same. This allows for reducing the instability issue of the differentiable

sampling introduced by Jaderberg et al. (2015), because it does not allow the sampling

values to go beyond the spatial size of images.

Next, we propose to update the pose maps, ps and pd in a way that pd] includes

some information about the body silhouette in the target pose. This aims to include

two different characteristics: (1) similar to ps and pd, the new pose maps need to dis-

tinguish between different parts of the human body, (2) the maps need to differentiate

between the background and the silhouette of the samples (as an estimation of the body

volume). The first condition is already satisfied by fps
and fpd

, as their characteris-

tics are directly extracted from the skeletal keypoints. For the second condition, we

have Ms as an estimation of the source sample in the target pose, because it is al-

ready the source image spatially warped to the target pose. Therefore, we simply have

Inews = M . Given that, it is clear that a function2 of this body estimate can repre-

sent the silhouette of the body volume in the target pose. Accordingly, applying the

same function on the source sample provides an estimation of the body silhouette in

the source pose.

zs = P(Is), zd = P(Ms) (7)

where zs and zd are the estimation of the silhouette respectively in the source and

also in the target pose. P is a convolutional function which is headed by a sigmoid

operation.

Finally, multiplying these silhouettes (zs and zd) by fps and fpd
provides us with

the novel estimation of the source and the driving pose maps:

pnews = zs ∗ fps
, pnewd = zd ∗ fpd

(8)

After n TSBs, the source patches are spatially transferred to their corresponding loca-

tions in the target pose.

2like a convolutional network

12



3.2. Image generation

Given the transferred image Inew,n
s , the source pose Is and the driving pose Id,

this module learns to generate a photorelistic image of the source sample in the driv-

ing pose. To accomplish this, we first project Inew,n
s and Id to a feature space, then

combine these two features using the following equation:

y = Qm ∗ U(EI(I
new,n
s )) + (1−Qm) ∗ T (Ep(Id)) (9)

where U and T are two convolutional networks which transfer the Inew,n
s and Id to

a feature space. Inew,n
s is the deformed sample of the n-th TSB. Qm is an occlusion

matrix indicating which patches are visible in both the source and the target pose of

the sample and which patches are newly introduced in the target pose. In practice, Qm

is roughly estimated from the feature maps of ps and pd. The estimation is performed

using the function J on a concatenation of these feature maps (Figure 1).

To benefit from a progressive function, we propose the combination of EI(I
new,n
s )

and Ep(Id) to be performed using a cascade of functions Ui and Ti, i = 1, ..., k:

y0 = Qm ∗ U0(EI(I
new,n
s )) + (1−Qm) ∗ T0(Ep(Id))

yi = Qm ∗ Ui(EI(I
new,n
s )) + (1−Qm) ∗ Ti(yi−1)

(10)

yk is then passed to a decoder to generate the output of our model, which is a photore-

alistic image of the source sample in the target pose.

3.3. Learning

Our model is trained in a supervised manner in which two images with the same

identity and garments are utilized as the source and the target samples. Moreover, the

skeletal keypoints of the target sample is utilized as the driving pose. For training,

we benefit from three loss functions, a perceptual loss, an adversarial loss, and a recon-

struction loss. For the perceptual loss, we use a pretrained VGG19 model and minimize

the distance between yk and the target sample It in its intermediate layers.

Lvgg = E
[ R∑

r

∥Vr(yN )− Vr(It)∥1
]

(11)
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where, Vr stands for the r-th layer of VGG19. Moreover, we consider a reconstruction

loss which ensures a holistic similarity between the generated image and the ground-

truth data:

Ll1 = E
[
∥yk − It∥1

]
(12)

Further, we consider an adversarial loss which ensures the photo-realism of the gener-

ated samples:

LGAN = E
[
log(1−D(yk))

]
+ E

[
D(It)

]
(13)

where, D is a fully convolutional discriminator. Moreover, we also benefit from the l1

and the perceptual functions to minimize the distance between the deformed Ws and

the target sample. Additionally, we minimize the l1 loss between the two estimations

of the deformed sample (Ws and Ms).

Ldef =E
[ R∑

r

∥Vr(Ws)− Vr(It)∥1
]
+ λ0E

[
∥Ws − It∥1

]
+ λ1E

[
∥Ws −Ms∥1

] (14)

It is noteworthy that the deformation part is quite disentangled from the generator of

our model. This way, there are no mutual dependencies between Ldef and LGen of our

model which ensures a faster convergence for each of these modules.

To ensure a smooth transition, we minimize the second derivatives of the angles be-

tween si, sj and x, y-axes.

Lsmooth = E
[∂2θ(si, sj)

∂x2

]
+ E

[∂2ϕ(si, sj)

∂y2
]

(15)

where θ(si, sj) is the angle between (si, sj) and the x-axes, ϕ(si, sj) is the angle

between (si, sj) and the y-axes, and ∂2f
∂x2 is the partial second order derivative with

respect to x.

3.4. Inference

For inference, we require a source image Is along with its skeletal keypoints ps and

also a set of novel keypints as the driving pose pd. The skeletal keypoints of the source

sample can be easily extracted from the source image using a pose estimation network.

However, the driving pose can be manually provided by a human observer, making the

strategy a user-friendly framework in applications like image animation.
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4. Experiments

The experiments encompass two distinct tasks: pose transfer and view synthesis,

conducted on the Deepfashion and Phototourism datasets, respectively. The evaluations

are comprehensive, relying on three widely recognized metrics: FID (Fréchet Inception

Distance) Heusel et al. (2017), LPIPS (Learned Perceptual Image Patch Similarity)

Zhang et al. (2018), and SSIM (Structural Similarity Index) Wang et al. (2004).

Both LPIPS and SSIM serve as pair-wise metrics, gauging the fidelity of the gener-

ated samples to their corresponding targets. They provide insights into the perceptual

and structural quality of the generated images in relation to the ground truth. On the

other hand, FID offers a comprehensive perspective by comparing the overall distribu-

tions of the generated and target samples. This metric provides a measure of photoreal-

ism, offering valuable insights into the global similarity between the generated samples

and the ground truth targets. The combined use of these metrics ensures a thorough and

nuanced evaluation of the model’s performance across various dimensions.

4.1. Pose transfer

Deepfashion is a fashion show dataset Liu et al. (2016) with 101, 966 image pairs

as training samples and 8570 pairs as test ones. The same split is used by Tang et al.

(2020a); Ren et al. (2020); Zhu et al. (2019); Tang et al. (2019); Men et al. (2020);

Zhang et al. (2021), allowing a fair comparison between our method and these compet-

ing algorithms. All the images are of the size 256 × 176, captured in an indoor scene

against a white background. One challenging issue of this database is the small number

of training samples per identity, making it difficult for the network to generalize over

the variety of poses for a single texture. The skeletal joints are extracted by the HPE

algorithm Cao et al. (2017). The joints are further represented as a volumetric heatmap.

Each map is generated by a Gaussian envelope with σ = 0.1. The qualitative results

of the competitors are generated by the pretrained models or directly from the images

provided by the authors. For quantitative performance, the values are either reported

from the papers or through evaluations of their generated samples.
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Input image Groundtruth ADGAN PISE GFLA DPTN CASD NTED PIDM Ours 
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iteration 
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iteration 
50  

iterations 
Single 

iteration 

              

 

              

 

              

 

              

 

 
Figure 5: Illustrations of reconstructed samples from an alternate perspective are pre-

sented. The second row showcases the iteration number required to generate the image

at test time. Each subsequent even row displays the respective guide map employed by

each method. Notably, PIDM leverages the skeletal visualization of the target samples

as its guide pose. However, a drawback emerges during inference, as it necessitates

more than one iterations, limiting its suitability for real-time image animation. The

competing images are provided by Bhunia et al. (2023)
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4.1.1. Quantitative performance

In this section, we conduct a quantitative comparison between our method and sev-

eral state-of-the-art algorithms, including ADGAN Men et al. (2020), PISEZhang et al.

(2021), GFLARen et al. (2020), DPTNZhang et al. (2022), CASDZhou et al. (2022),

NTEDRen et al. (2022), and PIDM Bhunia et al. (2023). The comparison results are

detailed in Table 1. Notably, our method demonstrates competitive or superior perfor-

mance when measured using both LPIPS and SSIM metrics, underscoring its effec-

tiveness in generating semantically similar content to the ground-truth data. Benefiting

from non-affine warping map estimation, our method effectively deals with complex

transformations between different poses. Consequently, this ensures that the generative

component receives more accurate warped images, ultimately leading to the generation

of samples with textures that faithfully represent the original data.

It is crucial to emphasize that PIDM excels in generating high-quality images.

However, it is noteworthy that the inference time of this model is considerably longer

than other competing algorithms as it is a multi-iteration method based on the diffusion

model. Even without any external segmentation map, our approach exhibits a remark-

able 26.7% superiority over the average FID of single-shot strategies. Additionally,

we observe a 15% and 42.9% improvement in performance on the LPIPS and SSIM

metrics, respectively.

It’s crucial to note that the decreased FID, compared to the diffusion model PIDM,

primarily stems from challenges faced by our deformation module. This is particularly

evident when handling infrequent poses absent in the training data. The deformation

module’s difficulty with these uncommon poses can lead to misguidance of the genera-

tor, presenting inaccurate information about the input sample’s position and occasion-

ally causing model failures.

4.1.2. Qualitative performance

In this section, we conduct a visual analysis of samples produced by our proposed

method and several competing approaches, aiming to provide insights into visual ac-

curacy, stylistic attributes, and overall performance. The results, depicted in Fig. 5,

reveal that images generated by PISE, ADGAN, and GFLA lack consistent shapes in
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hats and garments. While GFLA benefits from warping, enabling high fidelity in tex-

ture related to the source image, it faces challenges generating satisfactory results for

regions newly introduced in the target pose but invisible in the source image. NTED

and CASD, leveraging cross-attention mechanisms for long pixel displacement, exhibit

good performance but struggle to preserve precise details of source textures. PIDM

generates high-fidelity samples but requires a substantial execution time due to multi-

ple iterations during inference. In contrast, our method not only accurately preserves

garment and hat shapes from the source image but also generates images with high

texture fidelity. The visual results robustly support our method’s capability in produc-

ing high-fidelity samples for intricate differences between the source and target pose,

confirming its effectiveness in preserving exact color tones in the generated images.

Strategy Single iteration FID↓ LPIPS↓ SSIM↑

Our method - ✓ 8.5 0.17 0.729

ADGANMen et al. (2020) Segmentation map ✓ 14.4 0.22 0.672

PISEZhang et al. (2021) Segmentation map ✓ 13.6 0.20 0.662

GFLARen et al. (2020) Affine-based warping ✓ 10.5 0.23 0.707

DPTNZhang et al. (2022) Cross-attention ✓ 11.3 0.19 0.711

CASDZhou et al. (2022) Cross-attention ✓ 11.3 0.19 0.724

NTEDRen et al. (2022) Cross-attention ✓ 8.6 0.17 0.718

PIDM Bhunia et al. (2023) Diffusion model ✗ 6.3 0.16 0.731

Table 1: An evaluation of various pose transfer methods on the Deepfashion database.

4.1.3. Shift invariant pose transfer

Shift invariance is one of the critical advantages of a pose transfer network, espe-

cially in practical applications like image animation. In this case, projecting different

views of a source sample to the same target pose should generate the same result. This

causes integrity over the whole space of the image generation. To ensure this property,

we propose to augment the source samples using a random affine transformation and

then encourage the network to generate the same results as before the transformation.

We experiment to evaluate the effectiveness of this strategy on the shift-invariance of

the generated samples. For evaluation, we first make a random shift in all the driving
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Source Target Ours

Figure 6: Examples of the reconstructed samples of monuments given a target pose.

keypoints of the target samples. All the points are shifted by the same value but it

randomly changes for different samples.

The results are shown in Table 2. As can be seen, our method outperforms NTED

in handling the shift of the samples. It is evident that the augmentation is quite effective

in generating the same result from different views of a sample. Compared to NTED,

our method benefits from a spatial deformation module, whose output is further used

as the input of our generator. This makes it necessary for our method to use a huge

number of training samples to learn about the correct deformation of samples. There-

fore, compared to NTED, the augmentation technique has a greater influence on our

strategy, leading to a better performance than the original technique.
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Our method NTED

Vanilla model 0.729 0.718

Shift(up to 20 pixel) 0.714 0.702

Aug+shift (up to 20 pixel) 0.719 0.709

Table 2: Evaluation of the shift invariance based on the SSIM score

Source Target Ours

Figure 7: Examples of the reconstructed samples where the network fails to generate

proper output as the network uses an edge drawing map in the absence of guiding

keypoints map.

4.2. Ablation Study

In this section, we evaluate the effectiveness of our proposed strategy in displacing

the image patches to their correct locations in the target pose. To do so, we first replace

each of the TSB blocks with a Vision Transformer block implemented by a kernel size

of 16 × 16. The performance of this architecture is evaluated on the same split of

the Deepfashion database that we introduced in Section 4.1. The results are shown in

Table 3. As can be seen, our proposed method is quite superior to the Transformer-

based model. This results from the linear combination of transformer blocks, whereby

each patch of an output sample is a combination of all the patches in the input image.

This makes it almost impossible to retrieve the original patches from these combined

20



textures.

Moreover, we conducted another experiment to evaluate the effectiveness of each

FID↓ SSIM↑

Our method w TSBs 8.5 0.729

Our method w/o TSBs+VITs 9.1 0.715
Table 3: An ablation study for evaluating the effectiveness of TSBs in our proposed

method

term in our collections of the loss functions. Accordingly, we consider a baseline

model comprising of l1, Lsmooth, and perceptual loss functions for the deformation

module and l1 loss for the image generation module. Then, we progressively add

the remaining terms to this baseline model. For the sake of notational simplicity, we

consider the following abbreviations: A: baseline model, B: GAN+baseline model,

C:GAN loss+perceptual+baseline. The results are listed in Table 4. By comparing

A and B, it is clear that the GAN loss has a significant impact on the FID score, more

precisely 1.9 lower than the FID score of the baseline model. In contrast, by comparing

A and C, we can observe the effectiveness of the perceptual loss on the SSIM score.

Lsmooth is the only condition to guarantee the uniformity of our spatial transformation

and without it, the network fails to generate a meaningful deformation image for our

image generator. For this reason, we included Lsmooth in all of the ablation studies.

FID↓ SSIM↑

A: baseline model 11.4 0.692

B: GAN+baseline model 9.2 0.703

C: GAN loss+perceptual+baseline 8.5 0.729
Table 4: An ablation study for evaluating each term of loss functions in our method

4.3. Novel view Synthesis

Unlike the pose generation, novel view synthesis aims to regenerate a novel view

of a stationary scene. The regeneration is guided by an edge map of samples in the

target view. In practice, these maps are extracted from the target samples by using the
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Canny edge detection algorithm Canny (1986) (lower left side of the generated im-

ages in Figure 6). The thresholds of the Canny operator are set to 10 and 200. This

approximates a simple drawing of the pose by a human user which is applicable in

an image animation task. The experiments are conducted on the Phototourism dataset

which contains more than 25, 000 training samples from 15 monuments and more than

4000 test samples from 9 different monuments. For evaluation, we consider 100, 000

training pairs randomly selected from the training samples. This allows for a reason-

able training time. Additionally, 2014 samples are paired as our test samples. Figure 6

shows some examples reconstructed by our method. As can be seen, our method can

well reconstruct the texture of the samples. The invisible parts of the source samples

are correctly reconstructed in their positions and correspond to the texture of the visible

parts of the sample. However, sometimes the color tone of the generated image is not

exactly matched with that of the source sample. This is more related to the diversity

of the color tones between the images that we paired in our database. This encourages

the network to learn a different color tone for the target pose of an image. However,

collecting outdoor images with the same color tone is not an easy task. This requires

further research on the color correction of the images. Figure 7 illustrates some exam-

ples where our method fails to keep the fidelity of the generated images to the source

samples in the absence of guiding keypoint map. In practice, guided view synthesis

is a very challenging task as there is no consistency between the number of guiding

points in different samples. As can be seen, our method has also some difficulties with

generating some parts of the images including the bridges and spaces with different

textures to their neighboring areas.

4.4. User study

Similar to Zhu et al. (2019), we asked 30 volunteers to provide us with their opin-

ions about the quality of the generated samples. The experiment is conducted over 116

images randomly selected from the test pairs of the Deepfashion database. Each target

sample is generated by 7 different algorithms. We did a warm-up session with 17 ad-

ditional images so that the participant became familiar with the experimental protocol.

Table 5 lists the results of our questionnaire which contains two different questions: (1)
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which algorithm best preserves the fine details of the source sample? (2) how well does

the generated pose match the ground-truth data? As can be seen, our method provides

a competitive performance with PISE Zhang et al. (2021) and GFLA Ren et al. (2020).

PISE takes advantage of the segmentation maps which allows for a more accurate es-

timation of the target pose. However, the need for a segmentation map hinders the

application of this strategy in some real-world scenarios like image animation, where

it is more convenient for a human to provide the network with the landmarks of the

samples3 rather than a dense segmentation map.

Q1: which algorithm best ... Q2: how well does ...

Ours 26.1 89.9

NTED 25.3 90.1

PISE 22.1 92.7

ADGAN 7.3 90.1

GFLA 19.2 72.9

Table 5: User study on two different questions conducted on Deepfashion dataset

4.5. Implementation details

In this section, we provide a comprehensive overview of the implementation details

employed in our pose transfer methodology. The outlined details encompass key as-

pects of our approach, including network architecture, training procedure, and specific

techniques utilized to enhance the performance of the model.

4.5.1. Network Architecture

The architecture of our pose transfer network is crafted to handle the complex task

of generating realistic and precise pose-transferred images. As a result, it incorporates

a diverse array of architectures and layers. We leverage a combination of convolutional

layers, attention mechanisms, and spatialy transformation layers carefully tailored to

capture spatial dependencies and the semantic information crucial for successful pose

transfer. EI and Ea both utilize three convolutional layers with a kernel size of 7 × 7

3the source and target pose of the samples.
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(illustrated in Figure 8(a) and 8(b)). The same Ep is used for both the source pose

and the target pose. The architecture of each Ui and Ti is illustrated in Figure 8(c)

and 8(d). For F , we benefit from an autoencoder with 2 convolutional layers, each

including one Resnet headed by a self-attention layer. For the self-attention, motivated

by Bhunia et al. (2023) it is included to enable the model to attend to critical spatial and

semantic cues during the pose transfer process. For J we use an 8-layer autoencoder,

each layer is a convolutional operator with the kernel size 3 × 3 which is followed by

a Batch normalization and ReLU operation. There is no skip connection between the

encoder and decoder of the autoencoder. All the residual connections of our method are

followed by a Batch normalization and a ReLU activation function. Our discriminator

is a 6-layer convolutional neural network with the same architecture as the encoder of

J

4.5.2. Training Procedure

The training process assumes a pivotal role in ensuring the effectiveness of our pose

transfer model. Utilizing the Adam optimizer Kingma & Ba (2014) with β1 = 0.9

and β2 = 0.99, we conduct training for all Texture Selection Blocks, the generator,

and the discriminator. Initially, a pretraining phase is executed on The Deepfashion

database. During this phase, affine transformations are applied to each image, serving

as inputs to the generator. The model attempts to regenerate a displaced version of the

input sample, with shifts of up to 20 pixels both vertically and horizontally, randomly

applied. A learning rate of 0.0001 is employed for the generator, and 0.00001 for the

discriminator during this pretraining phase, spanning 250 epochs.

Subsequently, we fix the parameters of the generator and proceed to train the Tex-

ture Selection Blocks for 50 epochs, employing paired images and a learning rate of

1e-6. Subsequently, upon locking the parameters of the Texture Selection Blocks, we

engage in a fine-tuning process for both the generator and discriminator parameters,

once again utilizing paired images. During this fine-tuning phase, the learning rate

for the generator is established at 1e-4, while for the discriminator, it is set to 1e-5,

spanning 250 epochs. This multi-phase training approach is designed to ensure that the

network attains resilient features and effectively generalizes across a diverse range of
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poses.

4.5.3. Correlation Layer

An important aspect of our implementation involves integrating a correlation layer,

a feature that bolsters the model’s capacity to accurately deform images, particularly

in situations marked by substantial displacements between the source and target poses.

We delve into the application and influence of the correlation layer in our methodology.

The correlation is computed based on the intermediate feature vector, with a spatial size

of 64×64. This computation involves evaluating cosine similarities between every pair

of locations within the input samples. Subsequently, two convolutional layers, each

with a kernel size of 7, are applied, each followed by an instance normalization layer.

4.5.4. Computational Resources

We performed our experiments utilizing eight V100 GPUs with the PyTorch frame-

work. These computational resources were chosen to facilitate effective training and

evaluation of our pose transfer model. The complete training process spans a duration

of 9 days within this framework.

5. Conclusion

In conclusion, our study introduces an innovative approach for estimating deforma-

tion maps in images through the integration of a correlation layer and minimization of

the second derivatives of the warping maps. This method presents a notable departure

from conventional warping-based strategies by overcoming limitations associated with

kernel size while eliminating reliance on affine transformations. A key enhancement

is the hierarchical computation of deformation indices, enabling a more expressive

function for handling complex transformations in image samples. Our methodology

undergoes rigorous evaluation across two distinct tasks: pose transfer and novel view

synthesis. We conduct extensive experiments on well-established databases, including

Deepfashion and Phototourism.

The outcomes consistently showcase the superiority of our proposed method in

accurately generating pose variations based on deformation maps. The approach’s effi-
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(a) Block architecture for 𝐸𝐼  
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(c) Block architecture for 𝒰𝑖  
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(d) Block architecture for 𝒯𝑖  
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Figure 8: Block architecture of our method

cacy is notably demonstrated through its robust performance in both pose transfer and

novel view synthesis tasks. These findings affirm the effectiveness of our methodology

and its potential to contribute to advancements in the field of image generation and

deformation mapping
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