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Abstract

This paper introduces a novel approach to warp an RGB image to a new target pose,

where it learns to inpaint the invisible parts of the image by sampling pixels from the

visible parts. This technique is particularly relevant in applications such as novel pose

image generation, where the quality of the generated samples heavily relies on the

warped images. Conventional methods typically utilize an affine warping map esti-

mator and learn to estimate the warping map through a downstream image generation

task. However, this approach results in an affine function being returned regardless of

the complexity of the deformation between the source and target poses. In contrast, our

proposed method involves estimating the warping map using a convolutional function,

which learns through alternating between two downstream tasks. Initially, the estima-

tion treats the warping as part of an image generation task, similar to existing methods

but without the constraint of an affine transformation. This encourages the estimation

of complex transformations beyond affine deformations. Subsequently, disregarding

the image generation task, we supervise the convolutional warping map to learn any

potential affine transformation between the guiding poses of the sample. Our experi-

mental results demonstrate the high effectiveness of our method in preserving image

textures while transforming it into highly complex poses.
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1. Introduction

Unsupervised estimation of warping maps1 is a foundational challenge in computer

vision, with diverse applications in 3D reconstruction, image animation, and virtual

reality. The main objective is to transform a source image to match a given target pose.

This estimation is guided by the location of the sample in the target pose, which can be

a set of keypoints or more comprehensive guiding maps such as edge or segmentation

maps.

Research in this field has mainly focused on warping based depth estimation from

monocular images Poddar et al. (2023); Wang et al. (2024); Nguyen et al. (2024); Yang

et al. (2023). This involves utilizing camera parameters to analyze the warping be-

tween two RGB images. This information is then employed to estimate a depth map

from a single monocular image Minelli et al. (2023); Hou et al. (2021). These methods

mainly differ in proposing new attention mechanisms Cao et al. (2022) or consider-

ing priors to make depth estimation view-invariant Yoon et al. (2020); Bello & Kim

(2024). Some of these methods also incorporate self-supervised learning Johnston &

Carneiro (2019) or photometric consistency between frames in video sequences Has-

son et al. (2020) to reduce the need for ground truth depth data. Consequently, these

advancements have significantly improved the accuracy and reliability of monocular

depth estimation models. However, despite advancements, the reverse application of

these methods to predict a novel pose of a sample in a different camera location often

yields low-quality images, which arises due to the ill-posed nature of this problem,

where multiple solutions are possible for each scenario. In contrast, similar to Siaro-

hin et al. (2019b), we consider a scenario where the estimation of the warping map is

guided by the keypoint locations of each sample. This causes a reduced ambiguity in

potential solutions for each transformation, thereby facilitating near-global optimiza-

tion of the solution. Existing methods in this context typically assume that the warping

function is estimated via supervision from a downstream image generation task while

1The term ”unsupervised” indicates that there is no ground truth warping map available to supervise the

transformation between the source and target pose of an RGB sample.
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constraining the warping function to an affine transformation. While the affine transfor-

mation ensures the preservation of texture affinity when transforming images to their

target poses, this constraint proves ineffective in handling complex deformations be-

tween the source and target pose of the sample. Consequently, existing methods often

resort to very large networks to compensate for the limitations of the warping module,

necessitating subsequent training of image generation networks with small batch sizes,

even in multi-GPU setups.

To tackle this challenge, we propose an unconstrained spatial transformation mod-

ule. This module acts as a pixel-wise flow estimator, where sampling locations are

independently estimated for each pixel of the target image. By doing so, the spatial

transformation gains sufficient parameters necessary for accurately estimating complex

transformations of the samples. The flow is directly derived from the correlation of the

pose maps, enabling precise encoding of both short and long-range displacements that

cannot be adequately captured by a simple convolutional network.

Our method not only learns to displace the visible patches to their new position

but also learns to introduce the invisible parts to the warped images. To achieve this,

we alternate between two distinct tasks. Firstly, we supervise the convolutional flow

estimator to estimate an affine function for any linear transformation between the guid-

ing maps of the samples. This supervision is independent of any downstream task,

ensuring the effective contribution of the guiding maps in estimating the warping map

regardless of the content of input images. Secondly, we supervise the flow estimator

to create a warped image that best fits the RGB sample in the target pose. Benefiting

from an unconstrained convolutional warping map estimator, with this second super-

vision, it can learn any complex deformation between the pose of the samples. One

main advantage is that the warping can introduce novel parts in the warped image that

are invisible in the source pose of the sample, an advantage not possible with existing

methods that constrain the warping function itself to be an affine transformation.

In summary, the main contributions of our paper are: (1) we introduce a pixel-

wise flow estimator that independently estimates sampling locations for each pixel in

the target image, enabling accurate estimation of complex transformations between the

source pose and the target pose of samples. (2) Unlike methods constrained to affine
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transformations, our method learns to introduce novel parts in warped images that are

not visible in the source pose, thereby enhancing the fidelity and completeness of the

transformation process.

Additionally, we demonstrate the effectiveness of our method using two well-known

databases: Deepfashion and Market-1501. Our approach outperforms existing state-

of-the-art methods for unsupervised warping estimation using guiding poses.

The remainder of the paper is structured as follows: Section 2 provides a concise

overview of related work in the field. Section 3 presents the preliminaries relevant to

our approach. Section 4 describes our proposed methodology. Section 5 discusses im-

plementation details and presents the results of our research, while Section 6 concludes

the paper.

2. Related work

In this section, we review existing methods relevant to our proposed approach, cat-

egorized into three main groups that utilize warping maps estimation for various tasks:

Pose Transfer, Flow Estimation, and Geometric Matching.

Pose transfer: There are two different approaches for generating a novel pose of a

human in an RGB image: (i) parametric methods Thies et al. (2016); Corona et al.

(2021) that learn to fit a 3D model on the RGB sample and then render the model

from a novel view point with a different pose. They have been already applied to face

Thies et al. (2016) and body Corona et al. (2021). Despite the memory advantage and

remarkable control over the pose of the sample, these methods suffer from certain dis-

advantages including the difficulty of fitting a 3D model on a 2D image. Moreover,

they have great difficulty with the lack of fine-grained details in the generated samples.

This arises from the generic 3D model that is shared between all the RGB samples. (ii)

non-parametric models Liu et al. (2021); Tang et al. (2020); Zhang et al. (2021); Lv

et al. (2021); Tang & Sebe (2021); Tabejamaat et al. (2021, 2024). These methods are

also known as exemplar-based techniques. The main idea is to remove the need for a

predefined 3D model. Rather, they propose to reconstruct the new images using a deep

neural network that is guided by the target pose of the samples. The pose can be repre-
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sented by a set of keypoints Ren et al. (2020); Tang et al. (2020); Zhang et al. (2021),

edge maps Ren et al. (2020), or segmentation maps Liu et al. (2021); Zhang et al.

(2021). Unlike the parametric models, these methods are proven to be more effective

in generating the fine-grained textures of the samples. Despite promising results, they

have some difficulties to generate the textures that are not among the training samples.

This hinders the scalability of these methods for the vast majority of human garments.

The challenge can be well addressed by introducing a warping module in the latent

space of these networks. This module is supervised by an estimation of the flow map

between the pose of the source and the target samples Ren et al. (2020); Siarohin et al.

(2019b,a, 2018); Zhang et al. (2021). However, these methods have significant difficul-

ties with an accurate estimation of the flow maps, especially between two completely

different poses.

Flow estimation: Unsupervised flow estimation Ren et al. (2017); Sabour et al.

(2021); Stone et al. (2021); Luo et al. (2021) is one of the most difficult tasks in com-

puter vision, especially when estimated from two very sparse sets of keypoints. The

task is usually simplified by reducing the flow function to a simple parametric model

like first-order affine transformation Siarohin et al. (2018, 2019b,a) or thin spline trans-

formation Zhao & Zhang (2022). In this case, the new position of each pixel is deter-

mined by applying a simple algebraic operation on its current coordinates. There are

some other strategies to estimate the flow field from the UV maps AlBahar et al. (2021);

Sarkar et al. (2021), or 3D meshes Li et al. (2019). Compared to the keypoints, they

provide a fine description of the custom shape, which facilitates the estimation of the

flow maps. However, these representations are not easily accessible for an unseen pose

that does not exist among the training samples. By contrast, keypoints can be easily

provided by drawing a few dots on an empty scene which is highly convenient for many

applications, making it the de facto standard of the pose transfer networks.

There are also some strategies that estimate a flow map based on the supervised

strategies Rocco et al. (2017); Truong et al. (2020) in which the transformation be-

tween the source and the target samples are already given to the network.
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Geometric matching: These techniques focus on estimating corresponding loca-

tions between two RGB imageswith significant disparities in their viewpoints. Strate-

gies, such as CACIM and GoCor, introduce attention mechanisms across multiple

stages of geometric matching networks to extend their matching process to a multi-

resolution framework. This facilitates comprehensive comparison, considering all fea-

sible shifts between the images. Additionally, these methods often leverage a hinge

loss function to enforce proximity of true descriptors while distancing false ones.

There exist some other strategies that benefit from prior knowledge about the geom-

etry of images. These approaches usually employ information regarding camera angles

to learn a 3D reconstruction of the images, and subsequently render scenes to match the

second pose. Stereo algorithms are another direction of research which learn to recon-

struct a 3D scene between two sterio images with limited difference in their viewpoints.

In contrast to existing methods, we introduce a nonparametric approach for unsu-

pervised flow estimation capable of handling any complex deformations between the

pose of the samples. To the best of our knowledge, our model is the first to leverage

warping flow to generate invisible parts of samples. This enables the estimation of

visible patches while simultaneously generating invisible ones within a single warping

module.

3. Unsupervised warping

Spatially transforming a source image to a new pose necessitates an accurate warp-

ing map that precisely locates each pixel in the target pose. This task is typically per-

formed through a warping module integrated into a pose transfer network. The fidelity

of texture transfer from the source image to its corresponding locations in the target

pose directly influences the number of parameters needed in subsequent stages of the

pose transfer network. In this overview, we provide an outline of existing warping

modules commonly employed within pose transfer networks.
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3.1. First order motion model

FOMM first estimates a set of discrete affine transformations. Each transformation

is assumed to represent the motion of each body part, Av ∈ R2×3, v = 1, ..., t, where t

stands for the number of transformation. This transforms the entire pixels to a reference

frame and then from the reference frame to the target pose, Av : Av
s,r −→ Av

r,t, where

Av
s,r is the transformation from the source frame to the reference frame and Av

r,t is the

transformation from the reference frame to the target frame. Av is computed from a

set of keypoints, respectively estimated for a pair of source and target images. The

keypoints are estimated using an autoencoder which outputs K heatmaps M1, ...,MK.

Each heatmap is headed by a softmax to give more importance to just one pixel of the

scene, M.(i, j) ∈ [0, 1], where i ∈ [0,H−1], j ∈ [0,W−1]. Softargmax is then used to

compute the location of the maximum response in each of the heatmaps. These points

are directly used to determine the translation component of the affine transformations.

The remaining components of the transformations are directly estimated using an-

other autoencoder. A single warping map is finally estimated using weighted pooling

of the affine transformations.
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Figure 1: Overall pipeline of our method, trained by alternating between two minimization tasks, depicted

on the left and right sides of the figure.

3.2. PCA-based motion estimation

PCAME is the warping module of MRAA. The process is highly similar to FOMM,

where the translation components of the affine transformations are computed as the

same, but the rotational and scaling components are computed by the singular value
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decomposition of each heatmap. This provides an explicit representation of the geom-

etry for each part of the moving object in the scene.

However, this method does not fully represent an affine transformation as it does

not consider a shear component, reducing the ability of the method to capture any

transformation that includes a shear transformation.

3.3. Thin-plate spline motion model

Unlike FOMM and PCAME, Thin Plate Spline (TPS) is a nonlinear strategy for

estimating the warping map between two sets of keypoints. This allows for estimating

more complex transformations. Similar to FOMM and PCAME, TPSMM benefits from

K discrete transformations. The vth transformation is formulated as follows:

Tv(x, y) = Av


x

y

1

+

N∑
i=1

wv
i r log(r) (1)

where r = ∥

xp
i

ypi

−

x
y

 ∥2, A and wv are the TPS coefficients. To determine the co-

efficient, the warping map is bounded by physical bending energy, so that the transfor-

mation will be subjected to only slight deformations. (x, y) and (xp
i , y

p
i ) respectively

represent the coordinate of each pixel and the coordinate of a keypoint. Compared to

FOCMM and PCAME, TPS is more sensitive to the number of landmarks. Similar to

PCAME, TPS considers an extra affine transformation for modeling the background

movement.

3.4. sampling correction

This method estimates the warping function using a convolutional network, con-

strained by a sampling correctness loss. Given two sets of keypoints represented by

heatmaps, the network calculates the similarity between the first heatmap and the de-

formed second heatmap at an intermediate layer of the VGG network. The sampling

correctness quantifies the overall similarity as the sum of the cosine similarities be-

tween corresponding patches of the target and the warped source heatmaps. Each local
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similarity is normalized by the maximum similarity among local patches. Addition-

ally, this flow field estimation is encouraged to approximate an affine transformation

through another loss function.

4. Our method

Our main objective is to spatially transform an RGB image to a specified target

pose, defined by the locations of body keypoints. To achieve this, we introduce a fully

convolutional strategy in which the warping map is estimated using a convolutional net-

work. Unlike affine transformation-based strategies, our approach enables the warping

module to estimate complex deformations. Our model receives a combination of the

source image, the source pose map, and the target pose map, and learns to estimate the

(x, y) coordinates of each pixel in the target pose. Each pose map is an all-zero surface

where the location of each body joint is indicated by a small Gaussian envelope.

The conventional use of warping modules is to displace image pixels to their target

positions. However, our objective is distinct from these traditional methods. We aim

to develop a warping method that not only displaces pixels but also utilizes warping to

inpaint parts that are not visible in the source image. Our method learns to inpaint these

parts in a completely unsupervised manner, meaning it does not require any additional

guiding map to indicate the location of these invisible parts. Consequently, we avoid

any confusion regarding the origin of a decrease in the loss function. It clarifies whether

the decrease in the loss function happens because we successfully move a visible part

of the image to its correct position in the target pose or because it successfully fills in

the parts of the image that are missing in its source pose. This enhances the clarity of

the learning process and facilitates more effective training of the network compared to

direct supervision of pixels.

Figure 1 illustrates the overall pipeline of our method, which consists of two distinct

modules: (1) a warping module W responsible for learning to estimate a flow map be-

tween the pose of the source sample and the target pose, and (2) a refinement network

R designed to receive the warped version of the source image and fill in the missing

part of this image.
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4.1. Warping module

4.1.1. Flow estimation

Given a source pose ps ∈ Rh×w and a target pose pt ∈ Rh×w, our warping module,

W , estimates a flow map fs,t ∈ R2×h×w = W(ps, pt). This flow map is later used

to spatially transfer the source image Is ∈ R3×h×w to its target pose. Our estimation

involves 7 different steps, ultimately producing a flow map capable of generating the

unseen parts of the source sample Is while displacing its visible parts to their new

locations in the target pose.

1. Projecting ps and pt to a feature space using a single convolutional network:

ps −→ zs, pt −→ zt
2

2. Creating a correlation tensor from zs and zt using the pairwise similarity of their

pixels: (zs, zt) −→ C

3. Flagging a single pixel of zs as the corresponding point for each pixel of zt. To

do so, we multiply Q by an attention tensor γ: Qγ −→ γC

4. Estimating the flow map by applying a set of convolutional layers on Qγ : Qγ −→

fs,t

5. Applying fs,t to warp the source image. Then, we use a refinement network to

estimate the target sample from this warped image. The estimation is encouraged

by minimizing the distance between the output of the refinement network and the

target sample.

6. Enforcing steps 1 to 4 to estimate an affine function if pt is a linear transforma-

tion of ps.

7. Alternating between the last two steps. In this way, the network leans to keep

the vicinity of pixels in those parts whose movements from ps to pt are linear

(i.e., can be approximated by an affine transformation) and use a non-constrained

estimation for the remaining parts.

Creating a guided correlation map (corresponding to steps 1 to 3):

The flow is directly estimated from the correlation between the source pose ps and the

2zs and zt are three dimensional feature maps
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target pose pt. Through correlation, our goal is to establish a one-to-one correspon-

dence between each target pixel and its corresponding point in the source sample. This

approach provides two advantages: (1) every point in the target pose is compared with

all pixels in the source pose, enabling the network to handle large displacements of

samples; (2) the network assigns each pixel to its relevant area in the source sample,

even for pixels corresponding to invisible parts of the source image. In such cases, the

sampling point is selected from an area with the most similar texture.

To do so, both the source and the target poses are first projected to a feature space:

ps
M−−→ zs ∈ Rm×h1×w1 , pt

M−−→ zt ∈ Rm×h1×w1 , where M is a fully convolutional

network, h1 and w1 are the spatial dimension of the feature maps, and m is the di-

mensionality of the features. Thus, we have two dense feature maps which are later

used for creating a dense correspondence between the source and the target poses of

the sample. The correlation is computed based on the pixel-wise scalar product of the

feature maps which is represented as follows:

C(i, j, , v, u) =

m∑
ρ=1

zs(i, j)[ρ]zt(v, u)[ρ] (2)

where zs(i, j) ∈ Rm and zt(v, u) ∈ Rm. zs(i, j)[ρ] indicates the ρ-th element of the

feature vector in the spatial location (i, j) of the feature map zs.

Next, each pixel in the target pose is assigned to exactly one pixel in the source sample.

To achieve this, C is filtered to retain maximum similarity for each target pixel (v, u),

while suppressing values in other parts. This filtering employs an attention mechanism

that emphasizes locations with maximum similarities, defined as Qγ = γC. However,

since the dot product combines angle and magnitude, its unbounded results can lead to

sensitivity regarding sample magnitude. To address this, we normalize the features at

each spatial location (u, v) of Qγ :

Qγ(i, j, , v, u) =
Qγ(i, j, v, u)√∑h1,w1

i,j=1

(
Qγ(i, j, v, u)

)2 (3)

Estimating a flow map from a correlation tensor (corresponding to step 4):

The flow is estimated by applying a series of convolutional layers to the refined correla-

tion tensor Qγ . First, Qγ is rasterized so that each position (v, u) is vectorized as (i, j).
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The resulting tensor is then processed through convolutional layers: fs,t = Cl(Qγ),

where Cl denotes convolutional filtering. This process estimates the flow at each target

position by correlating it with all positions of the source pose, ensuring effective cap-

ture of long-range displacements.

Estimating pixel visibility in an unsupervised manner (corresponding to steps 5 to

7):

Up to this point, we have a non-parametric flow estimator, where the sampling lo-

cations are individually estimated for each pixel of the target sample. However, such

estimation has no constraint to keep the vicinity of the pixels3, which is important when

reconstructing the textures that are visible in both the source and the target poses of the

sample. In contrast, binding the estimation to keep the vicinity for the entire 2D space

restricts the ability of the flow map to introduce any novel region that is not present in

the source sample, especially for the regions with a novel shape, as the novel shapes

can not be reconstructed by duplicating the visible parts of the sample.

To avoid this problem, we enforce the flow estimator to keep the vicinity of the pixels

just in the visible areas. We approximate these regions with the areas that are dis-

placed using a linear (affine) transformation. Then, for the remaining areas, the flow is

estimated without applying any constraint on the pixel-wise estimator. This way, the

vicinity of pixels, preserved by the affine transformation, is just applied to the areas

that are visible in both the source and the target poses of the sample.

We implement this strategy in an unsupervised manner. To do so, we make steps 1 to

4 to alternate between two different tasks: (1) learning an affine transformation if the

target pose is a linear transformation of the source pose, (2) estimating a warping map

that best reconstructs the target image from the warped version of the source image.

For the first task, we first generate a random affine transformation using a few random

parameters: i
j

 =

(−1)a1 + a2 a3

a4 a5

v
u

+

b1
b2

 (4)

3Here, we consider the vicinity in a large neighborhood which is more related to preserving the overall

integrity of patches in the source sample
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where a1, ..., a5 and b1, b2 are all random variables. If we sample the pixels of the tar-

get pose pt using the generated affine transformation, it provides us with a novel pose

pst whose displacement is linear with respect to the target pose. This pose is consid-

ered as the source pose of task (1). In practice, we restrict the random values a1, ..., b2

so that the resulting transformation does not make a big difference in the verticality of

the human skeletons.

Then, we generate the inverse flow of this transformation using the following equa-

tion: v
u

 =
((−1)a1 + a2 a3

a4 a5

)−1(i
j

−

b1
b2

)
(5)

This transformation is the flow map that transfers the source sample to the target pose.

We require the target pose to be real. This avoids learning irrelevant mappings to a huge

number of unrealistic poses that never happen in the real world. This is the reason for

calculating the inverse flow and applying it on a randomly generated source pose. We

refer to the flow map made by this affine function as sf = {(v, u)|v ∈ {1, ..., h1}, u ∈

{1, .., w1}}.

Then, we minimize the distance between fs,t and sf when the warping module re-

ceives pst and pt as its input samples. In this way, we enforce the pixel-wise flow map

fs,t to be a linear function and therefore to keep the integrity of the neighboring pixels.

Next, we need to avoid this integrity to be applied to the areas whose displacements are

not linear (the pixels that are invisible in the source image). To do so, we simply feed

the module with the original ps and pt, estimate the pixel-wise flow map fs,t, and then

utilize it to warp the source sample. This warped image is then used to reconstruct the

target sample. Since we do not use any guiding map (in concatenation with our warped

image), this reconstruction requires the network to include all the invisible areas in the

warped image. This is feasible due to the pixel-wise estimation of the flow map that

does not apply the same function to the entire space. Therefore, a point can be sampled

from any part of the source image regardless of the sampling location for its neighbor-

ing pixels. In this way, the pixels can take any arbitrary shapes, which is necessary for

a complete match between the warped image and the target sample.
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Finally, we only need to enforce the flow estimation to differentiate between the

visible and the invisible parts of the sample and to restrict the affinity of the transfor-

mation to the visible areas. This is performed by alternating between task (1) and task

(2). For task (1), we already enforced fs,t to be an affine function when the entire

pt is a linear transformation of the entire ps. However, by nature fs,t is a pixel-wise

transformation. When we alternate between two tasks, one of which is a pixel-wise

transformation and the other one is the same function for the whole pixels, the net-

work learns to apply the holistic one in a local manner. Therefore, it learns to apply

the affine transformation on the local neighborhoods whose displacements4 are linear

(visible pixels). It means, the network learns to keep the vicinity of pixels in the local

neighborhoods that are visible even if they are surrounded by the invisible areas.

4.2. Refinement network

Even if the warping module can ideally generate the invisible parts of a sample, it

has no prior information regarding the background of the images. Additionally, warp-

ing has significant difficulties in generating realistic faces or hands. Therefore, the

refinement module R is used to inpaint these regions and generate a photorealistic sam-

ple from the warped image. To do this, we utilize a few convolutional layers without

any skip connections. The module receives the source image along with the warping

map generated by the flow estimation module. It first relies on a convolutional encoder

to project the input image into a low-dimensional feature space, θs = Eref (Is), then

utilizes the flow map to warp this resulting feature map, ηs = T (θs, fs,t), where T is

the sampling operation. Next, we use a convolutional decoder to reproject the warped

feature map ηs to the original dimension, yo = Dref (ηs). yo is the image that esti-

mates the target sample. Finally, fs,t is used for direct sampling from the pixels of the

source image, directly transferring the image to its target pose.

The encoder-decoder configuration allows adding more learnable parameters to the

refinement process, which increases the overall performance of the network in generat-

4here, we mean the transformation between the source and the target pose of the sample
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Source image Target pose Target image Our method FOMM MRAA TPSMM GFLA32 GFLA64 

         

         

         
 

 

 

Figure 2: Visual comparison of our method and the state-of-the-art techniques (these images are generated

by direct sampling of pixels from a source image and not using a convolutional network or a generative

model. For additional results, please refer to Figures 7-10 at the end of the paper.).

ing fine-grained textures. In practice, the module is responsible for generating realistic

faces and hands, as well as correcting the lines that are distorted due to inaccurate flow

estimation of the warping module.

4.3. Learning model

For training, we use three loss functions, a perceptual loss Lper, an affine preserv-

ing loss Laff , and a generative loss Lg . In AlBahar et al. (2021), the authors propose

to use an identity loss to preserve the identity of facial parts. However, our experiments

showed that this could be misleading when the facial parts are occluded in either the

source or the target images. In addition, Zhou et al. (2022) proposes to use a contextual

loss to measure the similarity of non-aligned regions between the generated sample

and the ground truth target image. However, this violates our goal to best fit the source

image to the target pose without any non-aligned regions. Lper is utilized to ensure a

pixel-level similarity between the generated image yo and the target sample It, which

is calculated as follows:

Lper(yo, It) =
∑

∥ϕi(yo)− ϕi(It)∥1 (6)

where ϕi(§) is the i-th feature map of a pre-trained network (here we benefit from

VGG-19 Simonyan & Zisserman (2014) pre-trained on Imagenet Deng et al. (2009))

when it is applied on §. Inspired by Siarohin et al. (2019b), we use four different reso-

lutions of yo and It as input of our pre-trained model ϕ which ensures the similarity of
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Sz UnWarpME FOMM MRAA TPSMM GFLA32 GFLA64

l1-norm 32 13.11 13.26 13.79 13.66 14.18 14.01

l1-norm 256 15.52 15.97 15.58 16.12 28.13 20.25

SSIM 256 0.608 0.604 0.607 0.617 0.554 0.615

LPIPS(Alex) 256 0.39 0.47 0.42 0.45 0.52 0.48

LPIPS(VGG) 256 0.35 0.42 0.38 0.41 0.49 0.44

Table 1: Comparison with the state-of-the-art on estimating the most accurate flow maps. The samples are

generated by direct sampling from the source images and compared with the target samples.

the samples at different scales.

We also benefit from a generative loss, which encourages the photo-realism of the

generated samples. To do so, both the warping and the refinement module are consid-

ered as the generator of our network G = {W,R} which competes against a discrim-

inator D. Our discriminator is conditioned on the target pose which means that both

the generated and the target samples are first concatenated to the target pose and then

passed to the discriminator. Our generative loss is defined as follows:

Lg(yo, It) = E
[(
1−D(yo, pd)

)]
+ E

[
D(It, pd)

]
(7)

where yo = G(Is, ps, pd).

Additionally, we use an affine preserving loss that enforces the network to preserve

the linearity of the warping function in the regions where the target pose pd is a linear

transformation of the source pose.

Laff (pt) = ∥W(pst, pt)− sf∥1 (8)

where W(pst, pt) is the pixel-wise flow map estimated by the warping module. The

overall loss function is defined as a weighted sum of Lper, Lg , and Laff , where λ1

and λ2 are empirically determined to ensure the best quality of the generated samples.

Lt = Lper + λ1Lg + λ2Laff (9)
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Method l1-norm SSIM LPIPS(Alex) LPIPS(VGG)

w/o Laff 42.13 0.504 0.84 0.92

Full 15.52 0.608 0.39 0.35

Table 2: Ablation study on Laff . We conduct experiments on the samples of size 256× 256

Method l1-norm SSIM LPIPS(Alex) LPIPS(VGG)

w/o Ref. Net. 42.13 0.504 0.84 0.92

Full 15.52 0.608 0.39 0.35

Table 3: Ablation study on the refinement module. We conduct two sets of experiments with and without the

refinement module.

Method l1-norm LPIPS(Alex) LPIPS(VGG)

1-layer 33.31 0.61 0.58

2-layer 27.92 0.59 0.51

3-layer 21.17 0.47 0.44

4-layer 16.14 0.42 0.39

5-layer 15.96 0.40 0.35

6-layer 15.52 0.39 0.35

Table 4: Ablation study on the depth of the Cl. It projects the 4096-channel Qγ to a 2-channel flow map fs,t

5. Experiments

This section evaluates the performance of our warping module on two real-world

datasets: Deepfashion Liu et al. (2016) and Market-1501 Zheng et al. (2015). Deep-

fashion is a fashion-style dataset that includes 52,712 images, mostly captured indoors

against a white background. Images are of the size 256 × 256, all provided in JPG

format. We use the same split of data provided by Zhu et al. (2019), which includes

101,966 pairs of training samples and 8,570 test pairs. Each pair includes two images

of the same person captured in different poses. The pose of each image is already ex-

tracted using OpenPose Cao et al. (2017).
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5.1. Evaluation metrics

The evaluation is based on 3 different metrics: Structural Similarity Index Measure

(SSIM) Wang et al. (2004), Learned Perceptual Image Patch Similarity (LPIPS) Zhang

et al. (2018), and l1-norm.

5.2. Quantitative analysis

We compare our method with GFLA Ren et al. (2020), FOMM Siarohin et al.

(2019b), TPSMM Zhao & Zhang (2022), and MRAA Siarohin et al. (2021). Similar

to our method, they all provide an estimation of the warping flow in an unsupervised

manner. FOMM, TPSMM, and MRAA propose to estimate the keypoints of RGB im-

ages using an internal module. However, for a fair comparison, we modify this strategy

so that the flow map is directly estimated from two sets of given keypoints. We evalu-

ate the performance of each method for estimating an accurate flow map, which is the

main contribution of our method and the primary difference between these competing

algorithms. To do this, we first estimate a flow map using each of these networks on

a pair of source and target poses. The map is then rescaled to 256 × 256 pixels and

utilized to warp the source image. Rescaling is performed using bilinear interpolation.

Finally, the similarity between the warped image and the target sample is reported in

terms of three different measures: SSIM, LPIPS, and l1-norm.

The results are listed in Table 1. For convenience, we name our method UnWarpME,

which is an acronym for Unsupervised Warping Map Estimation. The evaluation is

provided at two different scales: 32 × 32 and 256 × 256. For the 32 × 32 scale, we

first downsample each image to 32 × 32 and then upsample it to the original dimen-

sion. All the competing algorithms use the same split of the dataset, allowing for a

fair comparison between the results. For training the competing methods, we follow

the same learning rate and epoch number suggested in the original papers or official

implementations.

As can be seen, there are two versions of GFLA at two different scales, 32 × 32 and

64 × 64, which refer to the two flow maps estimated by this method. These maps

are separately estimated in the first stage of this method and individually contribute to
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two distinct layers of its second-stage network. However, for FOMM, TPSMM, and

MRAA, they provide a set of individual flow maps, each estimated using a parametric

model. These maps are later accumulated into a single flow map where each pixel of

the final map is selected from one of these parametric estimations. From the table,

our method outperforms the state-of-the-art on three out of four evaluation metrics and

on two scales, demonstrating the superiority of our method in both reconstructing the

global shapes of the target samples and generating textures in their correct positions.

5.3. Visualization

We further visualize a few samples of warped images generated by our method

and each of the competing algorithms. The results are shown in Figure 2. As can be

seen, none of the competing methods can introduce the invisible parts into the warped

images (for additional results, please refer to Figures 7-10 at the end of the paper).

GFLA suffers from unwanted distortions even when displacing visible patches to their

new locations. This occurs because its flow estimator does not account for covering

the invisible parts of the sample. In contrast, FOMM, TSPM, and MRAA can ideally

displace the visible patches, but due to their parametric estimation, they fail to estimate

a correct flow map between two complex poses. As a result, their attempts to introduce

the invisible parts are limited to stretching or duplicating parts of the images. Unlike

these strategies, our method can estimate a highly complex flow function that not only

displaces the visible parts to their new locations but also introduces any novel parts

indicated by the target pose, all by warping from the visible patches of the source

sample.

5.4. Ablation study

We evaluate the efficiency of each block in our proposed algorithm. To do this, we

consider two variants of our method: (1) our model without Laff , and (2) our model

without the refinement network. All the experiments are conducted on the same split

of the dataset as in Section 3.1.

The results are reported in Tables 2 and 3. Without Laff , the model simply estimates
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the flow map using a pixel-wise transformation without any encouragement for pre-

serving the vicinity of pixels. In this way, the model still generates the overall pose of

the samples; however, it fails to generate a faithful appearance to the source images.

The results in the tables validate this assumption, where the performance of the model

w/o Laff is significantly lower than the full model. This proves the effectiveness of

Laff in preserving the fidelity of the textures, especially for the visible parts whose

displacements are usually linear, even though Laff has no prior knowledge about the

visibility of the pixels.

Without a refinement module, the model directly computes the flow map by minimiz-

ing the distance between the warped image and the target sample. In this way, all the

background estimations are performed using the flow estimation module. This causes

an overfitting issue when we fit too closely to the details of the background regions.

This can be verified by the results in Table 3, where the refinement module signifi-

cantly boosts the performance of our method on all metrics.

We also conduct another experiment to evaluate the performance of the model when

using a projection network Cl with different numbers of layers. The experiment is per-

formed with six different layers. The depth of the layers is respectively 128, 128, 96,

64, 32, and 2. As seen in Table 4, the best performance is achieved when we use Cl
with five to six hidden layers, which are considered in the full model of our method.

5.5. Implementation details

We implement M as a fully convolutional network consisting of 11 convolutional

layers, each followed by Batch Normalization Ioffe & Szegedy (2015). The last layer

outputs a feature map z. with dimensions 35 × 64 × 64, where 35 is the number of

feature channels and 64× 64 denotes the spatial size of the feature map. Each channel

of this map is then normalized using l2 normalization.

γ is implemented using Soft Mutual filtering Rocco et al. (2018), which retains C(i, j, v, u)

if zs(i, j) and zt(v, u) are the most similar pixels to each other when compared across

both feature maps.

γ(i, j, v, u) =
C(i, j, v, u)

maxαβC(α, β, v, u)

C(i, j, v, u)

maxαβC(i, j, α, β)
(10)
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where maxαβC(α, β, v, u) denotes the maximum similarity between zt(v, w) and the

entire pixels of zs(α, β) when α ∈ {1, ..., h1} and β ∈ {1, ..., w1}.

For Cl, we use a 6-layer convolutional network. The first layer receives a rasterized

tensor of size 4096×64×64, and the last layer outputs a flow map of size 2×64×64.

The depths of the layers are respectively 128, 128, 96, 64, 32, and 2. The encoder

of the refinement network consists of two convolutional layers, each followed by a

downsampling operation. The last layer outputs a feature map of size 256 × 64 ×

64. The decoder is implemented using 6 residual blocks with 2 upsampling layers.

We apply Batch Normalization after each upsampling layer. The architecture of the

residual blocks is depicted in Figure 4.

Source image  Target image UnWarpME  Source image Target image UnWarpME      
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Figure 3: Generating a sample from the Market-1501 database by direct sampling from the source image.

5.6. Application for person re-identification

We also conducted another experiment to evaluate the performance of our method

for recognition tasks. To do this, we trained our model on a paired-image dataset to

learn a flow map that generates a novel view of a person. We then used this model to

augment the training set of a re-identification database, increasing the number of poses

that each person contributes to the training set. Note that we did not use the output of

the Refinement network; instead, we generated the novel views by sampling the pixels
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using the estimated flow map. This approach allows us to evaluate the performance of

our flow estimation model in a task that does not necessarily require detailed images

for the recognition process.

Our experiment was conducted on the Market-1501 dataset, which contains 12,936

images of 751 identities as training samples and 19,732 images of 750 identities as

queries. The images were collected outdoors using six different cameras.

For the flow field estimation, we used the paired dataset provided by Zhu et al.

(2019). Note that our model is an algorithm that learns to estimate a flow map from

two skeletal poses and is therefore not biased towards the appearance of the training

samples. After training the flow estimator, we randomly selected 25 poses from the

training set and transferred each of the training samples to all these novel poses. All

background regions were replaced with gray. This process provided us with 323,400

training samples covering most of the natural poses a human takes while walking on

the street. We then used this new dataset to fine-tune a pre-trained re-identification net-

work and tested it on the query samples. We used DG-Net++ Zou et al. (2020) as our

baseline model. The results are listed in Table 5. As can be seen, the results demon-

strate the effectiveness of the augmentation on the performance of this method. Our

method improves the mean Average Precision (mAP) and ranking accuracy at Rank

1, Rank 5, and Rank 10 compared to DG-Net++. Specifically, our approach achieves

a higher mAP of 63.8% versus 61.7%, and improves Rank 1 accuracy from 82.1% to

83.8%, Rank 5 accuracy from 90.2% to 93.0%, and Rank 10 accuracy from 92.7%

to 95.4%. The results indicate that a simple warping technique is sufficient to boost

the performance of a re-identification task, eliminating the need for generating high-

quality images, which is a more complex and time-consuming process. The reason for

this boost is clear: augmentation generates diverse versions of the same image, provid-

ing more training examples. This increases the variations in captured poses of images,

helping the model learn to recognize individuals under different conditions. This has

already been verified by many other studies; however, in this work, we demonstrate

that what is crucial for augmentation is augmenting the main subject in the scene and

not the background. This can be easily achieved using a simple warping transformation

rather than complex high-quality image generation. We also provide a visualization of

22



our flow estimation technique on this dataset (Figure 3).

5.7. User study

We conducted a user study to evaluate the effectiveness of our proposed method

based on human opinions. Six participants, all experienced in evaluating machine

learning and computer vision tasks, were selected for the study. The evaluation fo-

cused on two specific questions: (1) Which algorithm better estimates the pose of the

samples? (2) Which algorithm better generates the invisible parts of the samples?

Each participant viewed 80 different images, each accompanied by 6 samples gener-

ated by various warping algorithms, including our proposed method. The competing

algorithms included FOMM, MRAA, TPSMM, GFLA 32, and GFLA 64. These im-

ages were randomly sampled from the test set of the DeepFashion database, as detailed

in the introduction of Section 5. To familiarize the participants with the evaluation

process, each participant initially viewed 17 images along with their novel syntheses.

Subsequently, participants were asked to compare our method with each competing al-

gorithm based on the aforementioned questions.

We employed a blind test strategy to mitigate bias in evaluations. This approach en-

sured participants were unaware of which method produced each image, thereby mini-

mizing any preconceived notions during evaluation.

The overall results were determined by aggregating scores provided by all participants

for the comparison between our method and each competing algorithm across all 80

images. The percentage of preferences for our method over the others is summarized

in Table 6, indicating the consistent superiority of our method in sample generation in

novel poses.

While the DeepFashion dataset provides comprehensive coverage of various human

poses, it exhibits a bias towards human-centric images. As a result, while our findings

can be generalized to real-world scenarios, they specifically apply to human images.

5.8. Skip connection

Skip connections have long been introduced in image-to-image translation net-

works to ensure the fidelity of generated samples to input images. This strategy has
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mAP Rank1 Rank5 Rank10

DG-Net++ 61.7 82.1 90.2 92.7

Our method+DG-Net++ 63.8 83.8 93.0 95.4

Table 5: A detailed comparison between vanilla DG-Net++ and DG-Net++ when integrated by our method.

The evaluation metrics include mean Average Precision (mAP) and ranking accuracy at Rank 1, Rank 5, and

Rank 10.

Method Q1 Q2

UnWarpME/FOMM 82.7/17.3% 90.6/9.4%

UnWarpME/MRAA 78.9/29.1% 84.7/15.3%

UnWarpME/TPSMM 80.8/19.2% 87.7/12.3%

UnWarpME/GFLA32 75.4/24.6% 77.2/22.8%

UnWarpME/GFLA64 70.8/29.2% 75.6/24.4%

Table 6: User study. The results are provided based on two different questions from 6 volunteers.

demonstrated effectiveness in early works such as Isola et al. (2017); Siarohin et al.

(2018), and has been widely adopted by subsequent image-based translation approaches.

In this section, we evaluate the impact of introducing a skip connection into our pro-

posed strategy. Figure 4 illustrates the modified configuration of the left panel of Figure

1 after incorporating a skip connection into the first layer of the decoder.

In this configuration, the decoding process simultaneously samples from the convolu-

tional feature map of the source image and its corresponding warped map. Our initial

hypothesis was that this approach would enhance the preservation of fine-grained tex-

tures in the generated samples, akin to other image-to-image translation tasks. How-

ever, we observed that this method led to a failure in preserving pixel integrity, largely

due to the Gradient Confusion (GC) effect Sankararaman et al. (2020). This effect

arises from multiple sources of change for the same concept within the network.

Unlike traditional image-to-image translation tasks, where networks are typically en-

couraged to first produce a correct feature map before using it to generate the output im-

age, skip connections allow the warped feature map to directly influence the generation

of the output sample. This deviation complicates the learning process and undermines

pixel integrity preservation. Figure 5 compares the resulting warped image produced
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Figure 4: Left: Our model when using skip connection in the refinement module. Right: Residual Block of

our refinement network.

with and without skip connections. As can be seen, skip connections cause some ar-

tifacts in the warped image, especially in the background region. This observation is

consistent with our previous discussion about the ineffectiveness of skip connections

in our method.
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Figure 5: the effectiveness of skip connection, (a) source image, (b) target pose, (c) Generated sample using

the flow map estimated by Fig 4 (there is a duplication of the source patches in the generated sample), (d)

generated using the flow map of the configuration in Figure 1.

5.9. A continuous discriminator

Similar to the approach of Arjovsky & Bottou (2017), we used a continuous dis-

criminator where real and fake samples are considered as two continuous distributions.

This approach guarantees richer information and more nuanced gradients for the dis-
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Method LPIPS

Naive discriminator 0.39

Continuous discriminator 0.37

Table 7: LPIPS scores for the generated samples using different strategies for training the discriminator in

our model

criminator. For this, we utilized a pre-trained encoder, specifically a VGG16 model, to

project real images into an embedding space.

The experimental setup was similar to that in the introduction of Section 5, but the naive

discriminator was replaced with a continuous one. We employ the LPIPS (Learned Per-

ceptual Image Patch Similarity) metric to measure the difference in the quality of the

generated samples. The results are presented in Table 7. As can be seen, using a con-

tinuous discriminator greatly improves the quality of the generated samples. However,

it also significantly increases the computational cost of the discriminator.

6. Conclusion

We have introduced a novel warping module for spatial transformation of RGB im-

ages. Unlike existing affine-based transformations, our method utilizes a pixel-wise

warping strategy that enables learning complex transformations using a single warp-

ing map. Comparisons with traditional affine-based methods have shown that our ap-

proach provides significant advantages in generating higher-quality transformations,

accurately fitting an RGB image to its target pose.

Furthermore, we evaluated the performance of our warping strategy in augmenting

re-identification tasks. We found that simply warping samples to new poses can sub-

stantially enhance the performance of re-identification tasks. This approach enables

learning various poses of a specific person without the need to generate high-quality

samples, which is time-consuming and requires large networks with excessive param-

eters.

Disadvantages Although our method effectively fits the source image to its new lo-

cation in the target pose, it relies on a larger number of loss functions. Additionally,
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the refinement module in our method is divided into two basic parts. The first part

is trained with a counter learning rate to learn the exact warping map used, while the

second part is trained with a higher learning rate to produce photorealistic images.
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Figure 6: Additional comparison between our method and the state-of-the-art.
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Figure 7: Additional comparison between our method and the state-of-the-art.
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Figure 8: Additional comparison between our method and the state-of-the-art.
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Figure 9: Additional comparison between our method and the state-of-the-art.
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