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Figure 1: Left: The illustration depicts an embedding space of a Vision-Language Model (VLM) where representations of web-
based videos align closely with their corresponding class label text features, while those of Activities of Daily Living (ADL)
videos remain distant. Our study reveals that integrating skeleton guidance bridges this gap, aligning ADL video representations
with their respective class labels. Right: Activation maps demonstrate how skeleton guidance sharpens the model’s focus on the
critical body parts (such as legs) for specific actions, like Walk. This enhancement is evident in the improved text descriptions
generated by Large-Vision-Language Models (LVLMs) when queried about actions depicted in the videos.

Abstract

The introduction of vision-language models like CLIP has
enabled the development of foundational video models ca-
pable of generalizing to unseen videos and human actions.
However, these models are typically trained on web videos,
which often fail to capture the challenges present in Activ-
ities of Daily Living (ADL) videos. Existing works address
ADL-specific challenges, such as similar appearances, sub-
tle motion patterns, and multiple viewpoints, by combining
3D skeletons and RGB videos. However, these approaches
are not integrated with language, limiting their ability to gen-
eralize to unseen action classes. In this paper, we introduce
SKI models, which integrate 3D skeletons into the vision-
language embedding space. SKI models leverage a skeleton-
language model, SkeletonCLIP, to infuse skeleton informa-
tion into Vision Language Models (VLMs) and Large Vi-
sion Language Models (LVLMs) through collaborative train-
ing. Notably, SKI models do not require skeleton data dur-
ing inference, enhancing their robustness for real-world ap-
plications. The effectiveness of SKI models is validated on
three popular ADL datasets for zero-shot action recognition
and video caption generation tasks. Our code is available at
https://github.com/thearkaprava/SKI-Models

1 Introduction
In recent years, the introduction of CLIP (Radford et al.
2021), has established the beneficial impact of language su-
pervision in the training of vision-based discriminative mod-
els. In the video domain many works (Rasheed et al. 2023;
Huang et al. 2024; Ni et al. 2022) have extended the ef-
fectiveness of CLIP to video representation learning. These
approaches have made promising strides especially in zero
shot video action recognition where the target action labels
are unavailable during training. A majority of these mod-
els have been trained on web-based videos (Kay et al. 2017;
Soomro, Zamir, and Shah 2012; Kuehne et al. 2011) consist-
ing of sports videos, movie clips, etc. These videos generally
contain actions with prominent motion and are typically ap-
pearance based, aligning actions closely to their scenes; for
instance, playing soccer on green grass or swimming in blue
water. In contrast, ADL videos often involve actions with
similar appearances, subtle motions, and may be captured
from multiple viewpoints. These characteristics limit the
“generalizability” of video models trained on web videos
to those containing ADL. Consequently, this distributional
shift in video representations causes the video models to
struggle in recognizing action categories not encountered
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during training as illustrated in Figure 1. As a result, these
models lack robustness as zero-shot learners, a crucial char-
acteristic necessary for monitoring systems to detect anoma-
lous human gestures indicative of cognitive decline. This
motivates us to develop vision-language models (VLMs) ca-
pable of generalizing to unseen ADL scenarios. While the
aforementioned distribution shift can be mitigated by train-
ing VLMs (Rasheed et al. 2023; Ni et al. 2022; Huang et al.
2024) on ADL videos (Shahroudy et al. 2016; Liu et al.
2019), these models still struggle to effectively address the
inherent challenges in ADL due to the lack of specialized
operations within VLMs designed to tackle them.

Instead of relying on specialized architectural changes,
many works have explored the use of additional modalities
beyond vision for action recognition. For instance, optical
flow has been effective in web video datasets (Kay et al.
2017; Soomro, Zamir, and Shah 2012; Kuehne et al. 2011),
where actions are characterized by strong motion (Crasto
et al. 2019; Simonyan and Zisserman 2014). However, it
is less effective on ADL datasets (Shahroudy et al. 2016;
Liu et al. 2019; Das et al. 2019), where motion cues are
more subtle (Das et al. 2021). Conversely, 3D skeletons
have been established as a strong modality, being viewpoint-
agnostic and providing crucial information for modeling
ADL (Yan, Xiong, and Lin 2018; Shi et al. 2019; Zhou
et al. 2022). Similar to VLMs, skeleton-language representa-
tions have been explored in (Gupta, Sharma, and Sarvadev-
abhatla 2021; Zhou et al. 2023; Chen et al. 2024). Skele-
ton action recognition models, while excelling at capturing
motion cues and human motion, do not encode the appear-
ance information crucial for distinguishing nuanced human-
object interactions. For instance, actions like Drinking from
Cup versus Drinking from Bottle rely on visual appearance
to differentiate objects, which motion alone cannot pro-
vide. Thus, integrating appearance information can enhance
model’s ability to accurately classify ADLs. This is demon-
strated in (Das et al. 2021), where appearance-based meth-
ods outperform approaches that rely solely on skeleton infor-
mation. Additionally, the combination of RGB and skeletons
has been investigated in (Das et al. 2020; Duan et al. 2022;
Das et al. 2021; Reilly and Das 2024), but these approaches
are not zero-shot learners. Therefore, in this paper, we pose
the critical question: Can we introduce 3D skeletons into the
vision-language embedding space to enable effective zero-
shot learning for ADL?

One naive solution is to learn a common embedding
space for videos, skeletons, and language. However, the
limited availability of large-scale synchronized data ren-
ders this approach ineffective. Another approach involves
aligning skeleton embeddings with learned image embed-
dings (Girdhar et al. 2023) or language embeddings (Zhu
et al. 2023). However, skeletons require neural networks
capable of modeling the implicit spatial configuration of
human body kinematics, which differ from traditional ViT
encoders. This discrepancy limits their alignment with im-
age or language embeddings, as effective projection within
the CLIP embedding space typically requires homogeneous
modality-specific encoders. Therefore, we introduce a series
of SKeleton Induced models, referred to as SKI models,

that effectively integrate skeletons within vision-language
embeddings, enabling them to understand ADL. Our SKI
models are classified as SKI-VLMs when skeletons are in-
duced within VLMs, and SKI-LVLMs when skeletons are
integrated into large vision-language models (LVLMs). The
core of SKI models is based on a skeleton-language model,
termed SkeletonCLIP, which successfully incorporates 3D
human skeleton knowledge into the vision-language embed-
dings. This integration guides the vision encoders to focus
on human joints for learning action representations (Fig. 1).

The training of SKI-VLMs involves first aligning
modality-specific features (videos or skeletons) with lan-
guage, followed by performing knowledge distillation (KD)
in a language-contextualized space. This KD process,
termed SkeletonCLIP Distillation (SCD), involves the col-
laborative training of SkeletonCLIP and the VLM while
conducting KD. Similarly, the training of SKI-LVLMs in-
volves integrating 3D skeleton features extracted from the
SkeletonCLIP encoder to enhance the semantic reasoning
and generation capabilities of LVLMs. SKI-LVLMs can be
trained by learning an additional skeleton projector, which
maps skeleton-language tokens into the embedding space of
the large language models (LLMs) within the LVLMs. Dur-
ing inference of SKI models, SkeletonCLIP and its compo-
nents can be discarded, resulting in a skeleton-augmented
VLM or LVLM capable of inferring human skeleton knowl-
edge, which is crucial for understanding ADL. We conduct
extensive experimental evaluation of SKI-VLM using three
VideoCLIP dual encoders to assess its effectiveness in zero-
shot action recognition. Additionally, we evaluate the per-
formance of SKI-LVLM on dense video caption generation.
To summarize our contributions:

1. We introduce Skeleton-Induced VLM (SKI-VLM), an
effective approach for integrating 3D skeleton informa-
tion into the VLM space using SkeletonCLIP Distillation
(SCD). The resulting SKI-VLM addresses the challenges
of ADL by focusing on human key points while model-
ing action representations.

2. We present SKI-LVLM, which incorporates language-
grounded 3D skeletal features as an additional modality
in LVLMs, enhancing their video understanding capabil-
ities.

3. We demonstrate the superior performance of SKI-
VLM in zero-shot action recognition on the largest
RGB+D datasets: NTU60 (Shahroudy et al. 2016) and
NTU120 (Liu et al. 2019). We also evaluate SKI-LVLM’s
ability to generate text descriptions on the Charades
dataset (Sigurdsson et al. 2016), which comprises dense
captions. SKI-LVLM outperforms the baseline, high-
lighting the importance of incorporating skeleton infor-
mation into LVLMs.

In practice, SKI models can be implemented with any
skeleton-language models and VLMs. To the best of our
knowledge, this is the first work that attempts to enhance
vision-language embeddings by incorporating skeleton in-
formation for video representation learning.



2 Related Work
Multi-modal Knowledge Distillation. In standard knowl-
edge distillation (Hinton, Vinyals, and Dean 2015), the
knowledge of large-scale models (teachers) is transferred
to smaller models (students), enabling students to replicate
the teacher’s predictions or feature representations and re-
place them during inference. Similarly, multi-modal knowl-
edge distillation transfers the knowledge of a teacher model
to a student model operating on a different modality. This
approach is effective for tasks like action recognition, where
complementary modalities exist that are not available or in-
feasible to compute at inference time (e.g., optical flow or
human skeleton). In action recognition, the student modal-
ity is typically RGB, and the teacher modality is optical
flow (Gupta, Hoffman, and Malik 2016; Crasto et al. 2019)
or audio (Aytar, Vondrick, and Torralba 2016). However,
these modalities are limited in modeling human motion and
generalizing across varying viewpoints, limiting their adop-
tion for ADL (Das et al. 2020). Human skeletons, by con-
trast, have emerged as the dominant modality to combine
with RGB for ADL tasks (Das et al. 2020, 2021; Reilly
and Das 2024), as they effectively model human motion
and generalize across viewpoints. While effective for under-
standing ADL, these previous approaches are not applicable
to zero-shot tasks. In contrast, our proposed SKI-VLM and
SKI-LVLM overcome this limitation by incorporating both
modalities with language, enabling zero-shot tasks.
Multi-modal VLMs for Action Recognition. Many ap-
proaches propose to extend the image-based CLIP to the
video domain through fine-tuning CLIP to handle the tempo-
ral dimension of video data. Partially fine-tuned approaches
(Yang et al. 2023; Ni et al. 2022; Pan et al. 2022) per-
form training with additional trainable temporal modules
but leave CLIP’s parameters frozen, while fully fine-tuned
approaches (Wang, Xing, and Liu 2021; Rasheed et al.
2023; Huang et al. 2024) perform a simple temporal pooling
but update the CLIP parameters during training. These ap-
proaches only process RGB and ignore the rich multi-modal
nature of videos. In response, some works attempt to incor-
porate additional modalities such as optical flow (Qian et al.
2022) and audio (Guzhov et al. 2021; Ruan et al. 2023; Wu
et al. 2021) into the CLIP embedding space. While these
approaches all aim to introduce new modalities into CLIP,
their methodologies vary. For example, (Guzhov et al. 2021)
trains audio, visual, and language encoders using a tri-modal
contrastive loss, while (Wu et al. 2021) contrastively aligns
an audio encoder with a frozen CLIP visual encoder. Dif-
ferent from these works, we introduce the skeleton modality
into the CLIP space to better address the challenges of ADL.
Additionally we find, and experimentally validate, that pre-
vious alignment strategies are sub-optimal when considering
the skeleton modality.

Zero-Shot Skeleton Action Recognition. Zero-shot
skeleton-based models aim to enable action classification
of unseen classes using only human skeleton sequences.
SynSE (Gupta, Sharma, and Sarvadevabhatla 2021) intro-
duces a syntactically guided approach, using part-of-speech
tags to enhance the alignment between skeleton and lan-
guage spaces. SMIE (Zhou et al. 2023) employs mutual

information estimation and maximization to globally align
the two spaces. CrossGLG (Yan et al. 2024) uses LLM de-
scriptions of actions and cross-attention to guide a skele-
ton encoder during training, but only uses the skeleton en-
coder at inference. Closest to our work is STAR (Chen et al.
2024), which aligns a Shift-GCN (Cheng et al. 2020) skele-
ton encoder with a pre-trained transformer-based text en-
coder (Radford et al. 2021) for zero-shot skeleton action
recognition. STAR differs from our work in that it does not
incorporate the RGB modality or investigate strategies to en-
hance the representations of VLMs and LVLMs.

Multi-modal Large Language Models. Large language
models, such as ChatGPT (Achiam et al. 2023) and
LLaMA (Touvron et al. 2023), have exhibited remark-
able capabilities in language understanding and generation
tasks. These capabilities have inspired many works to ex-
tend LLMs to incorporate additional modalities, such as
video (Zhang, Li, and Bing 2023; Lin et al. 2023; Maaz et al.
2024), audio (Zhang et al. 2023), and human pose (Feng
et al. 2024), typically through instruction tuning or the ad-
dition of modality-specific encoders with projection layers.
Extending beyond this, other approaches show the possibil-
ity to incorporate a wide range of modalities into the LLM
space (Lu et al. 2022; Su et al. 2023). Unique from these
approaches, our SKI-LVLM targets ADL and aims to train
using multiple modalities (vision, language and skeleton),
but only use vision and language during inference.

3 Proposed Method
In this section, we present SkeletonCLIP, a specialized
skeleton-language model designed to align 3D skeleton rep-
resentations of human actions with their corresponding lan-
guage representations. SkeletonCLIP is a pivotal element
of our approach and can be substituted with any skeleton-
text model (Zhou et al. 2023; Gupta, Sharma, and Sarvadev-
abhatla 2021; Chen et al. 2024) to enhance the VLM and
LVLM embedding space. This is achieved by leveraging its
capacity to capture fine-grained motion details and multi-
ple viewpoints effectively. To integrate the crucial skeleton
representation into VLMs, we first propose the Skeleton-
Induced VLM (SKI-VLM), which seamlessly incorporates
SkeletonCLIP features through SkeletonCLIP Distillation
(SCD). Furthermore, we introduce the Skeleton-Induced
LVLM (SKI-LVLM), wherein SkeletonCLIP features are
included as an additional modality within LVLMs. This in-
tegration enhances the capability of these models to interpret
nuanced and complex actions in video data.

3.1 SkeletonCLIP
SkeletonCLIP is a dual encoder Skeleton-Language model
that jointly learns 3D Skeleton and language representations
within a common semantic space as illustrated in Figure 2
(left). Unlike VLMs (Radford et al. 2021; Rasheed et al.
2023), SkeletonCLIP faces constraints in utilizing extensive
skeleton-text data due to the scarcity of synchronized 3D
skeleton sequences and corresponding textual data. It com-
prises two primary components: a Skeleton Encoder gs and a
Text Encoder gt. We chose Hyperformer (Zhou et al. 2022)
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as the skeleton encoder due to its ability to learn the kine-
matic dependencies between human joints. This model has
shown notable efficacy in Skeleton-based Action Recogni-
tion, making it an ideal choice as a skeleton encoder in our
approach. Conversely, the text encoder leverages the CLIP
text encoder, capitalizing on CLIP’s discriminative repre-
sentation capabilities to counterbalance the limited avail-
ability of large-scale skeleton sequence data. SkeletonCLIP
is a plug-and-play module that can be integrated with any
VLM, such as XCLIP, ViFiCLIP, or FROSTER, facilitating
skeleton-guided visual representation learning.

SkeletonCLIP processes input skeleton sequences Si ∈
RTs×3×J , where each frame within the sequence Ts com-
prises J 3D skeleton joints, alongside a text prompt tj rep-
resenting the action class label. Initially, the skeleton en-
coder gs is pretrained for the task of skeleton action recog-
nition. This pretraining enables SkeletonCLIP to learn a
joint embedding with language using an already pretrained
CLIP (Radford et al. 2021) text encoder gt.

The skeleton encoder yields a skeleton representation
zsi = 1

Ts

∑
gs(Si) for an input sequence Si from its penul-

timate layer, whereas the text encoder gt yields a feature
ztj = gt(tj) for each action class text prompt tj . To learn
a joint skeleton-language embedding, the pretrained skele-
ton and text encoders are trained jointly while keeping the
text encoder frozen. This joint embedding is optimized by
maximizing the cosine similarity between skeleton and text

embeddings, quantified by the cross-entropy loss:

LCE(z
s
i , z

t
i) = −

∑
i

log
exp(sim(zsi , z

t
i)/τ)∑

j exp(sim(zsj , z
t
j)/τ)

(1)

where τ is a temperature parameter and sim(x, y) denotes
the cosine similarity between x and y. This joint training en-
forces the skeleton encoder to align with the language em-
beddings, enabling it to perform zero-shot skeleton action
recognition. This language grounding is essential for incor-
porating skeleton features into VLMs and LVLMs, which is
detailed next.

3.2 Skeleton Induced VLM (SKI-VLM)
Consider a video Vi ∈ RTv×3×H×W comprising Tv frames
at a spatial resolution of H × W and a text prompt tj en-
capsulating the action categories within a predefined tem-
plate. To obtain their representations within the VLM em-
bedding space, the input videos and text prompts are pro-
cessed through the CLIP (Radford et al. 2021) image en-
coder fv and text ft encoder respectively as

zvi =
1

Tv

∑
fv(Vi); ztj = ft(tj) (2)

The video-level representation zvi , derived from the CLIP
image encoder, is obtained by averaging the feature rep-
resentations across frames. Typically, the joint embedding
(zvi · ztj) is trained using various finetuning techniques for



learning discriminative video representation. These include
fully finetuning (Rasheed et al. 2023) the CLIP embeddings
using LCE(z

v
i , z

t
j), partially finetuning (Ni et al. 2022) us-

ing adaptors, or fully finetuning in addition to knowledge
distillation from CLIP (Huang et al. 2024). The trained dual
encoder model is referred to as a VideoCLIP model, capable
of performing zero-shot action recognition in RGB videos.

To integrate 3D skeleton information into the joint video-
text embeddings (zv · zt), we leverage an online knowledge
distillation strategy, SkeletonCLIP Distillation (SCD). It is
performed across the Skeleton-Language (SkeletonCLIP)
and Vision-Language (VideoCLIP) models, both of which
are pretrained on the training distribution. This pretraining
ensures the alignment of the modality-specific features (zvi
or zsi ) with the textual features (zti ). Since the textual fea-
tures differ across modalities (videos and skeletons), hereon
we will denote the video-based and skeleton-based textual
representations as ztvi and ztsi , respectively.
SkeletonCLIP Distillation (SCD). For SCD, the model
with two dual encoders takes as input video sequences Vi,
corresponding 3D skeleton sequences Si, and text prompts
tj describing action labels, as illustrated in Figure 2 (mid-
dle). The VideoCLIP processes the video sequences and
text prompts using the encoders fv and ft, respectively.
Simultaneously, the SkeletonCLIP processes the 3D skele-
ton sequences and text prompts using the encoders gs and
gt, respectively. SCD is then applied to integrate visual
and skeleton information within a language-contextualized
space. This space is constructed by minimizing the similar-
ity between modality-specific features (zvi or zsi ) and text
features (ztvi or ztsi ). The resulting language-contextualized
features in the visual and skeleton domains, FLV and FLS ,
are defined as FLV = zvi · (ztvj )T and FLS = zsi · (ztsj )T .

We adopt an online knowledge distillation approach
where both the SkeletonCLIP and VideoCLIP models are
trainable. This distillation, conducted within the language-
contextualized space, aims to minimize the similarity be-
tween the respective modalities and the text features, thereby
enabling VideoCLIP to infer skeleton-text correlations when
applicable. To ensure the relevance of 3D skeleton informa-
tion for action recognition, we jointly train the SCD with ac-
tion recognition losses. The total loss (L) during this training
phase is represented as the sum of the cross-entropy losses
for video-text and skeleton-text embeddings, combined with
a distillation loss LD (mean squared error):

L = LCE(z
v
i , z

tv
i )+LCE(z

s
i , z

ts
i )+αLD(FLV , FLS) (3)

where α is the weight allocated to the distillation loss to bal-
ance it with the cross-entropy losses. Through SCD, Skele-
tonCLIP enriches VideoCLIP with temporal information, re-
sulting in the Skeleton-Induced VideoCLIP (SKI-VLM).

During inference, only the VideoCLIP (SKI-VideoCLIP)
is utilized, eliminating the need for skeleton data and avoid-
ing additional computational overhead. We implement a
teacher-student framework to learn the SKI-VLM represen-
tation through SCD, which can be integrated with various
student VLMs (Rasheed et al. 2023; Ni et al. 2022; Huang
et al. 2024).

3.3 Skeleton Induced LVLM (SKI-LVLM)
3D skeleton features can also be employed to guide vi-
sual features, thereby enhancing the semantic reasoning and
generation capabilities of Large Vision Language Models
(LVLMs). These enhancements are expected to improve the
quality of descriptions generated by LVLMs, as they can
focus on human joints and their motion while generating
textual content. To integrate skeleton information within
LVLMs, the features zsi for an input skeleton sequence are
first extracted from SkeletonCLIP. Given the effectiveness of
SCD, where collaborative learning of modality-specific dual
encoders proved highly effective, we adopt a similar design
approach for integrating skeletons within LVLMs.

In this approach, both visual (zvi ) and skeleton (zsi ) fea-
tures extracted from the RGB+skeleton input sequence are
fed into their respective projection layers (Tv and Ts), which
are then input to the LLM:

Qv = Tv(zvi ) ∈ RFv×K , Qs = Ts(zsi ) ∈ RFs×K (4)

where Fv and Fs represent the dimensionality of the video
and skeleton features, respectively, and K is the shared di-
mensionality to which these features are projected. Similar
to the visual projector Tv , the skeleton projector Ts learns
the mapping of skeleton tokens from the skeleton-language
space to the input space of the LLM. Notably, the visual
features here are extracted from the CLIP encoder without
finetuning on the training distribution, to maintain the gen-
eralizability of the RGB information fed to the LLM.

Thus, the input to the LLM consists of Qv , Qs, and the
tokenized text query Qt ∈ RFt×K (where Ft is the dimen-
sion of the text features), arranged in the following tem-
plate: [USER: ⟨Qt⟩ ⟨Qv⟩ ⟨Qs⟩, Assistant:]. SKI-LVLM
is trained collaboratively on video-skeleton-text triplets us-
ing the autoregressive training objective from (Maaz et al.
2024). The weights of the encoders and the LLM are frozen,
and only the projection layers are trained, as illustrated in
Figure 2 (right). During inference, only the visual input is
utilized, eliminating the need for skeleton data and its pro-
jector Ts, making it practical for real-world applications.

4 Experimental Results
Datasets. For zero-shot (ZS) action recognition, we eval-
uate our SKI-VLMs on the large-scale NTU-RGB+D-60
(NTU60) (Shahroudy et al. 2016) and NTU-RGB+D-120
(NTU120) (Liu et al. 2019) datasets. NTU120 contains
approximately 114K video-pose pairs across 120 action
classes, while NTU60 includes around 57K pairs for 60
classes. We adopt the evaluation splits from (Gupta, Sharma,
and Sarvadevabhatla 2021), using 55/5 and 48/12 splits for
NTU60, and 110/10 and 96/24 splits for NTU120.

For dense video captioning, we train our SKI-LVLM on
NTU120 video-instruction pairs and evaluate on the Cha-
rades dataset (Sigurdsson et al. 2016) following (Reilly
et al. 2024). NTU120 video-instruction pairs are gen-
erated by captioning single frames (mid-video) with
COGVLM (Wang et al. 2023) and creating 100K question-
answer pairs using GPT 3.5 turbo. Details on prompts are
in the Appendix D. We will release these video-instruction



pairs to the community. We evaluate video captioning
performance using Llama 3.1 (Meta 2024) on the five
VideoChatGPT (Maaz et al. 2024) metrics: Correctness of
Information, Detail Orientation, Contextual Understanding,
Temporal Understanding and Consistency.
Implementation Details. For SKI-VLMs, we use XCLIP
(Ni et al. 2022), ViFiCLIP (Rasheed et al. 2023), and
FROSTER (Huang et al. 2024) as the student VLMs (Video-
CLIP). SkeletonCLIP is trained on seen classes of NTU60
(55, 48) and NTU120 (110, 96) for action recognition. The
skeleton encoder is pretrained for 140 epochs, followed by
alignment with a CLIP Text encoder for 100 epochs. SCD
requires 2 epochs. We use a learning rate of 2.25 × 10−5

with cosine decay and set α to 0.01 for NTU60 and 10.0 for
NTU120. SKI-XCLIP, SKI-ViFiCLIP, and SKI-FROSTER
denote SKI-VLM with respective backbones. For SKI-
LVLM, embedding dimensions are Fv = 1024, Fs = 216,
K = 4096. The input to the projection layers (Tv & Ts) pre-
ceding the LLM are 356 visual and 256 skeleton tokens. We
train SKI-LVLM and its baselines for 3 epochs with batch
size 32, learning rate 2e−5 on 8 A6000 48GB GPUs.

Method Modality NTU60 NTU120
V T S 48/12 110/10

Tri-modal Align. (Guzhov et al. 2021) ✗ ✓ ✓ 8.3 11.9
Cross-projection Align. (Wu et al. 2021) ✗ ✓ ✓ 8.4 25.5

XCLIP (Ni et al. 2022) ✓ ✓ ✗ 38.9 57.8
FROSTER (Huang et al. 2024) ✓ ✓ ✗ 43.9 65.2
ViFiCLIP (Rasheed et al. 2023) ✓ ✓ ✗ 48.2 70.0

SkeletonCLIP ✗ ✓ ✓ 35.1 63.0
ViFiCLIP + SkeletonCLIP ✓ ✓ ✓ 17.5 48.8

SKI-XCLIP ✓ ✓ ◦ 42.2 66.1
SKI-FROSTER ✓ ✓ ◦ 44.4 68.5
SKI-ViFiCLIP ✓ ✓ ◦ 52.0 77.5

Table 1: Performance comparison of methods for aligning
skeleton features with video-text embeddings on NTU60
and NTU120 datasets, demonstrating the effectiveness of in-
tegrating language-contextualized 3D skeleton features into
the CLIP embedding space. V, S and T denote the video,
skeleton, and text modalities respectively. (◦ indicates that
skeleton features were used only during training)

4.1 ZS Action Recognition using SKI-VLM
For zero-shot action recognition, we evaluate models on un-
seen action classes within each split. We first demonstrate
the challenge of learning a common embedding space for
video, text, and skeletons. We then justify the superiority of
VideoCLIP architectures over SkeletonCLIP and highlight
the robustness of SKI-VLMs. Finally, we present state-of-
the-art zero-shot action recognition results on NTU datasets.
How can we introduce 3D skeleton features in the CLIP
embedding space? In the audio domain, methods such
as AudioCLIP (Guzhov et al. 2021) and Wav2CLIP (Wu
et al. 2021) employ contrastive learning and cross-projection
techniques to align audio with the CLIP embedding space.
Inspired by these approaches, we explore aligning skeleton
features with the video-text embedding space. However, as
shown in Table 1, neither tri-modal alignment (implemented

following AudioCLIP) nor cross-projection alignment (im-
plemented following Wav2CLIP) effectively aligns skeleton
and text representations. This limitation stems from the lack
of large-scale symmetric video-skeleton-text datasets neces-
sary for effective contrastive learning. The results of SKI-
VLMs highlights the effectiveness of integrating language-
contextualized 3D skeleton features into the vision-language
embedding space, enhancing the learning of generalized ac-
tion representations.
SkeletonCLIP vs VideoCLIP. SkeletonCLIP grounds
skeleton features within a language-contextualized space.
As shown in Table 1, SkeletonCLIP achieves performance
comparable to VideoCLIP models like XCLIP, FROSTER,
and ViFiCLIP. To further enhance zero-shot recognition per-
formance, we combined the strengths of VideoCLIP and
SkeletonCLIP by directly fusing language-contextualized
skeleton features with VLM features. However, this ap-
proach led to poorer action recognition performance, likely
due to conflicting gradients from the different modalities.
Thus, VLMs that incorporate only video and text modalities
demonstrate more promising performance in zero-shot ac-
tion recognition compared to skeleton-only models.
Robustness of SKI-VLMs. Our SKI-VLMs can be imple-
mented using any existing dual encoders. In Table 1, we
demonstrate the implementation of SKI-VLMs with XCLIP,
ViFiCLIP, and FROSTER, where they outperform their re-
spective baselines by up to +14.3%, +10.7%, and +5.1%.
This highlights the robustness of our SKI-VLMs when inte-
grated with any student VLM.

Method Modality NTU60 NTU120
V T S 55/5 48/12 110/10 96/24

SynSE (Gupta, Sharma, and Sar-
vadevabhatla 2021)

✗ ✓ ✓ 75.8 33.3 62.7 38.7

SMIE (Zhou et al. 2023) ✗ ✓ ✓ 78.0 40.2 65.7 45.3
STAR (Chen et al. 2024) ✗ ✓ ✓ 81.4 45.1 63.3 44.3
CLIP (Radford et al. 2021) ✓ ✓ ✗ 54.5 20.2 35.0 15.2
XCLIP (Ni et al. 2022) ✓ ✓ ✗ 76.0 38.9 57.8 49.7
ViFiCLIP (Rasheed et al. 2023) ✓ ✓ ✗ 79.9 48.2 70.0 56.6
FROSTER (Huang et al. 2024) ✓ ✓ ✗ 79.1 43.9 65.2 34.0

SKI-ViFiCLIP ✓ ✓ ◦ 82.2 52.0 77.5 59.3

Table 2: Comparison of Zero-Shot Action Recognition Ac-
curacy on NTU60 and NTU120 datasets. V, S and T denote
the video, skeleton, and text modalities respectively. (◦ indi-
cates that skeleton features were used only during training)

State-of-the-art comparison. In Table 2, we benchmark
SKI-VLMs against leading skeleton-text and video-text
zero-shot action recognition models. The inferior perfor-
mance of skeleton-text models like SynSE (Gupta, Sharma,
and Sarvadevabhatla 2021) and SMIE (Zhou et al. 2023) can
be attributed to their lack of appearance information. Fur-
thermore, adapting these models to different data distribu-
tions is challenging due to variations in skeleton configu-
rations arising from disparate depth sensors (Zhang 2012)
or skeleton extraction techniques (Rogez, Weinzaepfel, and
Schmid 2019). We also note that FROSTER (Huang et al.
2024), despite outperforming ViFiCLIP (Rasheed et al.
2023) and XCLIP (Ni et al. 2022) in web video datasets such
as Kinetics (Kay et al. 2017), UCF-101 (Soomro, Zamir, and



Metric VCGPT NTU-VCGPT SK-VCGPT SKI-LVLM

Correctness 24.8 25.5 40.6 40.6
Detail Orientation 43.2 21.6 55.0 54.8
Contextual Understanding 33.8 29.0 52.4 52.4
Temporal Understanding 20.0 16.9 30.6 31.6
Consistency 31.6 34.1 38.4 38.2

Average 30.7 25.4 43.4 43.5

Table 3: Dense Caption Generation Performance of Skele-
tonCLIP induced LVLM on Charades Dataset (VCGPT =
VideoChatGPT)

Shah 2012), and HMDB (Kuehne et al. 2011), falls short in
ADL datasets, showing the unique challenges posed by ADL
compared to web videos. FROSTER’s reliance on image-
based CLIP knowledge transfer is less effective on NTU due
to the lack of scene-specific contextual information in NTU.

SKI-ViFiCLIP surpasses all other zero-shot action recog-
nition models. Notably, applying SCD to a video-based
CLIP model (ViFiCLIP) significantly enhances its zero-shot
action recognition performance on all NTU60 and NTU120
splits by up to +5.4% and +7.8%, respectively. This demon-
strates the enhanced ”generalizability” of SKI-VLM when
incorporating skeletons into VLMs.

4.2 Dense Video Captioning using SKI-LVLM
In Table 3, we assess the video captioning performance
of SKI-LVLM using the five metrics proposed in (Maaz
et al. 2024), scaled to a range of 1-100 following (Reilly
et al. 2024). SKI-LVLM is benchmarked against VideoChat-
GPT (VCGPT) and NTU trained VideoChatGPT (NTU-
VCGPT). VCGPT is trained on a large-scale Instruction
Tuning dataset derived from ActivityNet (Caba Heilbron
et al. 2015), while NTU-VCGPT denotes VideoChatGPT
trained exclusively on video-instruction pairs from trimmed
NTU120 videos (see Ablation D for details). Additionally,
we include a variant of SKI-LVLM, denoted SK-VCGPT,
which is trained on NTU120 instruction pairs and corre-
sponding 3D skeleton features obtained from a pre-trained
skeleton backbone (Hyperformer). This allows us to investi-
gate the value of language-contextualized skeleton features
in SKI-LVLM, as SK-VCGPT incorporates raw 3D skeleton
features without language contextualization.

Surprisingly, we find that SK-VCGPT performs compa-
rably with SKI-LVLM, contrasting with our findings in tra-
ditional VLMs where language contextualization is essen-
tial. This suggests that feature integration mechanisms may
differ in LVLMs, indicating that language contextualization
in LVLMs plays a less critical role. However, we observe
that the introduction of 3D skeletons greatly improves the
performance of the LVLMs, highlighting the importance of
integrating skeleton features into LVLM training.

4.3 Ablation Study
All our ablation studies have been conducted with ViFiCLIP
as the dual encoder (VideoCLIP).
Variants of Knowledge Distillation (KD). KD between
SkeletonCLIP and VideoCLIP can be implemented using
different strategies. In Table 4, we compare SCD with

Method NTU60 NTU120 Harmonic
48/12 110/10 Mean

Feature-level KD w/o Projection 52.9 65.3 58.4
Feature-level KD w Projection 53.2 64.7 58.4
Offline KD 53.3 70.8 60.8
Online KD (ours) 52.0 77.5 62.2

Table 4: Performance on different Distillation techniques

Loss Function NTU60 NTU120
48/12 110/10

Contrastive Loss 46.9 70.0
KL Divergence Loss 48.5 73.1
Mean Squared Error (MSE) Loss 52.0 77.5

Table 5: Effect of choice of distillation loss functions

feature-level distillation and offline KD. Feature-level distil-
lation, used in video-skeleton action recognition to enhance
RGB-based encoders (Das et al. 2021; Reilly and Das 2024),
is sub-optimal for large-scale datasets in SKI-VLMs. Fea-
ture space mismatches between the teacher (SkeletonCLIP)
and student (VideoCLIP) are magnified in large-scale set-
tings, leading to inefficiencies in knowledge transfer. On-
line distillation at the logit level, directly aligning network
outputs during training, offers a more robust solution for
handling large-scale data. Additionally, using a projection
layer to map features into a common space for distillation,
as explored in (Huang et al. 2024), improves performance
on NTU60 but doesn’t consistently boost accuracy across
larger datasets. Unlike online KD in SCD, where both net-
works are trainable, offline KD freezes the teacher and trains
only the student. Our findings suggest that while offline and
feature-level KD perform better in low-data settings, online
KD consistently outperforms them in large-scale datasets.
This highlights the benefit of collaborative training between
SkeletonCLIP and VideoCLIP, allowing the latter to acquire
meaningful representations and achieve higher accuracy.
Loss Configuration. In Table 5, we perform an ablation
study on the choice of distillation loss for the implemen-
tation of SCD. We find that employing MSE for SCD results
in notably improved performance compared to using Con-
trastive Loss or KL Divergence Loss.

5 Conclusion
In this paper, we introduced Skeleton-Induced (SKI) mod-
els, including SKI-VLMs and SKI-LVLMs, to integrate
skeleton information into vision-language embeddings. This
enables the models to focus on human keypoints for better
action modeling, crucial for learning discriminative video
representations in ADL. Our experiments show that SKI-
VLMs achieve significant gains in zero-shot action recogni-
tion without needing skeletons during inference, while SKI-
LVLM improves LVLMs’ understanding of subtle actions,
enhancing semantic reasoning and dense caption generation.

This work is a first step towards building multimodal
foundation models that incorporate the human skeleton
modality. Future research will explore replacing Skeleton-
CLIP with other effective skeleton-language models.
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Appendix
A Overview

The Supplementary material is organized as follows:
• Section B: Effectiveness of SKI-VLM for ADL
• Section C: Ablations

– Section C.1: SkeletonCLIP Text Encoder
– Section C.2: Pretraining Strategy

• Section D: LVLM Video Instruction Data Curation
• Section E: Integrating SkeletonCLIP in VLMs
• Section F: Distillation Loss Weightage

Figure 3: Attention Map Visualization: Comparison be-
tween ViFiCLIP and SKI-VLM. While ViFiCLIP struggles
to identify the critical areas responsible for actions, SKI-
VLM accurately focuses on the relevant joints, such as hands
and face, for actions like Sneeze/Cough.

B Effectiveness of SKI-VLM for ADL
In Figure 3, we present the attention map visualizations 1 of
ViFiCLIP and SKI-VLM on a sample from the NTU dataset.
These heatmaps highlight the important regions of the video
frames that contributed most to the model’s prediction. In the
figure, the second row consists of the attention maps of the
ViFiCLIP model, where the heatmaps are dispersed across
large areas, indicating a broad focus. In contrast, the final
row shows SKI-VLMs GradCAM visualization, which pre-
cisely emphasizes the relevant human joints involved in the
action. This demonstrates that incorporating skeleton infor-
mation through SKI-VLM enables a more targeted focus on
the critical regions of the video compared to VifiCLIP.

C Ablations
C.1 SkeletonCLIP Text Encoder
In this section, we evaluate the configuration of the Skele-
tonCLIP Text Encoder, specifically examining whether the

1The visualizations tend to emphasize static elements of the
background due to absence of registers during training, as dis-
cussed in (Darcet et al. 2023). These high background values are
disregarded in our analysis.

Table 6: Effect of SkeletonCLIP Text Encoder on SKI-
ViFiCLIP

Method NTU60 NTU120 Harmonic
48/12 110/10 Mean

Trainable Text Encoder 52.4 72.2 60.7
Frozen Text Encoder (ours) 52.0 77.5 62.2

text encoder should be trainable or frozen. As shown in Ta-
ble 6, SKI-ViFiCLIP achieves superior performance on aver-
age with a frozen Text Encoder compared to a trainable one.
This outcome highlights the effectiveness of a frozen Text
Encoder in aligning the skeleton distribution more closely
with the pre-aligned text and video distributions, enhancing
skeleton-text-video alignment during the SkeletonClip Dis-
tillation.

C.2 Pretraining Strategy

Table 7: Pretraining Strategy of Components of SKI-VLM

Method Pretraining NTU60 NTU120 Harmonic
48/12 110/10 Mean

Online Distillation 50.0 10.0 16.7
+ SkeletonCLIP 49.2 38.7 43.3
+ ViFiCLIP 53.0 69.6 60.2
+ SkeletonCLIP + ViFiCLIP 52.0 77.5 62.2

To validate our model’s pretraining strategy, we conducted
experiments across various scenarios: no pretraining, Skele-
tonCLIP pretraining, ViFiCLIP pretraining, and combined
SkeletonCLIP + ViFiCLIP pretraining. As shown in Table 7,
the model demonstrates superior performance when both
SkeletonCLIP and ViFiCLIP are pretrained. This result sup-
ports our hypothesis that pretraining and aligning Skeleton-
CLIP are essential for it to effectively serve as a teacher
model during distillation. Pretraining the skeleton encoder is
critical for aligning skeleton and text representations within
SkeletonCLIP. Likewise, a pretrained ViFiCLIP plays a key
role in extracting discriminative video-text representations
from the input videos and text prompts.

D LVLM Video Instruction Data Curation

To generate the the video instruction data for training the
LVLM, for each video we first crop out the person(s) per-
forming the action. This helps in eliminating unnecessary
background information in the videos. Subsequently a sin-
gle frame is selected from the video and CogVLM (Wang
et al. 2023) is used to generate its caption. CogVLM em-
ploys Vicuna v1.5 7B (Chiang et al. 2023) as its primary
language model and EVA2-CLIP-E (Sun et al. 2023) as the
visual transformer encoder, with input images set at 224 ×
224 pixels. The prompt used for captioning is - ”Give a de-
tailed description of the actions happening and describe the
image, include motions and the objects interacted by the per-
son.”
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E Integrating SkeletonCLIP in VLMs
Figure 4 demonstrates SKI-VLM implemented using Skele-
tonCLIP as the teacher and XCLIP, ViFiCLIP, and
FROSTER as the student models for performing SCD.

F Distillation Loss Weightage

Figure 5: Impact of α in SKI-VLM for NTU48 and NTU110

In Figure 5, we report the accuracy of SKI-VLM on
NTU48 and NTU110 for various values of α. We observe
that for NTU48, the optimal α is 0.01, while for NTU110,
an α value of 10.0 yields the best accuracy. This indicates
that in the low data regime (NTU48), placing greater em-
phasis on the classification loss (cross entropy) is crucial to
ensure the model effectively learns from the limited data.
Conversely, in the large-scale dataset (NTU110), a higher
α value allows for more effective leveraging of the Skele-
tonCLIP through the distillation loss, helping the model to
better generalize by aligning with the teacher model’s guid-
ance.


