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Abstract

This paper overviews a new gesture recognition frame-
work based on learning local motion signatures (LMSs) in-
troduced by [1]. After the generation of these LMSs com-
puted on one individual by tracking Histograms of Ori-
ented Gradient (HOG) [3] descriptor, we learn a codebook
of video-words (i.e. clusters of LMSs) using k-means algo-
rithm on a learning gesture video database. Then the video-
words are compacted to a codebook of code-words by the
Maximization of Mutual Information (MMI) algorithm. At
the final step, we compare the LMSs generated for a new
gesture w.r.t. the learned codebook via the k-nearest neigh-
bors (k-NN) algorithm and a novel voting strategy. Our
main contribution is the handling of the N to N mapping
between code-words and gesture labels with the proposed
voting strategy. Experiments have been carried out on two
public gesture databases: KTH []5] and IXMAS [/8]. Re-
sults show that the proposed method outperforms recent
state-of-the-art methods.

1. Introduction

Gesture recognition from video sequences is one of the
most important challenges in computer vision and behavior
understanding since it enables to interact with some human
machine interfaces (HMI) or to monitor complex human ac-
tivities.

In this paper we overview a new learning-classification
framework for gesture recognition using local motion sig-
natures [ 1] as a gesture representation. First, we compute
for each detected individual in the scene a set of features
(i.e. corner points). For each feature, we associate a 2D de-
scriptor (i.e. Histograms of Oriented Gradients (HOG) [3]),
which is tracked over time to build a reliable local motion
signature. Thus a gesture is represented as a set of local
motion signatures. Second, we learn the local motion sig-
natures for a given set of gestures by clustering them into
local motion patterns (i.e. clusters). Last, we classify the
gesture of a person in a new video by extracting the person
local motion signatures and voting for the most likely ges-

ture w.r.t. learned local motion patterns. The approach has
been validated on two public gesture databases: KTH [15]
and IXMAS [18] and results demonstrate an improvement
over recent state-of-the-art methods.

The remaining of this paper is structured into six parts.
The next section overviews the State-of-the-art in gesture
recognition. Section 3 summarizes the building process of
local motion signatures. Section 4 presents the learning
stage and section 5 details the classification stage. Results
are described and discussed in section 6. Finally, section 7
concludes this paper by overviewing the contributions and
exposing future work.

2. Previous Work

In this section, we focus on overviewing the state-of-
the-art of motion model based gesture recognition algo-
rithms which contains two main categories: (1) global mo-
tion based methods and (2) local motion based methods.
For global motion based methods, [19] have proposed to
encode an action by an “action sketch” extracted from a sil-
houette motion volume obtained by stacking a sequence of
tracked 2D silhouettes. The “action sketch” is composed of
a collection of differential geometric properties (e.g. peak
surface, pit surface, ridge surface) of the silhouette motion
volume. For recognizing an action, the authors use a learn-
ing approach based on a distance and epipolar geometri-
cal transformation for viewpoint changes. [10] propose to
recognize gestures via maximum likelihood estimation with
Hidden Markov Models and a global HOG descriptor com-
puted over the whole body. The authors extend their method
in [9] by reducing the global descriptor size with principal
component analysis. [5] extract space-time saliency, space-
time orientations and weighted moments from the silhouette
motion volume. Gesture classification is performed using
nearest neighbors algorithm and Euclidean distance. Re-
cently, [2] introduce action signatures. An action signature
is a 1D sequence of angles (forming a trajectory) which are
extracted from a 2D map of adjusted orientation of the gra-
dients of the motion-history image. A similarity measure is
used for clustering and classification.

As these methods are using global motion, they strongly
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depend on the segmentation quality of the silhouette which
influences the robustness of the classification. Furthermore,
local motion, which can help to discriminate similar ges-
tures, can easily get lost with a noisy video sequence or
with repetitive self-occlusions.

Local motion based methods overcome these limits by
considering sparse and local spatio-temporal descriptors
more robust to short occlusions and to noise. For instance,
[16] propose a 3-D (2D + time) SIFT descriptor and ap-
ply it to action recognition using the bag of word paradigm.
[15] propose to use Support Vector Machine classifier with
local space-time interest points for gesture categorization.
[1 1] introduce local motion histograms and use an Adaboost
framework for learning action models. More recently, [8]
apply Support Vector Machine learning on correlogram and
spatial temporal pyramid extracted from a set of video-word
clusters of 3D interest points.

These methods are generally not robust enough since the
temporal local windows (with short size and fixed spatial
position) do not model the exact local motion but arbitrarily
several slices of that motion instead.

To go beyond the state of the art, we propose a novel
gesture learning-classification framework based on learning
local motion signatures which are built thanks to tracking
local HOG descriptors over sufficiently long period of time.
The proposed gesture representation combines the advan-
tages of global and local gesture motion approaches in order
to improve the recognition quality.

3. Local Motion Signatures Generation

Our gesture representation is a set of Local Motion Sig-
natures (LMSs) which are generated through two steps
based on [1]: (1) People Detection/Feature Selection and
(2) HOG Descriptor Generation/Tracking.

3.1. People Detection and Feature Selection

People detection is performed by background subtrac-
tion to determine moving regions followed by a morpho-
logical dilation. Then a people classifier is applied to deter-
mine bounding boxes around single individuals. The people
bounding boxes define a mask for feature point extraction.
This step not only limits the search space for feature points
but also separates distinct moving regions: corresponding
to different individuals. This enables to apply the gesture
recognition process to different people until they overlap
each other.

Feature selection is then performed for each detected
person using Shi-Thomasi corner detector [17] or Fea-
tures from Accelerated Segment Test (FAST) corner detec-
tor [14]. Then corner points are sorted in decreasing order
according to the corner strength. After that, we select the
most significant corners by ensuring a minimum distance

among them. Thus, feature points enable us to localize
points where HOG descriptors can be computed since they
usually correspond to locations where motion can be easily
discernable.

3.2. HOG Descriptor Generation and Tracking

For each feature point, we compute a local HOG descrip-
tor [3] from a descriptor block composed of 3 x 3 cells; each
of them having a pixel size of 5 x 5: Therefore, the local
HOG descriptor is a vector concatening the nine cell his-
tograms of the descriptor block.

Local motion signatures are built by tracking HOG de-
scriptors. Let us suppose that we have detected a HOG de-
scriptor d;_; in the frame f;_1, we are now interested to de-
termine the descriptor d; in the frame f; which can be iden-
tified to d;_,. The basic idea is to minimize a quadratic er-
ror function £(d, d;—1) in a neighborhood V, in the frame
ft corresponding to the predicted position of d;_; obtained
by an extended Kalman filter. In the case when several
descriptors (d},d?, ...,d¥) in this neighborhood satisfy the
minimum of the error function, we compute the visual evi-
dence (intensity difference in gray-scale) between each de-
scriptor and the descriptor of the previous frame to track
dy—1. The tracker will choose the descriptor that has the
nearest visual evidence to d;_1. For each tracked HOG de-
scriptor, we define the temporal HOG descriptor as the vec-
tor obtained by the concatenation of the final descriptor es-
timate d and the positions of the descriptor during the track-
ing process. A local motion signature (LMS) is built from a
temporal HOG descripor by computing the angle trajectory
and then applying Principal Component Analysis (PCA) to
select the three first principal axes (c.f. [1]).

4. Gesture Learning
4.1. K-means Clustering

For learning gestures, we assume that the training data-
set is built with videos, each of them containing one and
only one gesture instance. For each training video sequence,
LMSs are extracted and annotated with the corresponding
gesture label. Then, we apply the k-means algorithm in or-
der to group these LMSs into clusters called video-words
which are the local motion patterns. The similarity measure
used for comparing two different LMSs in k-means is the
Euclidean distance. Indeed we have carried out different
experiments with different distances and found out that the
euclidean distance gives the best results.

Thus, given as input the set S of annotated local mo-
tion signatures generated with all the training videos, the k-
means algorithm outputs k£ video-words S;,7 = 1,2, ..., k.
The value of & is empirically chosen so that is large enough
to describe correctly the set of the m gestures to learn
(k > 3 xm). The lower bound for choosing of £ is justified
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by analyzing the videos illustrating gestures [13]: gestures
are usually composed of three units of coherent motion (i.e.
pre-stroke, stroke and post-stroke) and in our representa-
tion, these units of motion correspond to local motion pat-
terns. Thanks to the cluster membership map provided by
the k-means algorithm, we annotate each video-word with
the gesture labels associated with the LMSs of this cluster.

4.2. Maximization of Mutual Information

Once we have obtained the video-words, an optional step
is to reduce their dimensionality by compacting them into
code-words. To achieve this goal, we propose to apply Max-
imization of Mutual Information (MMI) algorithm [8] on
the clusters generated by the k-means algorithm. Let C' be
the centroids of the generated clusters C' € C = [p1..p1].
Let G be the gesture labels G € G = [g1..9m]. With the
cluster membership map A : S — C, we define the con-
ditional probability distributions P(C|G) and P(G|C) by
equations 1 and 2.

_ Card(Label=*(g;) N A=Y (1;))

P(C = |G = g:) Card(Label=1(g;))

(1)
Card(Label=*(g;) N A7 (1))
Card(A=(u;))

P(G = gi|C = p;) =

2
Where the function Label is the map between feature LMSs
and gesture labels; Card(.) is the cardinal operator. By
taking as definition of the marginal distributions of C' and
G the formulas 4 and 5, we can verify that these definitions
(i.e. equations | and 2) match the conditional probability
definition (c.f. equation 3).

P(G = gi|lC = i) =

P(C = p;)
_ P(C = 1i|lG = g:) P(G = gi)
P(C = p;)
3)
P(C = i) = CW @)
PG = g;) = Card(Label~*(g;)) 5)

Card(S)

Thus, we can deduce the joint distribution of C' and G from
equation 3 which gives:

Card(Label=(g;) N A7 (u;))

P(G=g;,C =)= Card(S)

(6)
Hence, the mutual information between C and G which
measures how much information from C'is contained in G

is:

MI(C,G) =
P(C = p;, G = g;)
P(C = u;)P(G = gs)

(M

> P(C=p,G=g;)log

ni€C,9:€G

The goal of MMI algorithm is to reduce incrementally
the size of the video-words C in order to obtain a compact
set of code-words C by keeping the value of MI(C,G) as
high as possible and the value of MI(C,C) (which mea-
sures the compactness of C with respect to C) as low as pos-
sible. At each step of the algorithm, the pair of video-words
that gives the minimum loss of mutual information when
merged, is chosen. The merge is actually done if and only
if the loss of mutual information (c.f. formula 8) generated
by the merge of this optimal pair is not larger than a pre-
defined threshold ¢ or if the minimal number of clusters is
reached. Before the optimization process, the set C corre-
sponds to video-words and after that process, the optimal
set C corresponds to code-words.

So, the trade-off between the compactness of the optimal
set and the discrimination criterion (maximum of mutual
information) when merging video-words 1; and p; can be
solved by equation 8(c.f. Liu & Shah 2008 [8]).

AMI(pi, pj) =
Y P(C = m)Dkr(P(G|C = m)||Q(GIC = p))

ke{ig}

®)

Where Dy, (.]|.) is the Kullback-Leibler divergence (c.f.
formula 9 ), Q(G = g|C = p) is defined by equation 10
and s is the resulting merged video-word.

P(zxly
Q(z|2

~—

Drr(P(|y)[|Q(]2)) = Y _Plaly)log( )

~—

P(C = i) P(G = g|C = i)
P(C = pi) + P(C = p )
P(C = ;) P(G = g|C = )
P(CZ#@)-FP(C:;LJ')

QG =9|C=p) =

+

(10)

The non-recursive version of the MMI algorithm is de-
scribed hereafter (Algorithm 1). Note that ® is the merging
operator which is applied to two video-words.

Compared to the code-words of [8], our code-words al-
ready integrate the spatio-temporal structural information
which is not the case of the formers. Indeed, our code-word
is a compact information of local motion signature clusters
which can caractherize directly gestures.

CVPR
#1834

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323



CVPR
#1834

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

CVPR 2010 Submission #1834. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Algorithm 1 Maximization of Mutual Information (MMI)
Algorithm
Require: C, G, C, G {inputs}
Ensure: C, C {outputs}
1: é —C
2: minimalLoss <+ 0
3: while minimal Loss < € & Card(C) > Card(G) do
minimalLoss «— oo

4
5. forall y;, p1; Eé/ui#uj do
6: Compute AMIT (p;, p15)
7:
8
9

if AMI(p;, pj) < minimalLoss then
manimalLoss «— AMI(p;, 1)
merge; — [i;
10: merge; «— [;
11: end if
12:  end for
13: if minimalLoss < e&[Card(C) — 1] > Card(G)

then
14: C — C — {merge;, merge;}
15: C—Cu {merge; ® merge;}
16: Compute the new conditional density C
17: C—C
18:  endif

19: end while

5. Gesture Classification
5.1. Offline Recognition

The k-nearest neighbor algorithm is one of the most
common classifier in the literature. The main idea behind
this algorithm is to select the k-nearest neighbors (i.e.
code-words) of an input LMSs and then assign it to the
gesture label that casts a majority vote. In order to obtain
always a majority vote, the “k” parameter is usually an odd
number to prevent tie cases. The main advantage of this
algorithm is that it is an universal approximator and can
model any many-to-one mapping very well. The drawbacks
consist of the lack of robustness for high dimension spaces
and low computational complexity with huge training
data-set. In order to adapt this algorithm to our training
data-set, we must cope with the many-to-many mapping
between code-words and gesture labels. A suitable solution
is to make a voting mechanism which transforms this
mapping into a many-to-one mapping.

Let T = {(c,9)/c € C&g € G&g € Label™'(c)}
our final learned database with cardinal N. The likelihood
L(c|g) of a particular cluster ¢ given a gesture g is defined
by equation 11.

L(clg) = P(G = g|C =¢) (11)

We define the likelihood measure of a gesture g according

to k observed clusters ¢}, ¢ € [1..k] by:

k

> L(¢lg)

) = —————— (12)

= &
PR ACAY

hegGi=1

L(g|c), ...

Note that this likelihood measure satisfies the equation 13.

ZL(g|c’1,

9€g

() =1 (13)

During the classification process, testing a video sample
generates several LMSs Ims;, i € [1..M]. Each descriptor
casts votes for k nearest code-words. If we note L(g|lms;)
the likelihood measure of a gesture g according to the k
nearest code-words from [Ims;, then the gesture associated
to the sample is defined by equation 14 and its recognition
likelihood RL is defined by equation 15.

M
Grecognized = ar'g maXZL(gﬂmsl) (14)
9€9 4
M
ZL(grecogm’zed“msi)
RL(grecognized) = =1 M (15)

When ties (i.e. several gestures with the same likelihood)
occur, the classifier is unable to classify the new input.
Then, the new input is fed to the learner which prompts the
user for the gesture label. Two cases can be distinguished:

e The new gesture has been already learned: The user
decides which gesture wins the vote and the learned
clusters are updated according to this choice.

e The new gesture has not been learned: The user gives
the appropriate gesture label and existing clusters are
updated and eventually new clusters are created for the
new gesture label.

Algorithm 2 describes the modified version of the k-
nearest neighbors for our learning-classification framework.
This version of the algorithm supposes that each test se-
quence contains one and only one gesture.

5.2. Online Recognition

Now, we are interested to adapt this algorithm for on-
line recognition where several gestures can occur in a video
sequence. For that purpose, we cannot wait for all local
motion signatures to be computed in order to estimate the
likelihood of gesture recognition. So we derive a recursive
equation from equation 14 by considering that local motion

CVPR
#1834

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431



CVPR
#1834

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
47
472
473
474
475
476
477
478
479
480
481
482
483
484
485

CVPR 2010 Submission #1834. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Algorithm 2 k-nearest neighbors - offline version

Require: 7 {The training data-set}
Ims;, © >= 1 {The generated local motion signatures
from the test sequence}

Ensure: g,ccognized, recognitionLikelihood(grecognized)

. M—1
2: while an Ims; is generated do
3:  execute the usual k-nearest neighbors for ims;

4: grj‘\gcognized — argerrglaxLikelihoodM (9)
9

5: Compute RL(grecognized)
6: M—M+1
7: end while

signatures Ims;, i € [1..M] are indexed by their chrono-
logical order of computation which gives the equation 16.

= arg maxLikelihood™ (g) (16)
g€eg

Where Likelihood!(g) = L(g|lms;) and for M > 1,

Likelihood™ (g) verifies the recursion defined by equa-

tion 17.

g'recognized

Likelihood™ (g) =Likelihood™ = (g)

1
+ — (L(g|lmsyr) — Likelihood™ 1 (g))

M
a7

In addition, we must integrate the time duration of a gesture
in the learning-classification process to decide when to stop
the recognition process and to start a new one. We assume
that the duration of any gesture is ruled by a duration of life
law (i.e. poisson law). So, the samples (i.e. videos) of the
training data-set for a given gesture are instances of a ran-
dom variable with exponential distribution. We know that
if p is the number of instances of a gesture in the training
data set and ¢;, ¢ € [1..s] are the duration of these samples,
then a 100(1 — «)% exact confidence interval for the mean
duration § is given by equation 18.

1 2s 1 1 2s

T < < x5 (18)
AX%S;&/Q A )‘ng;lfa/2

Where + is defined by equation 19 and X%;x is the value of
the chi squared distribution with &k degrees of freedom that
gives x cumulative probability.

p
2
1 i=1
A p

Then, we can consider that a gesture is recognized if and
only if its duration is in the confidence interval and we have

reached a local maximum of likelihood. So the on-line ver-
sion of the k-nearest neighbors can be described by algo-
rithm 3. To use this online-version, we can compute a slid-

Algorithm 3 k-nearest neighbors - on-line version

Require: 7 {The training data-set}
Ims;, @ >= 1 {The generated local motion signatures
from the test sequence }

Ensure: grccognized, recognitionLikelihood(grecognized)

1: M1

2: duration < 0

3: previousLikelihood «— 0

4: repeat

5. duration < duration + 1

6: save the previous likelihood if any in
previousLikelihood
. while a Ims; is generated do
8: execute the usual k-nearest neighbors for Ims;
9: g%cogmzed «— arg néaxLik'elihoodM (9)
ge
10: Compute RL(g,". .oy nizcd)
11: M—DM+1

12:  end while
13: until duration € confidencelnterval(grecognized)
& previousLikelihood > RL(g%coqmzed)

ing window algorithm [6] which detects the prestroke phase
of gestures, calls the on-line classifier and solves the issue
of overlapping prestrokes.

6. Experiments and Results
6.1. Gesture Recognition on KTH Database

The KTH database [15] contains 600 videos illustrating
six actions/gestures: (1) walking, (2) jogging, (3) running,
(4) hand waving, (5) hand clapping and (6) boxing. Each ac-
tion/gesture is performed many times by 25 actors for four
different scenarios. Thus, there are 4 x 6 = 24 videos per
actor. The database is split into three independent data-sets:
(1) a training data-set (8 actors), (2) a validation data-set for
tuning parameters (8 actors) and (3) a testing data-set for
evaluation (9 actors). All videos from this database were
taken over homogeneous background thanks to a static cam-
era with 25fps frame rate. The spatial resolution of each
video is 160x120 pixels. We train our algorithm on the KTH
training data-set and test it on the corresponding test data-
set. All the parameters of the framework have been tuned
using the validation data-set. Since a gesture is composed of
three motion patterns (c.f. section 4), we have tested all the
values of k between 18 and 57 for the k-means clustering
algorithm. We realized that the best classification results
is when k = 27. Finally, the best value of the k parame-
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Table 1. Confusion matrix for the classification on KTH database
using Shi-Tomasi (upper values) and FAST corner points (lower
values).

W. J R. B. H.C. HW.
W, 0.95 0.03 0.02 0.00 0.00 0.00
: 0.97 .03 0.00 0.00 0.00
J 0.03 .85 0.10 0.02 0.00 0.00
: 0.02 0.91 0.07 0.00 0.00 0.00
R 0.05 0.07 0.88 0.00 0.00 0.00
: 0.03 0.05 0.92 0.00 0.00 0.00
B 0.00 0.00 0.00 0.03 0.02
: 0.00 0.00 0.00 0.97 0.02 0.01
H.C 0.00 0.00 0.00 0.05 0.88 0.07
o 0.00 0.00 0.00 0.03 0.92 0.05
HW 0.00 0.00 0.00 0.02 0.01 0.97
A 0.00 0.00 0.00 0.01 0.00 0.99

Table 2. Comparison of different results of the KTH database.

Method Variant Precision
Our method Shi-Tomasi 91.33%
FAST 94.67 %
Lill and Shah [ ] SVM VWCS 9131%
VWC Correl.  94.16%
Luoetal. [11] 85.10%
Kim et al. [7] 95.33%

Table 3. Precision, recall and F-score of the proposed method on
KTH database.

Precision Recall  F-score
with Shi-Tomasi  91.33%  99.07% 95.04%
with FAST 94.67%  99.78% 97.15%

ter of the k-nearest neighbor algorithm is £k = 5. Results
are illustrated by the confusion matrix 1 and are compared
to the state of the art methods in table 2. We obtain bet-
ter or slightly better results than recent methods. We also
find out that FAST corners outperform Shi-Tomasi corners
which is consistent with results in [ 14]. Note that even if [7]
obtain slightly better results, their results are not compara-
ble to ours since they use a different experimental proto-
col (Leave-one-out cross-validation) which includes more
learning videos and enables to train better code-words. Ta-
ble 3 shows the performance metrics (i.e. precision, recall
and F-score) of the proposed framework. It has a high sen-
sitivity which means that there is few false negatives. How-
ever, the precision can be improved.

6.2. Gesture Recognition on IXMAS Database

The IXMAS database [ 18] contains 468 action clips for
13 gestures and each of them is performed three times by 12

actors. Each video clip has a spatial resolution of 390x291
pixels, a frame-rate of 23fps and it is captured by five cam-
eras from different points of view (i.e. five video sequences
for each clip). The gestures of the database are : (1) check
watch, (2) cross arms, (3) scratch head, (4) sit down, (5)
get up, (6) turn around, (7) walk, (8) wave, (9) punch, (10)
kick, (11) point, (12) pick up and (13) throw. For this
gesture database, we adopt a leave-one-out cross-validation
scheme. Since each action is captured from five points of
view, we have selected k = 197 for the k-means cluster-
ing algorithm. As said in section 4, the three phases of a
gesture (i.e. prestroke, stroke and poststroke) can generate
different 2D motion patterns from different points of view.
So for each action, we can expect 3 X 5 = 15 motion pat-
terns. Due to the fact that the IXMAS database contains 13
gestures, the expectation grows to 13 x 15 = 195 motion
patterns. For the learning phase, we use two learning proce-
dures: (1) without MMI and (2) with MMI. For the classifi-
cation phase, we use the same value of the k parameter (i.e.
5) as for KTH database. The classification is carried out in-
dependently for each gesture video corresponding to the re-
maining actor (i.e. discarded by the leave-one-out rule). So,
for each actor (1 out of 12), each gesture (1 out of 13) and at
a particular step of the cross-validation, there are 5 x 3 = 15
video sequences (5 views and 3 manners) to be classified
versus 11 x 5 x 3 = 165 video sequences used for learning.
In addition, we choose to carry out this experiment with the
FAST corner detector only since it gives better results on
KTH database. The confusion matrix for this experiment
is given in table 4 and table 6 presents the performance
metrics. We compare the results of our method to those
of [18] in table 5. Note that the results with the compacted
learned database (i.e. using the MMI algorithm) are slightly
better (7%) than the ones with the non-compacted version.
Unsurprisingly gestures with large motion (e.g. sit down,
get up, turn around, walk) are much better recognized than
gestures with small motion (e.g. scratch head, wave, point)
which besides, share some common motion patterns. The
mean processing time of the offline k-NN classifier for the
IXMAS database is 35 seconds per gesture which is quite
reasonnable knowing that a gesture is in mean depicted by
80 frames.

A multi-view experiment has been also carried out ex-
cluding the fifth view point (i.e. the top view) in order
to compare the results with [8]. We learn gestures from
three selected views and classify gestures with the remain-
ing view. We repeat the experiment for all possible com-
binations. Only the version with MMI algorithm has been
tested. Table 7 overviews the average precision for each ex-
periment. We can notice an improvement w.r.t. [8]. we can
see that the first and the last view points are more dependent
on other view points hence they achieve better precision.
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Cw. CA. SH SD.  GU. TA Wl Wv. Pu K. Po PU T.

C.W. 0.87 0.05 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.03 0.00 0.00
U 0.93 0.03 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.01 0.0 0.00
C.A 0.10 0.75 0.05 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.04 0.00 0.00
o 0.09 0.81 0.04 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.02 0.00 0.00
S.H 0.07 0.08 0.69 0.00 0.00 0.00 0.03 0.03 0.07 0.00 0.03 0.00 0.00
o 0.06 0.07 0.73 0.00 0.00 0.00 0.03 0.02 0.06 0.00 0.03 0.00 0.00
SD 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
e 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
G.U 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
e 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TA 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
e 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Wi 0.00 0.00 0.00 0.00 0.00 0.05 0.95 0.00 0.00 0.00 0.00 0.00 0.00
' 0.00 0.00 0.00 0.00 0.00 0.03 0.97 0.00 0.00 0.00 0.00 0.00 0.00
Wv. 0.05 0.03 0.12 0.00 0.00 0.00 0.00 0.62 0.03 0.03 0.09 0.00 0.03
: 0.05 0.03 0.10 0.00 0.00 0.00 0.00 0.67 0.03 0.03 0.07 0.00 0.02

Pu 0.04 0.04 0.00 0.00 0.00 0.02 0.00 0.03 0.75 0.07 0.00 0.01 0.04
' 0.03 0.03 0.00 0.00 0.00 0.02 0.00 0.03 0.80 0.05 0.00 0.01 0.03

K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.97 0.00 0.00 0.00
' 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.99 0.00 0.00 0.00
Po 0.03 0.00 0.06 0.00 0.00 0.03 0.00 0.08 0.20 0.03 0.57 0.00 0.00
' 0.03 0.00 0.05 0.00 0.00 0.03 0.00 0.07 0.16 0.03 0.63 0.00 0.00
PU 0.00 0.00 0.00 0.05 0.00 0.02 0.03 0.00 0.01 0.00 0.00 0.89 0.00
T 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.00
T 0.00 0.00 0.05 0.00 0.0 . 0.00 0.06 0.03 0.00 0.06 00 0.76
: 0.00 0.00 0.05 0.00 0.03 0.00 0.00 0.05 0.01 0.00 0.05 0.00 0.81

Table 4. Confusion matrix for the classification on IXMAS database using FAST corner points (uppervalues without MMI and lowervalues

with MMI).

Table 5. Comparison of different results of the IXMAS database.

Method Variant Precision
Our method without MMI  83.23%

with MMI 90.57 %
Weinland et al. [18] 81.27%
Lvetal. [12] 80.60%
Liu & Shah [§] 82.80%

Table 6. Precision, recall and F-score of the proposed method on
IXMAS database.

Precision  Recall F-score
without MMI  83.23%  87.46% 85.29%
with MMI 90.57% 85.72% 88.07 %

Table 7. Multi-view results for IXMAS database: precision of the
classification of each view.

Method caml cam?2 cam3 cam4
Our method 75.34% 67.11% 69.52% 74.95%
Liu & Shah [8] 72.29% 61.22% 64.27% 70.59%

6.3. Discussion

The value of the k parameter for both k-means and k-
nearest neighbor algorithms is mainly dependent on the
number of gestures to be recognized, the gesture database
size (i.e. number of gestures, number of view points per
gesture). Indeed, when we process a multiview database
of n gestures all captured under m view points, the con-
straint on the parameter k of the k-means algorithm be-
comes k > 3 X n X m since local motion patterns for each
gesture phase (i.e. prestroke, stroke and poststroke) can be
different for the view points. To avoid tuning parameter k,
the Mean Shift clustering algorithm [4] and the SVM clas-
sifier can be used. Also, the time precedence constraints
among local motion signatures is to be studied. However,
when the different gestures to recognize are composed of
different local motion patterns, this requirement is not nec-
essary. Nonetheless, if we want to differentiate two very
similar gestures sharing the same motion patterns but in dif-
ferent timeline order then it will be convenient to use it.

7. Conclusion

A novel learning-classification framework using local
motion signatures has been proposed for gesture recogni-
tion. Our main contribution is the gesture representation
combining advantages of global and local gesture motion
models. The local motion signatures can be considered as a
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local version of the global action signature proposed by [2]
with the advantage of capturing also local motion. Com-
pared to the global PCA-HOG descriptor proposed by [9]
(one global HOG descriptor for each gesture/action), the
proposed gesture/action representation consists of a set of
local signatures which accounts more faithfully for local
motion. Instead of computing a global HOG volume for
a person already tracked, we use local HOGs tracked inde-
pendently. Our method contrasts from common local mo-
tion methods by tracking salient HOG descriptors instead
of computing arbitrary time-volume of HOG descriptors.
We propose also a novel voting mechanism to deal with the
many-to-many mapping between video-words and gesture
labels. Results show an improvement w.r.t. recent state-of-
the-art methods. As future work, we plan to validate the on-
line version of the proposed classifier on real-world video
databases like Homecare applications. The gesture repre-
sentation can be enhanced to enable the detection of the
frailty level of elderly people by analyzing the way people
are sitting down or getting up from a chair (e.g. character-
izing the gesture manner, the gesture speed). This protocol
is already used by doctors for evaluating elderlies and the
challenge is to automate this protocol.
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