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A B S T R A C T

Aim: RGB-D cameras (Red Green Blue + Depth) are widely employed in exergames designed to

physically stimulate elderly people. Nevertheless, the intensity of the physical activity reached with the

existing solutions is rarely sufficient to obtain a real impact on the physical fitness and thus on the health

status of this population. In this context, a Point Cloud Based System (PCBS) has been developed to

interface ordinary motorized treadmills with exergames through a simple RGB-D camera, to induce

players to perform physical activities at higher intensities. The goal of this study was to assess the

accuracy and reliability of PCBS to measure the walking speed of a subject on a standard motorized

treadmill based on the image streams of an RGB-D camera.

Methods: 36 participants performed three 10 min walking exercises, divided in 5 blocks of 2 min at the

following constant ordered speeds: 0.42, 0.69, 0.97, 1.25 and 1.53 m s�1. The measured walking speeds

are compared to those obtained through a Marker Based Control System (MBCS).

Results: Results showed a high system accuracy (bias: 0.013 � 0.015 m s�1), a good reliability (ICC = 0.63–

0.91) and a low variability (SEM = 1–5%; MD = 2.7–14%).

Discussion: Accuracy and reliability of PCBS are consistent with those obtained in similar existing

systems measuring gait parameters.

Conclusion: Within the context of the development of exergames, PCBS may be combined with

exergames to perform physical activities at sufficiently high intensities in the elderly population, in order

to improve their physical health and possibly prevent/delay cognitive impairment.

� 2016 Elsevier B.V. All rights reserved.
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1. Introduction

There is major interest nowadays in Moderate-High Intensity
Aerobic Activities (MHIAA) for non-pharmacological interventions
in elderly suffering from neurodegenerative diseases like Alzhei-
mer’s Disease and Related Disorders (ADRD) [1,2]. More and more
evidence is available on the positive effects of MHIAA on
neuroplasticity, cardiorespiratory fitness and ADRD, in particular
concerning locomotion exercises such as walking, biking or rowing
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[3–5]. Nevertheless, the monotony of the practice of these
activities is an important drawback, which has lead to the
development of video games for physical exercises (or exergames)
to make it more attractive [6,7]. The most common and affordable
exergames allow the player to interact with the game using motion
sensors based on RGB-D cameras (Red Green Blue + Depth) for the
Microsoft1 KinectTM.

Video games using KinectTM sensors are already employed to
stimulate physical activities in elderly people [8,9]. However, these
recent studies have demonstrated that commercial games based
on this technology stimulate only slightly the cardiorespiratory
system limiting therefore the possible benefits on physical fitness
and cognitive function [9]. This small physiological stimulus is
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mainly related to the depth limitation of the sensors (up to 5 m to
minimize errors) [10]. In fact, this limitation implies to stay on the
spot in a small area in front of the RGB-D camera and mainly
exercising upper limbs. Therefore, the use of a treadmill is a good
trade-off to perform MHIAA within the field of view of the RGB-D
camera.

Concerning the KinectTM, Microsoft1 provides a library which
computes a skeletal representation of the human body. This
skeletal representation has been studied as a tool for evaluating
static foot posture [11], postural control assessment [12],
movement detection [13], over-ground walking [14] and treadmill
walking without occlusion (without grabbing frame) [15,16]. How-
ever, the measurement of the walking speed on a standard
treadmill through this Microsoft1 library has not been investigat-
ed so far because skeletal representation becomes very noisy with
the partial occlusion of the treadmill frame. In this case, it becomes
impossible to measure a coherent walking speed.

Several ADRD patients suffer from walking disorders such as
gait apraxia [17]. Gait parameters seem similar during overground
walking and treadmill walking [18]. Hence, it would be interesting
to combine treadmill MHIAA with gait analysis during walking.
Within the exergames context, in order to keep the system
affordable (i.e. treadmills that can be directly interfaced with
exergames are generally expensive) and secure (with a grabbing
frame), a Point Cloud Based System (PCBS) has been developed
using only the images streams (depth and color images) provided
by the RGB-D camera. PCBS is adjustable to any kind of treadmill,
and measures the walking speed of a person using feet detection.
The final purpose of this system is to be combined with an
exergame intended for people suffering from ADRD, where the
avatar will move forward according to the walking speed of the
person. Therefore, this exergame could allow combining MHIAA
with the analysing of walking disorders.

An exergame is a type of Information and Communication
Technology (ICT) which allows humans to interact with virtual
environments. This type of interaction can be facilitated by the
presence of some ergonomic criteria. For instance, Bastien and
Scapin [19,20] described ergonomic criteria which facilitate
adhesion and interactions between humans and virtual environ-
ments. Some of these criteria highlight the importance of using
coherent and consistent controllers in which errors and ambigui-
ties are limited. Within this context, PCBS measures should be
sufficiently accurate and reliable to be integrated as controller
within an exergame.

Therefore, the goal of this study was to assess the accuracy and
reliability of PCBS to measure the walking speed of a person on a
standard motorized treadmill.

2. Methods

2.1. Subjects

Thirty six healthy individuals (17 males, 19 females, age:
32.1 � 7.6 years, height: 171.1 � 9.1 cm, weight: 67.4 � 13.6 kg)
without any physical or cognitive disorder that could influence the
gait were recruited to participate in this study. The experimental
design was approved by the local hospital Ethics Committee, and the
protocol was performed in line with the Declaration of Helsinki. After
comprehensive verbal and written explanations of the study and its
aims, all subjects gave their written informed consent for participation.

2.2. Materials

During this experiment, walking participants were recorded
using an Asus1 Xtion PRO LIVE RGB-D camera which provides real
3D information of the scene. This camera and the Kinect sensor are
based on the same PrimeSense infra-red technology. It was placed
in front of the motorized treadmill (Kettler1 Track Motion, speed
steps: 0.028 m s�1, walking surface: 48 cm � 132 cm), at a
distance of 2 meters. All processes and records were performed
under Fedora 19, processor Intel Xeon 2.4 GHz, 16GB memory.

2.3. Procedure

Participants were required to wear comfortable clothes to walk
on the treadmill (flat sport shoes or flat street shoes, shorts,
trousers or jeans). Each participant was asked to perform three 10-
min walking exercises. Between trials, a 5-min break was proposed
to the participant, to allow him/her to rest and not to influence the
subsequent exercise. Each 10-min exercise consisted of the
following five 2-min sub-exercises in the following ordered speeds
covering the full walking spectrum: 0.42, 0.69, 0.97, 1.25 and
1.53 m s�1 (i.e., 1.5, 2.5, 3.5, 4.5 and 5.5 km h�1). Running is
generally preferred at a speed higher than 1.53 m s�1 [21]. Parti-
cipants were simply asked to follow the speed of the treadmill.
Each trial (10-min exercise) began when the investigator switched
on the RGB-D camera and opened the application for capturing the
scene without subject (see Section 2.5.2). Next, subject entered the
scene and stepped onto the motorized treadmill. Then, he/she
started the treadmill and fixed the speed at 0.42 m s�1. Every
2 min, the participant increased by himself the treadmill speed by
0.028 m s�1 until 1.53 m s�1. At the end of each trial, participant
stopped the treadmill and leaved the scene and the investigator
closed the application and shut down the RGB-D camera.

2.4. Marker Based Control System (MBCS)

MBCS consists in a white mark painted on the dark walking
surface of the treadmill and detected using local image intensity in
order to measure the real rotating speed (see Fig. 1).

2.5. Point Cloud Based System (PCBS)

In the computer vision domain, the computation of the walking
speed of a person can be estimated from the displacement of the
center of gravity of the person. Here, employing a treadmill forced
us to develop a different method to measure that speed. The
proposed system is presented in four main subsections. The first
three subsections present how the feet of the person are detected
from the cloud of points and the ground detection, and how the
noise is filtered from this detection. The computation of the speed
based on the successive positions of the feet is described in the last
subsection. For more information on the system architecture, see
Fig. 1.

2.5.1. People detection and tracking

The first step is to detect and track the person on the scene.
People detection is performed at each frame using a background
subtraction algorithm proposed by Nghiem et al. [22]. A multi-
feature algorithm, such as 2D size, 3D displacement, color
histogram and dominant color, proposed by Chau et al. [23] is
used for tracking.

2.5.2. Ground detection

In particular cases (e.g., when depth information is missing),
some points belonging to the ground can be wrongly included in
the cloud of point of the person. In that case, the ground plane
should be estimated to correct the classification of the points.
Based on the lowest part of the scene (with the assumption that the
ground pixels cover at least 10% of the image), the plane equation is
computed as the plane that minimize its distance to the ground
points. Once this plane equation has been estimated, the cloud of



Fig. 1. Scene information and systems architecture. MBCS: this system computes the rotating speed of the treadmill and therefore the real walking speed of the person. Based

on the color intensity of a zone manually set of the RGB image (located on the treadmill, where the white mark pass by), this system detects each round of the treadmill, and

knowing the length of the treadmill, the speed is computed thanks to the time elapsed between each round.
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point of the person is filtered and the points belonging to the
ground removed (Fig. 2A and B).

2.5.3. Feet detection

After this filtering process, only the lowest body part of the
person is kept (25% of the lowest points). Each remaining point is
then classified as belonging to the right or left leg, depending on
their distance with the right and left extrema of the cloud (Fig. 2C,
blue and green legs). Both legs are then splitted vertically in halves
of the same height and the straight line passing through the center
of gravity of each part (Fig. 2C, orange dots and straight line)
represents the skeleton of the legs. Finally, feet are the projections
of the lowest points of the legs on these straight lines (Fig. 2C,
yellow dots).

2.5.4. Speed computation

During walking, the gait parameters are easier to analyze
since the end of each step is determined by the moment where
each foot is on the ground with a maximum distance between
the feet [24]. After a quick observation of the successive
positions of the feet on the frames, and more particularly of
the distance between these feet, it appears that the different



Fig. 2. Point cloud filtering. (A) Without filter, some ground points are included in the cloud of the person. (B) A filter is applied depending on the distance between the

person’s points and the plane of the treadmill (removed if less than 2 cm). (C) Legs points classification (left and right, respectively green and blue) with legs skeleton line

passing by the center of gravity of halves legs points (orange line and dots) and feet detection (yellow points). (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of the article.)
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walking phases can be extracted from this distance (Fig. 3, left).
For instance, local minima (Fig. 3, left, green crosses) correspond
to the time when the back foot is brought back to the front,
exactly when it passes close to the other foot (moment in the
walking cycle where the distance between feet is minimum). On
the contrary, local maxima (Fig. 3, left, red crosses) are the exact
time when the distance between feet is maximum, that is to say
when the back foot is again put on the ground in front. The
instantaneous speed of the person is then measured from the
Fig. 3. Left: graph of the distance between the feet in function of the time (red and green cr

function of the time. (For interpretation of the references to color in this figure legend
distance at this precise moment and the elapsed time since last
maximum. Basic filtering and smoothing methods are also used
like averaging the speed over the five last steps of removing
steps shorter than 12 cm.

2.6. Data and statistical analysis

All statistical analyses were performed with STATISTICA
7.0 software and Excel (Microsoft, USA) for Windows.
osses represent respectively local maxima and minima). Right: graph of the speed in

, the reader is referred to the web version of the article.)
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Accuracy was assessed by the comparison of speed measures
between PCBS and MBCS. Data were analyzed using two way
repeated measures ANOVA: Systems (PCBS vs. MBCS) and Speed
(0.42 vs. 0.69 vs. 0.97 vs. 1.25 vs. 1.53 m s�1). When a significant
effect was found, post hoc tests were performed using Newman–
Keuls procedures. Differences were significant for p < .05.

Speed measures relative reliability of PCBS and MBCS (3 trials
for each of the five speeds) were evaluated using intra-class
correlation coefficient (ICC 2, 1 [25,26]). The following general
guidelines of Munro were used [27]: 0–0.25 little correlation, 0.26–
0.49 low, 0.50–0.69 moderate, 0.70–0.89 high and 0.9–1.0 very
high. Speed measures absolute reliability for both methods were
evaluated using the Standard Error of Measurement (SEM) or
typical error. SEM was expressed as a coefficient of variation and
was determined accordingly to the recommendations of Hopkins
[28] and Weir [26]. Smaller values of SEM reflect more reliable
measures. The SEM was expressed as a percentage of the grand
mean (SEM% = SEM/mean � 100). This form of the typical error
allows for comparison of absolute reliability between measure-
ments and groups. SEM was also used to determine the Minimum
Difference (MD) to be considered ‘‘real’’, calculated as suggested by
Bedard et al. [29]: MD = SEM � 1.96 � H2. ICC, SEM and MD were
used for the more robustness compared with Pearson R, the
Coefficient of Variation (CV) and the Limit Of Agreements (LOA or
Bland–Altman plots) for reliability analysis [25,26].

3. Results

3.1. Walking speed accuracy

All subjects completed the protocol. ANOVA revealed a main
effect of speed (F(4,140) = 63,007, p < .05) and a main effect of
system (F(1,35) = 5.0420, p < .05). Whatever the system measured
at 0.42, 0.69, 0.97, 1.25 and 1.53 m s�1 were statistically different
among each other. Furthermore, measured speeds with PCBS
were greater than with MBCS (mean difference or bias:
0.013 � 0.015 m s�1). Moreover, a significant interaction effect was
observed (F(4,140) = 19.141, p < .05). Post hoc analysis reveals that
measured speeds with PCBS were significantly greater than MBCS at
the lowest speeds (0.42, 0.69 and 0.97 m s�1) but significantly lower
at 1.53 m s�1 (Table 1).
Table 1
Accuracy of measured speeds with PCBS and MBCS.

Speeds (m s�1) PCBS 

Mean (SD) 

Each trial Mean of 3 trials

0.42 m s�1 Trial 1 0.43 (0.03) 0.44 (0.04) 

Trial 2 0.44 (0.04) 

Trial 3 0.45 (0.04) 

0.69 m s�1 Trial 1 0.71 (0.04) 0.71 (0.04) 

Trial 2 0.71 (0.04) 

Trial 3 0.71 (0.04) 

0.97 m s�1 Trial 1 0.98 (0.04) 0.98 (0.04) 

Trial 2 0.98 (0.04) 

Trial 3 0.98 (0.04) 

1.25 m s�1 Trial 1 1.24 (0.05) 1.24 (0.04) 

Trial 2 1.24 (0.04) 

Trial 3 1.24 (0.04) 

1.53 m s�1 Trial 1 1.49 (0.05) 1.49 (0.05) 

Trial 2 1.49 (0.05) 

Trial 3 1.49 (0.05) 

0.42 m s�1 = 1.5 km h�1; 0.69 m s�1 = 2.5 km h�1; 0.97 m s�1 = 3.5 km h�1; 1.25 m s�1 = 4.5 

PCBS: Point Cloud Based System; MBCS: Marker Based Control System; Bias: mean dif
3.2. Walking speed reliability

The inter-trial reliability measures for each system are provided
in Table 2. Concerning PCBS measured speeds, we found moderate
to high relative reliability (ICC ranged from 0.63 to 0.91).
Concerning MBCS measured speeds, we found low to high relative
reliability (0.15–0.91). Overall, ICC values were higher for PCBS
than for MBCS. Furthermore, both systems show a low variability,
slightly larger for PCBS than for MBCS (respectively, SEM ranged
from 1% to 5% and 0% to 0.2%, and MD ranged from 2.7% to 14% and
0.1% to 0.9%).

4. Discussion

4.1. Accuracy

In this study we have observed a statistically significant
difference between our two systems with a recorded bias of
0.013 � 0.015 m s�1 (see Table 1) and an interaction effect between
walking speed and system was found. Specifically, the higher is the
speed, the smaller is the gap between two measured values. To the
best of our knowledge, no study on standard treadmill compared so
far walking speed accuracy between RGB-D camera and control
system. In the present study, the difference between PCBS and MBCS
was similar to the treadmill console compared to MBCS (bias between
PCBS and MBCS: 0.013 � 0.015 m s�1; bias between treadmill console
and MBCS: 0.012 � 0.013, see Table 1), demonstrating a however a
good level of accuracy. The bias between the treadmill console and
MBCS can be explained by heel strikes slowing down the treadmill
rotation speed [30].

The remaining inaccuracies in the speed computation were
mainly due to the quality of the depth stream and of the detected
feet positions, which can be compared in future studies using a
golden-standard movement analysis system such as Vicon. These
results are consistent with other studies which showed a high
level of accuracy using KinectTM compared to control system for
foot static posture [11] and postural control [12]. Clark et al. [14]
showed a similar mean difference for measured speed during
over-ground walking between KinectTM library and Vicon (bias:
0.01 m s�1). In similar conditions, Xu et al. [16] showed a very
high accuracy in the computation of the walking time phases
on a frameless treadmill when comparing KinectTM library and
MBCS Bias (m s�1)

Mean (SD)

 Each trial Mean of 3 trials

0.42 (0.00) 0.42 (0.00) 0.02

0.42 (0.00)

0.42 (0.00)

0.69 (0.00) 0.69 (0.00) 0.02

0.69 (0.00)

0.69 (0.00)

0.96 (0.00) 0.96 (0.00) 0.02

0.96 (0.00)

0.96 (0.00)

1.23 (0.00) 1.23 (0.00) 0.01

1.23 (0.00)

1.23 (0.00)

1.50 (0.00) 1.50 (0.00) �0.01

1.50 (0.00)

1.50 (0.00)

km h�1 and 1.53 m s�1 = 5.5 km h�1.

ference.



Table 2
Reliability of measured speeds with PCBS and MBCS.

Speeds (m s�1) PCBS MBCS

Trials 1–2 Trials 2–3 Trials 1–2 Trials 2–3

0.42 m s�1 Mean 0.44 0.45 0.42 0.42

ICC 0.63 0.84 0.91 0.29

SEM value (%) 0.022 (5.0) 0.015 (3.4) 0.000 (0.1) 0.001 (0.3)

MD value (%) 0.061 (14.0) 0.042 (9.4) 0.001 (0.2) 0.004 (0.9)

0.69 m s�1 Mean 0.71 0.71 0.69 0.69

ICC 0.80 0.88 0.74 0.63

SEM value (%) 0.018 (2.5) 0.014 (2.0) 0.000 (0.1) 0.000 (0.1)

MD value (%) 0.049 (6.9) 0.039 (5.5) 0.001 (0.2) 0.001 (0.2)

0.97 m s�1 Mean 0.98 0.98 0.96 0.96

ICC 0.74 0.90 0.62 0.76

SEM value (%) 0.021 (2.2) 0.013 (1.3) 0.001 (0.1) 0.000 (0.0)

MD value (%) 0.059 (6.0) 0.036 (3.6) 0.001 (0.2) 0.001 (0.1)

1.25 m s�1 Mean 1.24 1.24 1.23 1.23

ICC 0.81 0.88 0.65 0.71

SEM value (%) 0.020 (1.6) 0.015 (1.2) 0.001 (0.0) 0.001 (0.0)

MD value (%) 0.055 (4.4) 0.042 (3.4) 0.002 (0.1) 0.001 (0.1)

1.53 m s�1 Mean 1.49 1.49 1.5 1.5

ICC 0.82 0.91 0.13 0.66

SEM value (%) 0.021 (1.4) 0.015 (1.0) 0.003 (0.2) 0.001 (0.1)

MD value (%) 0.057 (3.8) 0.041 (2.7) 0.009 (0.6) 0.002 (0.2)

0.42 m s�1 = 1.5 km h�1; 0.69 m s�1 = 2.5 km h�1; 0.97 m s�1 = 3.5 km h�1; 1.25 m s�1 = 4.5 km h�1 and 1.53 m s�1 = 5.5 km h�1.

ICC: Intraclass Correlation Coefficient; SEM: Standard Error of Measurement; MD: Minimum Difference to be considered ‘‘real’’; PCBS: Point Cloud Based System; MBCS:

Marker Based Control System; Bias: mean difference.
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optotrack. In the context of exergames, this level of accuracy
seems therefore to be sufficient to use PCBS as controller. In
interactions between humans and virtual environments, explicit
control, as described by Bastien and Scapin [19,20], is a key
aspect. This suggests that the users should always be in control
of the system processing. Errors and ambiguities are limited
when inputs are under their control. PCBS accuracy should be
sufficient to detect no walking condition and many levels of
walking speed. Combined with an exergame, PCBS can allow the
user to control the speed of displacement or immobility of
the avatar within the game (e.g., avatar changing displacement
speed by 0.28 m s�1 steps). In this case, the risk of generating
ambiguities is minimal.

4.2. Reliability

ICCs for the two systems were moderate to high. For the PCBS,
this value was around 0.8 when is it 0.6 for MBCS. Moreover, our
measures showed low variability (Table 2). These results are
consistent with other studies using RGB-D cameras which
showed moderate to high ICC values in assessment of static foot
posture [11], postural control [12] and body movements
[13]. However, studies on over-ground walking [14] and treadmill
walking [15,16] did not test RGB-D cameras reliability. In the
present study, the smaller ICC for MBCS can be explained by the
heel strike on the treadmill, which can modify the measured
rotation speed of the treadmill between trials. However, the
slightly larger variability for PCBS was mainly due to the variation
of the signal to detect. In fact, MBCS is easier and more robust to
detect since it is consistent and uniform in shape that appears on
a regular time intervals, while for the PCBS, it depends on
parameters varying from one person to another (e.g., morphology,
clothes, gait), and therefore influencing the measured speed. For
instance, the pre-tests of the system showed that if the person
was wearing long skirt or wide pants, the results were badly
influenced. In the context of this experiment, the choice has been
made not to standardize clothes and morphologies to check
whether or not our system was usable in more ecological
conditions. In the context of exergames, this level of reliability
seems to be sufficient to use PCBS as controller.

5. Conclusion

This paper tested PCBS accuracy and reliability. The results
showed that the speed measured by the PCBS is enough accurate
and reliable for treadmill walking at a constant speed. Thus, within
the context of the development of exergames and according to the
explicit control ergonomic criteria described by Bastien and Scapin
[19,20], PCBS can be used as a game controller. The player will be
able to control avatar walking speed with a minimal risk of
generating errors and ambiguities, which will also guarantee game
adhesion and security. Another benefit of PCBS is its extensibility
and its affordability. In fact, while the use of other systems such as
a treadmill that can be interfaced directly with the game can be
limited to walking information (e.g., speed, distance), the view of
the camera provides also contextual information on the scene.
PCBS can therefore be extended, for instance, to a deeper
assessment of the gait (e.g., symmetry, step length, cadence) or
to the detection of upper limb movements. Theses parameters are
important in the context of ADRD associated with gait apraxia
[17]. Hence, PCBS could combine treadmill MHIAA, gait analysis
and gait rehabilitation. Studies on PCBS accuracy at variable speed
and on PCBS relevance in assessing gait apraxia will be necessary to
confirm the potential of PCBS and this operational usability.
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