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Introduction



What | cannot create,
| do not understand

- Richard Feynman
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What is a Generative Model?

Generative Discriminative



https://learnopencv.com/generative-and-discriminative-models/

What is a Generative Model?
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What is a Generative Model?

true data distribution

image space



https://openai.com/research/generative-models
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https://openai.com/research/generative-models
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Types of generative models
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Types of generative models
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Noise

Types of generative models
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Types of generative models
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Types of generative models
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Types of generative models
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Types of generative models
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Types of generative models
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Types of generative models
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Types of generative models
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Types of generative models
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Types of generative models
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Encoder

VAE: maximize X
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source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/



https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Types of generative models

VAE: maximize X Encoder > Decoder 5!
variational lower bound q4(z[x) po(x|z)
GAN: Adversarial / ~_|Discriminator Generator 1,
L. X X > Z X
training D(x) G(z)
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source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/



https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Types of generative models

VAE: maximize % Encoder Z Decoder W x!
variational lower bound q4(z|x) po(x|2z)
GAN: Adversarial / ~_|Discriminator Generator 1,
L X X [— Z X
training D(x) G(z)
Diffusion models:. X0 - X1 X9 > — =z
Gradually add Gaussian - - - - - - e —----—-- FER RS - ------ -
noise and then reverse
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source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/



https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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Image Generation
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PixelCNN

occluded completions original

van den Oord et al. Pixel Recurrent Neural Networks. ICML 2016
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Generative Adversarial Networks

e Setup: Assume we have data T: drawn from distribution Pdata (T), Want to
sample from Pdata.
Idea: Introduce a latent variable 2 with simple prior P(2) .

e Sample z ~ p(2) and pass to a Generator Network = = G(2)

e Then « is a sample from the Generator distribution PG. Want PG = Pdata

Sample 2 Generator Generated
from D, Network sample

~4 %

— > -, -,
z G w
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Goodfellow et al. Generative Adversarial Nets. NeurlPS 2014



Generative Adversarial Networks

e Setup: Assume we have data T: drawn from distribution Pdata (T), Want to
sample from Pdata.
Idea: Introduce a latent variable 2 with simple prior P(2) .

e Sample z ~ p(2) and pass to a Generator Network = = G(2)

e Then « is a sample from the Generator distribution PG. Want PG = Pdata

Sample 2 Generator Generated
from D, Network sample
Al p Discriminator

z —— G e - Network — » Fake

@ — —> Real

Real
Train Generator Network G to convertz sample Train Discriminator Network D to

into fake data * sampled frompg classify data as real or fake (1/0)
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Goodfellow et al. Generative Adversarial Nets. NeurlPS 2014



Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

min max(E;-p,, [logD(z)] + E 0 )[log(l — D(G()))])
G D

Sample 2 Generator Generated
from D, Network sample
Alp Discriminator
- . -\ Network — >
Z G - Fake

- -

Real
sample Train Discriminator Network D to
classify data as real or fake (1/0)

Train Generator Network G to convertz
into fake data * sampled fromPpg
by fooling the Discriminator D

Goodfellow et al. Generative Adversarial Nets. NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

Discriminator wants D(x)=1 for Discriminator wants D(x)=0 for
real data fake data

min max(E;~,,  [logD(z)| + E ., )[log(l — D(G()))])
G D

Generator wants D(x)=1 for fake
data
Sample 2 Generator Generated
from D, Network sample

Discriminator
Network — » Fake

D

z

—» Real

Train Generator Network G to convertz
into fake data * sampled fromPpg

sample Train Discriminator Network D to
by fooling the Discriminator D

classify data as real or fake (1/0)

Goodfellow et al. Generative Adversarial Nets. NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

min max(E;-p,, [logD(z)] + E p )[log(l — D(G()))])
G D

= minmax V(G, D)
G D

Train G and D using alternating gradient updates:

)
1.Update D =D + ap 55

2.Update (; = (3 —aGg_G

Goodfellow et al. Generative Adversarial Nets. NeurlPS 2014
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Goodfellow et al. Genera

Generative Adversarial Networks: first results
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tive Adversarial Nets. NeurlPS 2014
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StyleGAN
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Image-to-Image Translation: Pix2Pix

Labels to Street Scene Labels to Facade BW to Color

output
Edges to Photo

output

output

jtional Adversarial Networks, CVPR 201
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https://arxiv.org/abs/1611.07004

Unpaired Image-to-Image Translation: Cycle GAN

Summer _ Winter

horse —» zebra

Photograph Monet Van Gogh Cezanne Ukiyo-e

Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017

41


https://arxiv.org/abs/1703.10593

Unpaired Image-to-Image Translation: Cycle GAN

Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017
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https://arxiv.org/abs/1703.10593

Autoencoders (non-variational)

Unsupervised method for learning latent features from data
without any labels.

_ (14 2
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Input data L

43



Autoencoders (non-variational)

Unsupervised method for learning latent features from data
without any labels.

Features need to be lower dimensional than the data.

. 2
L = ||$_$||2
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T
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|

I
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Autoencoders (non-variational)
Unsupervised method for learning latent features from data
without any labels.

Features need to be lower dimensional than the data.

Limitation: no way to produce any new content

_ (14 2
L = ||93 — x| |2
Reconstructed S
input data T}
Decoder
Features <
Encoder
Input data L
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Variational Autoencoders (VAE)

Add a probabilistic constraint between the encoder and decoder

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 https://arxiv.org/abs/1312.6114

46


https://arxiv.org/abs/1312.6114

Variational Autoencoders (VAE)

Add a probabilistic constraint between the encoder and decoder

VAE is an autoencoder that learns latent features from data and enables
generative process.

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 https://arxiv.org/abs/1312.6114
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https://arxiv.org/abs/1312.6114

Variational Autoencoders (VAE)

Add a probabilistic constraint between the encoder and decoder

VAE is an autoencoder that learns latent features from data and enables
generative process.

Instead of encoding an input as a single point, VAE encodes it as a distribution
over the latent space.

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 https://arxiv.org/abs/1312.6114
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https://arxiv.org/abs/1312.6114

Variational Autoencoders (VAE)

Encoder network inputs data x and outputs distribution over latent codes z

Encoder Network

2|z Ez|x

{ !
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Variational Autoencoders (VAE)

Encoder network inputs data x and outputs distribution over latent codes z

Decoder network inputs latent code z and outputs distribution over data x

Encoder Network Decoder Network
d¢ (Z‘w) — N(Nz|a:7 Ez|sr:) Do (w|z) — N(,U/:c|z7 E:c|z)
2|z Ez|x M|z Ea:|z
{ ] { ]
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Variational Autoencoders (VAE)

Jointly train encoder g and decoder p to maximize the variational lower bound
on the data likelihood

log pg (:U) > Ezwq(;)(z\a:) [logpg ("B’Z)] - KL(q¢ (z|zz:),p(z))

Encoder Network Decoder Network
d¢ (Z‘CB) — N(Nz|cc7 Ez]a:) Do (w|z) — N(,u:c|z7 E:1:|z)
2|z Ez|x M|z E:c|z
1 ] { ]
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Variational Autoencoders (VAE)

Train by maximize the variational lower bound.

Ez~q¢(z\a:) [logp@ (ZBlZ)] - KL(Q¢ (Z|$),p(2))

1. The input is encoded as distribution over the latent
space

Z|$ ~ N(:u'z|a:7 2z|ac)

| |
Moz Ez|a:
{ ]




Variational Autoencoders (VAE)

Train by maximize the variational lower bound.

Ezwqd,(z]:z:) [logp@ (CE|Z)] - KL(q¢ (Z|£13),p(2:))

1. The input is encoded as distribution over the latent
space
2. Encoder output should match prior p(z)
Z‘il? ~ N(,u'z|a:7 2z|ac)

| |
Moz Ez|a:
{ ]




Variational Autoencoders (VAE)
Train by maximize the variational lower bound.

Ez~q¢(z\a:) [logp@ (CE|Z)] - KL(Q¢ (Z|£13),p(2))

1. The input is encoded as distribution over the latent

space <
2. Encoder output should match prior p(z) Sample from z
3. A point from the latent space is sampled from that z|x ~ N(:u’z|a:7 Ez|x)
distribution |
IU’Z|£U 2z|x




Variational Autoencoders (VAE) z|z ~ N(ty)z, X))

Train by maximize the variational lower bound.

Ez~q¢(z\a:) [logp@ (CIZ|Z)] - KL(Q¢ (Z|£13),p(2))

1. The input is encoded as distribution over the latent

space
2. Encoder output should match prior p(z) Sample from z
3. A point from the latent space is sampled from that 2|z ~ Nz, Xy)0)
distribution |
4. The sampled point is decoded ! !
Mz Ez|a:
{ ]




Variational Autoencoders (VAE)

Train by maximize the variational lower bound.

Ez~q¢(z]:z:) [logp@ (CIE|Z)] - KL(Q¢ (Z|£13),p(2:))

1.

The input is encoded as distribution over the latent
space

Encoder output should match prior p(z)

A point from the latent space is sampled from that
distribution

The sampled point is decoded

The reconstruction error is computed

Sample from z

Z|£E ~ N(:u'z|ac7 Ez|ar;)




VAE results




Denoising Diffusion Models

Learning to generate by denoising

Denoising diffusion models consist of two processes:
Forward diffusion process that gradually adds noise to input

Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Data

Reverse denoising process (generative)

Sohl-Dickstein et al., Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015
Ho et al., Denoising Diffusion Probabilistic Models, NeurlPS 2020
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

Noise
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Implementation Considerations
Network Architectures

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent €y (x;, t)

---» €g(X4, 1)

[ -
e —m

Time Representatlon 1' I

Fully-connected
Layers

I
I
I
I
1
1
L

Time representation: sinusoidal positional embeddings or random Fourier features.

Time features are fed to the residual blocks using either simple spatial addition or using adaptive group normalization
layers. (see Dharivwal and Nichol NeurlPS 2021)




Latent Diffusion Models

CelebAHQ FFHQ LSUN-Churches LSUN-Beds

Text-to-Image Synthesis on LAION. 1.45B Model.

“A street sign that reads *A zombie in the “An image of an animal “Anllustration of a slightly “A painting of a “Awatercolor painting of a “A shirt with the inscription:
“Latent Diffusion” style of Picasso” half mouse half octopus'  conscious neural i network’ squirrel eating a burger’  chair that looks like an octopus’ “1 love generative models!” *

Generative
Models!

Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022
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https://arxiv.org/abs/2112.10752

Latent Diffusion Models

Denoising U-Net €9

Pixel Space,

B

denoising step crossattention swﬂch

Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022
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https://arxiv.org/abs/2112.10752

Latent Diffusion Models

N -
ent Vector Olsy |
Image gv\‘p@"’/ Lat Fo = Veers, Lotens

4 / / Latent Space )
L-[? £ Bt Diudion Brothss »’—)I
‘Odpi’i

D
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L ‘\
\.

S]]
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& 9 P> |&J Rezveru)ufﬁw,o%mp
denoiging step crogsattention  switch  skip connectio concat AW
V24 M Wﬁk retVaMf\Bd’ De- r\ut,i\/ skip Sﬁw
v% o DoV f‘:,’,, attention O

vw“”

Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022
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https://arxiv.org/abs/2112.10752

Generative models
evaluation



Generative Models Evaluation

Which of these images looks better?
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Generative Models Evaluation

Which of these images looks more realistic?
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Generative Models Evaluation

Which of these images appears to be more similar to the text prompt?

Prompt: The saying "BE EXCELLENT TO EACH OTHER" written on a red

brick wall with a graffiti image of a green alien wearing a tuxedo.

A yellow fire hydrant is on a sidewalk in the foreground.
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Generative Models Evaluation

e Human-based ratings and preference judgments
e Inception Score (quality and diversity) [1]
e Frechet Inception Distance [2]

[1] Salimans ey al. Improved Technigues for Training GANs. NeurlPS 2016
[2] Heusel et al. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. NeurlPS 2017
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https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1706.08500

Inception Score (1S)

IS measures:

e the quality of the generated images
e their diversity

68


https://arxiv.org/abs/1606.03498

Inception Score (1S)

Inception image classifier pre-trained on CIFAR10
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Inception Score (IS)

CIFAR10 dataset:

airplane H.% » ..=*;
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Inception Score (1S)

Generated images are fed into the Inception image classifier network pre-trained
on the CIFAR10 dataset predict conditional probability p(y|x) — where y is the
label and x is the generated data

jueyds|3
1ed
6oQq
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Inception Score (1S)

If the probability scores are widely distributed then the generated image is of low
quality:

Juy
1o

6o

ey
jueyds|3
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Inception Score (1S)

= x = G(2))dz
Calculate marginal probability P(y) fz p(y| (2))

Marginal distribution tells us how much variety there is in our generator’s output.

Similar labels sum to give focussed distribution Different labels sum to give uniform distribution

sum sum




Inception Score (1S)

e Quality: conditional probability p(y|x)
e Diversity: marginal probability p(y)

We want

e the conditional probability p(y|x) to be highly predictable (low entropy) i.e.
given an image, we should know the object type easily.
e the marginal probability p(y) to be uniform (high entropy).
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Inception Score (1S)

Compute their KL-divergence to combine these two criteria:

IS(G) = exp(Ez~p, KL(p(y|z)|p(y)))
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Frechet Inception Distance (FID)

Mar

e Use the Inception network to extract features from an intermediate layer

tin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. NeurlPS 2017 hitps:/arxiv.org/abs/1706.08500
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https://arxiv.org/abs/1706.08500

Frechet Inception Distance (FID)

Mar

e Use the Inception network to extract features from an intermediate layer
e Model data distribution for these features using a multivariate Gaussian
distribution with mean y and covariance 2

tin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. NeurlPS 2017 hitps:/arxiv.org/abs/1706.08500
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https://arxiv.org/abs/1706.08500

Frechet Inception Distance (FID)

e Use the Inception network to extract features from an intermediate layer
e Model data distribution for these features using a multivariate Gaussian

distribution with mean y and covariance 2
e The FID between the real images x and generated images g:

FID(z,9) = ||pte — tgll5 + Tr(Zz + 2, — 2(222,)?)

where Tr sums up all the diagonal elements

arxiv.org/abs/1706.08500

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. NeurlPS 2017 hifps:
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https://arxiv.org/abs/1706.08500

Frechet Inception Distance (FID)

Martin Heuse

Lower FID values mean better image quality and diversity

FID is sensitive to mode collapse, the distance increases when modes are
missed

FID is more robust to noise than IS. If the model only generates one image
per class, the distance will be high

I, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. NeurlPS 2017 https://arxiv.org/abs/1706.08500

79


https://arxiv.org/abs/1706.08500

Thank you



