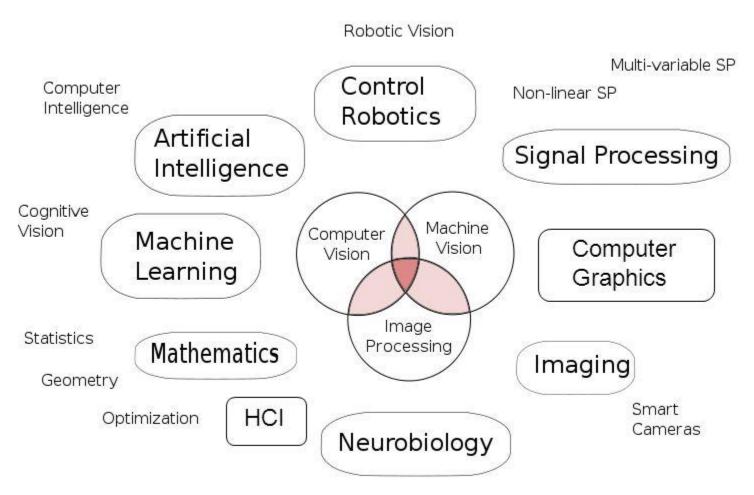
Deep Learning for Computer Vision

UCA Master 2 Data Science

INRIA Sophia Antipolis – STARS team

14 January / 25 March 2025

Vision is multidisciplinary



- Computer Vision is a subfield of artificial intelligence as machine learning.
- Techniques in machine learning and other subfields of AI (e.g. NLP) can be borrowed and reused in computer vision.

Computer Vision: many Tasks

Computer Vision is an interdisciplinary scientific field that deals with how computers can be made to gain high-level understanding from digital images or videos.

From the perspective of engineering, it seeks to automate tasks that the human visual system can do. [Wikipedia]

Computer Vision Tasks:

- Recognition of Entities: Images, 2/3D Objects, People/Pose/Face/Gaze or Emotions/Events
 - Classification
 - Detection, segmentation
 - Retrieval
- Motion analysis
 - Optical flow
 - Tracking of objects, ReID
- Image/video synthesis, generation
- Image restoration, super resolution, denoising, 3D geometry
- Biometrics, medical image, remote sensing,...
- Multimodalities (text, audio, depth, physiological, etc...)

Video Analytics (or VCA) applies CV & ML algorithms to extract/analysis content from videos

Video Analytics: many research Domains

- Smart Sensors: Acquisition (dedicated hardware), thermal, omni-directional, PTZ, cmos, IP, tri CCD, RGBD Kinect, FPGA, DSP, GPU.
- Networking: UDP, scalable compression, secure transmission, indexing and storage.
- Image Processing/Computer Vision: feature extraction, Deep CNN, 2D object detection, active vision, tracking of people using 3D geometric approaches
- Event Recognition: Probabilistic approaches HMM, DBN, logics, symbolic constraint networks
- Multi-Sensor Information Fusion: cameras (overlapping, distant) + microphones, contact sensors, physiological sensors, optical cells, RFID
- Reusable Systems: Real-time distributed dependable platform for video surveillance, OSGI, adaptable systems, Machine learning
- System Optimization: complexity reduction (# parameters, Flops) matrix factorization, distillation
- Visualization: 3D animation, ergonomic, video abstraction, annotation, simulation, HCI, interactive surface.

Video Analytics : Issues

Practical issues

Video Understanding systems have poor performances over time, can be hardly modified and do not provide semantics

Video Analytics : Issues

V1) Acquisition information:

- V1.1) Camera configuration: mono or multi cameras,
- V1.2) Camera type: CCD, CMOS, large field of view, colour, event, thermal cameras (infrared), Depth
- V1.3) Compression ratio: no compression up to high compression,
- V1.4) Camera motion: static, oscillations (e.g., camera on a pillar agitated by the wind), relative motion (e.g., camera looking outside a train), vibrations (e.g., camera looking inside a train),
- V1.5) Camera position: top view, side view, close view, far view,
- V1.6) Camera frame rate: from 25 down to 1 frame per second,
- V1.7) Image resolution: from low to high resolution, deformation,

V2) Scene content:

- V2.1) Classes of physical objects of interest: people, vehicles, crowd, mix of people and vehicles,
- V2.2) Scene type: indoor, outdoor or both,
- V2.3) Scene location: parking, tarmac of airport, office, road, bus, a park,
- V2.4) Weather conditions: night, sun, clouds, rain (falling and settled), fog, snow, sunset, sunrise,
- V2.5) Clutter: empty scenes up to scenes containing many contextual objects (e.g., desk, chair),
- V2.6) Illumination conditions: artificial versus natural light, both artificial and natural light,
- V2.7) Illumination strength: from dark to bright scenes,

Video Analytics : Issues

V3) Technical issues:

- V3.1) Illumination changes: none, slow or fast variations,
- V3.2) Reflections: reflections due to windows, reflections in pools of standing water, reflections,
- V3.3) Shadows: scenes containing weak shadows up to scenes containing contrasted shadows (with textured or coloured background),
- V3.4) Moving Contextual objects: displacement of a chair, escalator management, oscillation of trees and bushes, curtains,
- V3.5) Static occlusion: no occlusion up to partial and full occlusion due to contextual objects,
- V3.6) Dynamic occlusion: none, up to one person occluded by a car, by another person,
- V3.7) Crossings of physical objects: none up to high frequency of crossings and high number of implied objects,
- V3.8) Distance between the camera and physical objects of interest: close up to far,
- V3.9) Speed of physical objects of interest: stopped, slow or fast objects,
- V3.10) Posture/orientation of physical objects of interest: lying, crouching, sitting, standing,
- V3.11) Calibration issues: little or large perspective distortion, 3D information

Video Analytics Applications

- Strong impact in transportation (metro station, trains, airports, aircraft, harbors)
- Traffic monitoring (parking, vehicle counting, street monitoring, driver assistance, self-driving car)
- Control access, intrusion detection and Video surveillance in public places, building, biometrics, face recognition
- Store monitoring, Retail, Aware House, Bank agency
- Health (HomeCare) patient monitoring,
- Video communication (Mediaspace, 3D virtual reality, augmented reality)
- Sports monitoring (Tennis coach, Soccer analytics, F1, Swimming pool monitoring), rehabilitation, relapse
- Other application domains: Robotics, Drones, Teaching, Biology, Animal Behaviors, Risk management
- ➤ Creation of start-up

➤ Keeneo: http://www.keeneo.com/

Ekinnox: https://www.ekinnox.com/

Video Analytics : Scientific Issues

Performance: robustness of real-time (vision) algorithms

Bridging the gaps at different abstraction levels:

- From sensors to image processing [sensor world]
- From image processing to 4D (3D + time) analysis [physical world]
- From 4D analysis to semantics [end-user world]

Uncertainty management: [how reliable]

- uncertainty management of noisy data (imprecise, incomplete, missing, corrupted)
- formalization of the expertise (fuzzy, subjective, incoherent, implicit knowledge, partial models)

Independence of the models/methods versus: [how generic]

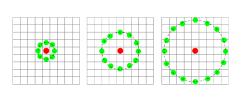
- Sensors (position, type), scenes, low level processing and target applications
- several spatio-temporal scales

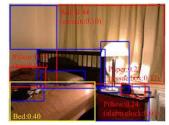
Knowledge management:

- Bottom-up versus top-down, focus of attention
- Regularities, invariants, models and context awareness
- Knowledge acquisition versus ((none, semi)-supervised, incremental) learning techniques
- Formalization, modeling, ontology, standardization

A brief history of Computer Vision

Geometric, Statistics, handcrafted features





LBP, 1994 **Local Binary Patterns**

Viola & Jones, 2001 **Face Detection**

Dalal & Triggs, 2005 **HOG**

Everingham, 2012 **PASCAL** Challenge

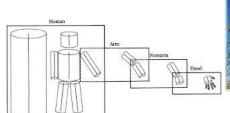
David Marr, 1970s from images to geometric blobs, edges, 3-D models

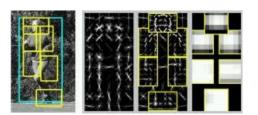
David Lowe, 1999

SIFT

Sivic & Zisserman, 2003

Bags of words

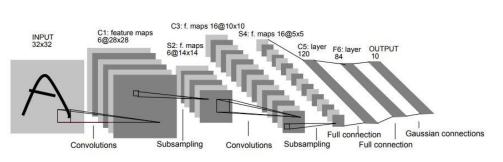


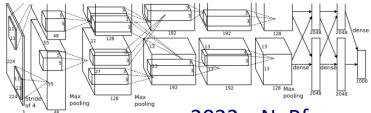


Felzenswalb & Ramanan, 2009

Deformable Part Model

A brief history of Deep Learning





2022, xNeRf Diffusion M

Minsky & Papert, 1969 perceptron

LeCun, Bengio, 1998

LeNet-5

Gradient-based learning

Krizhevsky, Hinton, 2012

AlexNet

NAS, 2018

3D Conv, GAN

2023

Foundation M

Visual prompt

Adapters

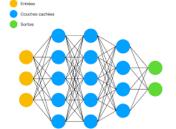
LeCun, 1990 convolutional networks Li Fei-Fei, 2009 Image-net

22K categories and 15M images

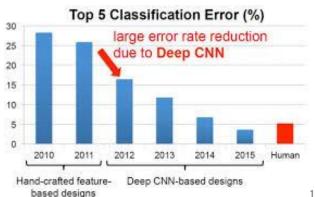
Ross Girshick, 2016 Faster RCNN, ResNet 2020

Transformers

DETR



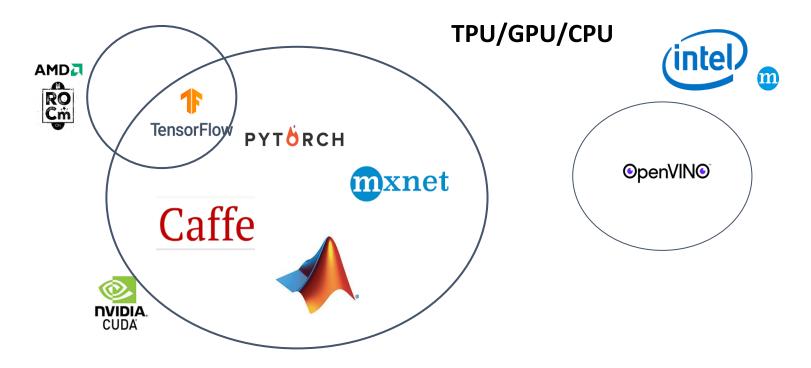
ImageNet Large Scale Visual Recognition Challenge Russakovsky et al. IJCV 2015



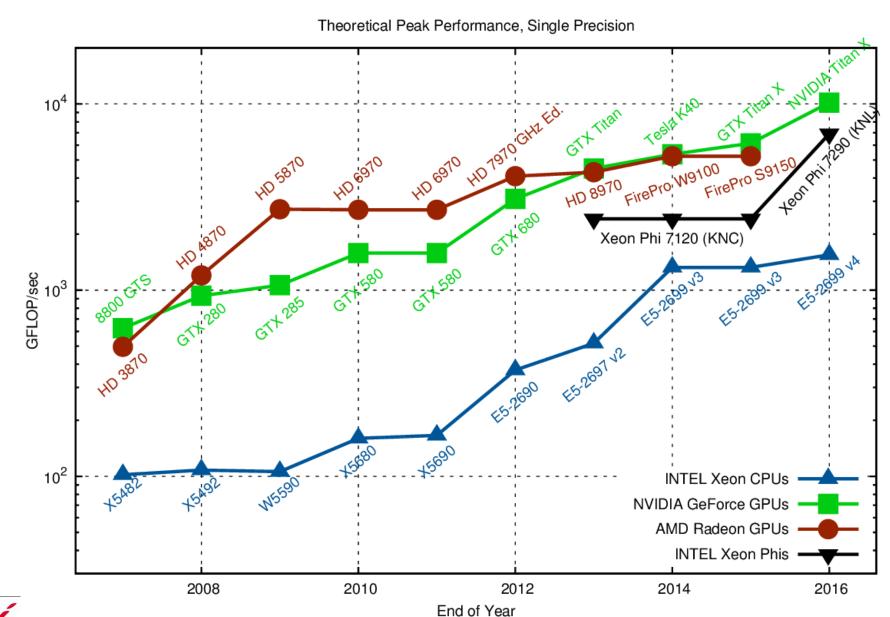
Components for Deep Learning

3 Components for Deep Learning:

- Hardware: High Computation
- Software: Deep Learning Algorithms, Libraries
- Data: Images, Videos, Annotation



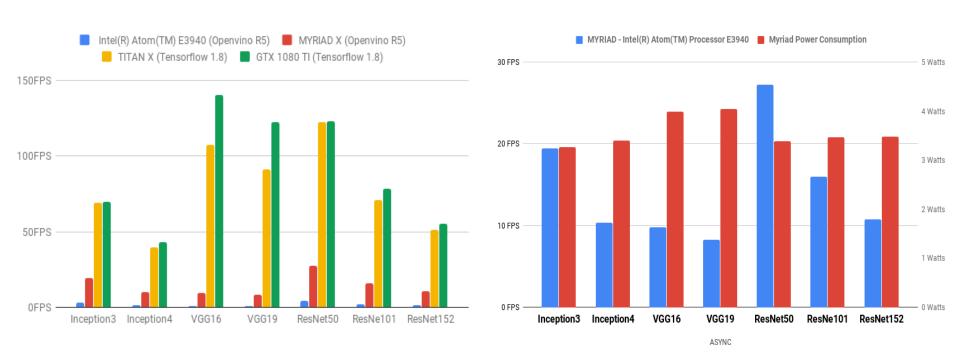
Deep Learning Hardware



. UNIVERSITÉ **CÔTE D'AZUR**

Deep Learning Hardware

Large variety of GPUs for various needs:



Limitations on Nvidia Deep learning on Embedded hardware

- Power consumption : GTX 1080: 250 W > Myriad X: 5 W
- Only 3 years of Warranty (at least 8 years needed)

Deep Learning Software

Libraries (high level API)

- Caffe (Berkeley Vision Lab)
- TensorFlow (Google)
- CNTK (Microsoft) discontinued
- Torch (Facebook) discontinued
 - PyTorch (Facebook/Meta)
- Theano (MILA) discontinued
- MXNet Apache Software Foundation
- built on top of other libraries:
 - Keras (Individual initiative + Google push)

Networks/Architectures

A neural network consisting of convolutional or recurrent layers or both, which extracts features from an image/video.

- VGG16, Alexnet,
- Siamese, U-Net, HourGlass, VAE, [coupled networks]
- RNN, GRU, LSTM
- ResNet, Inception, Inception-Resnet, DenseNet, [parallel branches, bottleneck, skip conn., residual link]
- I3D, 3DResNet, R(2+1)D, 3D-DenseNet, ResNeXt, [ST separation, channel group]
- Videos: TCN, Slow-Fast, FPN
- NAS: AssembleNet
- GAN, Diffusion Models
- Transformers: ViT, ViViT, Swin

Models/Framework

A complete end-to-end system performing a well-defined vision task

- FRCNN, Mask-RCNN; SSD, YOLO, RetinaNet (detection/segmentation),
- FCNN (Fully Convolutional, segmentation)

DinoV2, CLIP, GroundedDino, VideoMAE

Data: machine learning

Machine Learning: Data-Driven Approach

- Collect a dataset of images and labels expansive to be curated
- Use Machine Learning to train a classifier [training&validation] risk of overfitting
- Evaluate/test the classifier on new unseen images [testing/inference]

Machine Learning: Few Paradigms

- supervised learning
 - Learn to map an input (data) to known labels (ground-truth), which can be discrete (classification)
 or continuous (regression)
 - Transfer learning: pre-training + finetuning linear evaluation

unsupervised learning

- Learn a compact representation (i.e. distribution) of the data that can be useful for downstream tasks
 - Methods: density estimation, clustering, sampling, dimension reduction,
 - but in some cases, labels can be obtained automatically, transforming an unsupervised task to supervised
- Domain Adaptation: labels for a source domain, but few or no labels for the target domain
- Domain Generalization: life-long learning, unknown target domain (runtime)
- Self-Supervision: a form of unsupervised learning (generic) where the data with a pre-task (reconstruction) provides the supervision, normalization, regularization (add constraints, penalty)
- semi-supervised
 - Semi (partial, zero-one-few-shots) weakly supervised (vague or ambiguous/noisy labels),
- reinforcement learning

Data: machine learning

Image DataSets - Challenges

- CIFAR10 (CIFAR100, MNIST)
 - 10 classes/ 50,000 training images/ 10,000 testing images [1998 2006]
- Pascal VOC
 - 20 object categories, 11.5K images, detection + segmentation [2006 2012]
- Image-net ILSVRC
 - 22K categories and 15M images; (subset) 1K categories and 1.2M images [2009 2012]
- MS COCO
 - 90 object categories, 183 K images, detection + segmentation + keypoints [2014]
- OpenImages
 - 600 object categories, 1.7 10 M images, detection weakly annotated [2018-2019]

Video DataSets

- Kinetics
 - 400-600-700 action classes, 325-650K video clips [2017-2019]
- ActivityNet-200
 - 200 action classes, 20K untrimmed videos, 31K action instances [2016]
- MSRDailyActivity3D:
 - 16 action classes, 320 video clips [2012]
- NTU RGB+D
 - 60/120 action classes, 56880/120K videos [2016/2019]
- Toyota Smarthome
 - 31/51 action classes, 16129/536 videos, 41K action instances [2019/20]

STARS Inria Research Team

Objective: designing vision systems for the recognition of human

activities

Challenges:

- Perception of Human Activities : robustness
 - Long term activities (from sec to months),
 - Real-world scenarios,
 - Real-time processing with high resolution.
- Semantic Activity Recognition: semantic gap
 - From pixels to semantics, uncertainty management,
 - Human activities including complex interactions with many agents, vehicles, ...
 - Fine grained facial expressions, rich 3D spatio-temporal relationships.
- Learning representation: **effective models**
 - Combining Multi-modalities: RGB, 2D/3D Pose, Flow, bio-signals, voice, ...
 - Cross spatial and temporal dimensions: LSTM, TCN, Transformers, ...
 - Using learning mechanisms: fusion, multi-tasks, guided-Attention, Self-Attention, Knowledge Distillation, contrastive learning,
 - In various learning modes: supervised, weakly-supervised, cross-datasets, unsupervised, self-learning, life long learning
- **Applications**: Safety & Health (CoBTeK from Nice Hospital: Behavior Disorder)

People Detection in real world situations

People Tracking in real world situations

People Tracking in real world situations

People Tracking and Segmentation on MOT

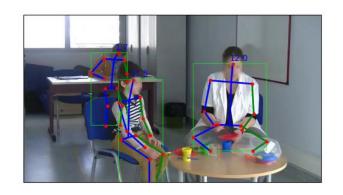
Analysis of trichogramma behavior with video tracking

Activity monitoring at ICP with AD patients

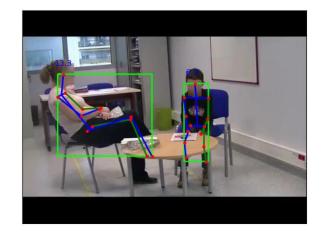
Visualization of older adult performance while accomplishing the semi-guided tasks.

ACt4autism: children behavior

Objective quantification of atypical behaviors (stereotypies) on which the diagnosis of autism (ADOS) is based.



- Analysis of the atypical postures of the child with ASD.
- Global analysis of the movements of the child with ASD with agitation.
- Eye tracker analysis to measure joint attention.



Toyota Smart-Home Large scale daily living dataset

Example 1

Challenges:

1. Composite Activities

e.g. Cook

3. Low Camera Framing e.g. Dump in Trash

Person 02

Camera 03

Frame 2379

Single

Take_sth._off_table Walk

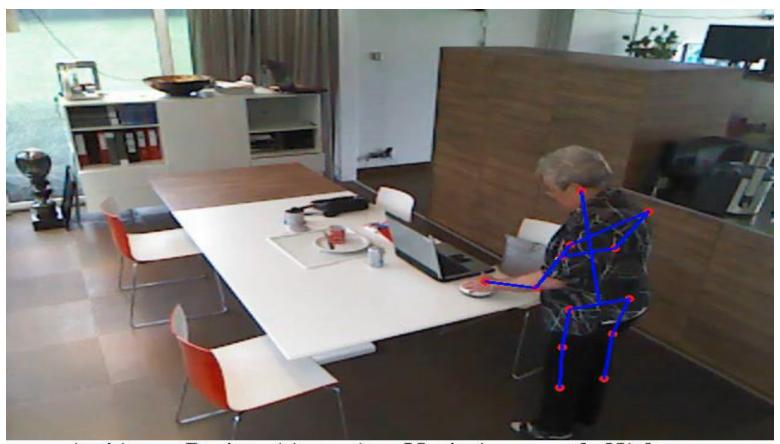
Annotated Activities By Category

Composite & Elementary

Cook

Object-based

Toyota Smart-Home Large scale daily living dataset



Action Detection in Untrimmed Video

[TP]
Correctly
Detected

[FP] Wrongly Detected

[FN] Miss Detected

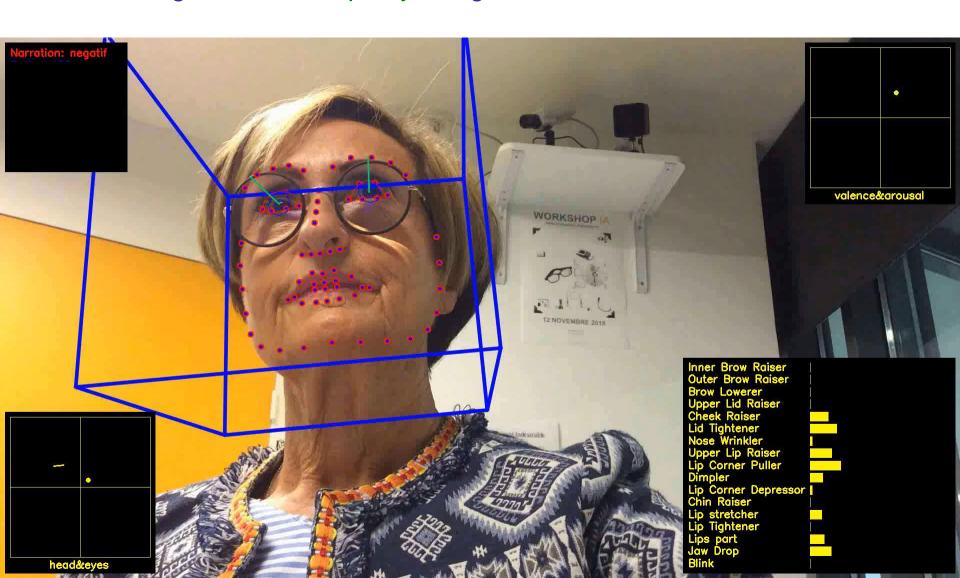
Take_pills

Praxis and Gesture Recognition

(short demo)

Emotion Recognition: Facial Expression Recognition

Characterizing the state of Apathy using Facial Motion and Emotion



Emotion Recognition: gaze estimation

Characterization of gaze (attention) during speech: case of schizophrenia (rupture of content).

Green dot: eye tracker

Video generation to increase facial expressions

Vidéo de référence

Vidéos générées avec le même mouvement

Related Courses @ UCA

MSc Data Science and Artificial Intelligence

http://univ-cotedazur.fr/en/idex/formations-idex/data-science/

Master 1:

- Statistical Learning
- Data visualization
- Machine Learning Algorithms
- Introduction to Deep Learning, more on Deep Learning

Master 2:

- Statistical Learning
- Machine Learning Bayesian
- Advanced Deep Learning: Deep understanding of Deep Neural Networks and the latest deep neural architectures in practice of these recent architectures

Educational Objectives:

- Discuss well-known methods from low-level description to intermediate representation, and their dependence on the end task
 - Focus on recent, state of the art methods and large scale applications
 - Study a data-driven approach where the entire pipeline is optimized end-to-end, jointly in a supervised fashion, according to a task-dependent objective
- Implement them to get insight on the inner deep learning mechanisms
- Implementation issues in DL are crucial:
 - Programming language support
 - Documentation quality
 - Community support
 - Learning curve
 - Stability
 - Speed
 - Scalability (multi-GPU, distributed)

Course Planning

Each session: lecture (theoretical) + practice

- Lecture 1: Introduction to CV: François + Tomasz
 - Traditional and modern Computer Vision & Artificial Intelligence [FB]
 - Neural Networks for CV : Image Classification [TS]
 - Practice: Image Classification with Pytorch
- Lecture 2, 3: Object Detection/Tracking: Tomasz
 - Object detection techniques will include Faster-RCNN, YOLO and ByteTrack, Sushi.
 - Each will be deeply described and compared.
- Lecture 4: Video and Action Classification, LSTM, TCN, Transformer: Snehashis
- Lecture 5: Action Detection and Anticipation: Snehashis
 - Dense Trajectories, different video aggregation techniques, two-streams, LSTMs for AR, 3D ConvNets
 - Attention Mechanism: spatial attention for image classification, spatio-temporal attention for action recognition, Transformer.
- Lecture 6: Image and Video Generation (Diffusion Models): Seongro Yoon
- Lecture 7: Foundation Models : Mahmoud
- Lecture 8: Article presentation : all

How to Contact Us

- Course Website:
 - http://www-sop.inria.fr/members/Francois.Bremond/MSclass/deepLearningWinterSchool25/UCA_master/schedule.html
 - Syllabus, lecture slides, schedule, etc.
- Emails:
 - Tomasz Stanczyk: tomasz.stanczyk@inria.fr
 - Seongro Yoon: seong-ro.yoon@inria.fr
 - Snehashis Majhi : <u>snehashis.majhi@inria.fr</u>
 - Mahmoud Ali: mahmoud.ali@inria.fr
 - Francois Bremond: francois.bremond@inria.fr

Evaluation Policy

- Engagement while attending class (oral): 30%
 - Answering questions
 - Practical training, assignments
- Project, Article presentation: 70%
 - 6 groups of 1 or 2 students
 - Select 1 article out of 10
 - Last day: slide presentation: 20 min + 10 min questions
 - Motivation
 - State-of-the-art
 - Proposed approach
 - Performance/limitations
 - Future directions

