Lecture 2: Deeper Neural Network

Objective

In the second lecture, you will see

e How to deepen your neural network to learn more complex functions

e Several techniques to fasten your learning process
e The most popular artificial network in computer vision community -

Convolutional neural network

Layers in deeper networks
Activation functions
Initialization

Normalization

Convolution

Pooling

Convolutional neural network

Outline of Lecture 2

What is “Deep Learning™?

The term, Deep Learning, refers to training neural networks. Shallow neural
networks do not have the enough capacity to deal with high level vision problems.
Thus, people usually combine many neurons to build a deep neural network.

The more deeper you go, the more complex features are extracted.

Difference between machine learning and deep learning

Machine Learning
Traditional machine learning
methods usually work on

G — —
j hand-crafted features

Input Feature extraction Classlﬁcatlon Output (texture, geometry, intensity
features ...).

Deep Learning

& — 337 - Il

Input Feature extraction + Classification Output

Deep learning methods
combine hand designed
feature extraction and
classification steps.

This is also called “end-to-end model”.

Deeper neural network

Output Layer

Input Layer Hidden Layers

e Input layer: receives raw inputs and give low level features (lines, conners, ...)
e Hidden layers: transform and combine low level features into high level features

(semantic concepts)
e Output layer: use the high level features to predict results

Deeper neural network
x1

X2

X3

al0] — a(w[o]x + b[O])/>a[1] — g(w[ll al0l + b[”)

)

Parameters get updated layer by layer via back-propagation.

Activation Functions

We have seen that sigmoid function can be used as activation function.

1

sigmoid(x) =

1

1

1+e*

In the practice, sigmoid function is always only used in the output layer to

transform the output into probability range 0~1.

Activation Functions

There are other well used activation function.

1 Tan h Tanh activation function

T —&I

tanh(z) = =—— :

6313_+_€2——Q3

Output
(=]

7

Range from-1to 1

Input

Activation Functions

2. ReLU (Rectified Linear Unit)

ReLU(x) = max(0, x)

Output

Range from 0 to infinity, which keeps high activation.

ReLU activation function

10

Activation Functions

3 LeakyReLU Leaky RelU Activation Function

maz (0, z), when z > 0
negative_slope % x, when x < 0

Y Axis
-

LeakyReLU(z) = {

max{0.1* x, x)

100 -75 -50 -25 00 25 50 75 100
X Axis

11

Parameter Initialization

x1

Ny

X2

X3

If you initialize all the parameters as 0O in a neural network, it will not
work, because all the neurons in a same layer will give same outputs and
get updated in the same way. But we desire different neuron will get
different features. One solution is random initialization.

12

Parameter Initialization

There are some popular initialization methods.

1. Normal initialization

Initialize parameters with values drawn from the normal distribution N (mean, Stdz)

1. Xavier normal initialization [1]

Initialize parameters with values sampled from N(0, Stdz) where std = gain * \/ fan_inf Fan_oul

fan_in is the number of input units in the weight tensor and fan_out is the number of output units in the weight tensor

[1]. Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y.
(2010)

13

Parameter Initialization

3. Kaiming normal initialization[1]

2
Initialize parameters with values sampled from A (0, std?) where Std = \/(1+a)2*fan_z'n

fan_in is the number of input units in the weight tensor and fan_out is the number of output units in the weight tensor

[1]. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K.
et al. (2015)

14

Input Normalization

Before training your neural network, conducting a normalization on your inputs will
speed up your training. Input normalization contains two steps:

1. Mean subtraction: X =X — me;n(X)

2. Variance normalization: X = std?(X)
original data zero-centered data normalized data

10

-10

-10 =
5 1g -10 -5 5 19 1(110 £ S

Find more details in CS231 (http://cs231n.github.io/neural-networks-2/)

10

5 10 15

http://cs231n.github.io/neural-networks-2/

Batch Normalization

During the training, you can also do a normalization on the activations. One of the
most used technique is Batch Normalization [1], which conducts a normalization
over channels within a mini batch.

Because it's a differentiable operation, we usually insert the BatchNorm layer
immediately after activations, and before non-linearities.

[1]. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift -
Sergey loffe, Christian Szegedy 2015

16

1zation

Other types of activation normal

1. Batch Norm
2. Layer Norm

3.

Instance Norm

4. Group Norm ...

Group Norm

o
Z
N
5]
S
S
w
=
—

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C' as the channel axis, and (H, W)

17

as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

Convolutional Neural Network

18

Fully-connected layers

[255]
231 Cat
2 — 49 Not cat
| 142 |

\ J
|

From previous slides, we can see fully-connected (FC) layers connect every neuron in one
layer to every neuron in the previous layer.

19

Drawback of fully-connected layer

255
231
»al) = | 42 | F3N?

142

x.shape=(3N*N,1) w.shape=(3N*N,3)

e For low-quality image, e.g. N=100, w.shape=(30K,3), it’s ok.

e But for high-quality image, e.g. N=1K, w.shape=(3M,3), much more
computational resources will be needed.

20

Convolution

Instead of connecting to every neuron in the previous
layer, a neuron in the convolutional layer only
connects to neurons within a small region.

Advantages:

1. Spatial coherence is kepit.
2. Lower computational complexity.

21

Convolution

We don’t have to flatten the input, so a) e

the spatial coherence is kept. // X,

A kernel (also called filter) slides x/ 3, |2

across the input feature map. At each — f | %10

location, the product between each }x/ X4

element of the kernel and the input ﬁ/pT/

element is computed and summed up Input kernel output

as the output in the current location.

3D volumes of neurons

A convolutional layer has neurons arranged in 3 dimensions:

e Height
e \Width
e Depth (also called channel)

The initial depth of a RGB image is 3. For example, in CIFAR-10, images are of
size 32*32*3 (32 wide, 32 high, 3 color channels).

In this case, the kernel has to be 3-dimensional. It will slide across the height,
width and depth of the input feature map.

23

Spatial arrangement

To properly use a convolutional layer, several hyperparameters need to be set.

Output depth
Stride
Padding
Kernel size
Dilation

a bk W=

24

Output depth = Number of kernels

Previous procedure can be repeated using .

different kernels to form as many output feature
maps as desired.

|
o

Different neurons along the depth dimension .
may activate in presence of various oriented

edges, or blobs of color.

The final feature map will be the stack of

outputs of different kernels.

25

Stride

Stride is the distance between two consecutive
positions of the kernel.

In the example, stride is set to 2.

Strides constitute a form of subsampling.

26

Padding

The most used padding in the neural network is
zero padding, which refers to number of zeros
concatenated at the beginning and at the end of an
axis.

Padding helps to maintain spatial size of a feature
map.

27

Kernel size

Size of the convolving kernel.

In the example, kernel size is set to 4.

28

Dilation

Dilated convolutions “inflate” the kernel by inserting
spaces between the kernel elements.

The dilation hyperparameter defines the space
between kernel elements.

29

Spatial arrangement

After setting previous hyperparameters, we will have the output dimensions:

H;,+2xpadding—dilation x (kernel_size—1)—1

Hout — +1

stride

Win+2 xpadding—dilation x (kernel_size—1)—1

Wout — +1

stride

30

Receptive field

The receptive field in Convolutional Neural Networks (CNN) is the region of the
input space that affects a particular unit of the network.

Previous hyperparameters can directly affect the receptive field in one
convolutional layer. When you stack more convolutional layers into a deep
convolutional neural network, the receptive field in last layers becomes bigger.

31

Pooling

Besides convolutional layer, pooling operation also plays an important role in
neural networks.

Pooling operations reduce the size of feature maps by using some function to
summarize subregions, such as taking the average or the maximum value.

32

Pooling

Pooling shares some same hyperparameters as max pooling
convolution. 20| 30
112 37

1. Stride 12120 30| 0
2. Padding 8 121 2|0
3. Kernel size 34 (70| 37| 4 average pooling
4. Dilation

|112100 25112 13| 8
An example of average/max pooling, where 79|20

stride=2, kernel_size=2.

33

CNN example

LeNet-5 [1] is proposed by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick
Haffner in 1990’s for handwritten and machine-printed character recognition.

00000060080 0000C0 0
NV AL L)) 1
2229232292022220 5
3333%23333333333 3
HAMY FHQFUIH IS4 4
Sresr S reSsSy 4
666006666666C66 5
79I 2IT NI 2 6
FP83 9385988378598 ¢ Network training
2997999989499 79 7
8
Data & Labels 9

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition.” Proceedings 34

of the IEEE, 86(11):2278-2324, November 1998.

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

LeNet-5

3 C3: f. maps 16@10x10
INPUT gé zfggglare maps S4:f. maps 16@5x5
32x32 S2: f. maps | =
6@14x14

| | Full conrlection | Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

In LeNet-5, subsampling operation corresponds to an average pooling. Basically,
LeNet-5 is a combination of convolution, pooling and fully-connected layers.

35

LeNet-5

Summary of LeNet-5 Architecture

The original gaussian connection is defined as fc layer + MSE loss. Softmax has mostly replaced it

nowadays.

Layer
Input Image
1 Convolution
Average
2 -
Pooling
3 Convolution
Average
4 :
Pooling
5 Convolution
6 FC
Qutput EG

Feature
Map

1
6

6
16
16

120

Size

32x32
28x28

14x14

10x10

5x5

1x1
84
10

Kernel

Size

5x5

2x2

5x5

2x2

5x5

Stride

Activation

tanh

tanh

tanh

tanh

tanh
tanh

softmax

36

AlexNet

AlexNet is the name of a deep CNN for large scale image classification, designed
by Alex Krizhevsky et al. in 2012.

3

227

CONV Qverlapping Overlapping
1x11, Max POOL CONV Max POOL CONV
5x5,pad=2 3x3, 256 3x3,pad=1

384 kernels
 —

(13+2°1-3)1
+1 =13

256 kernels siride=2

—_—

(27-3)12 +1
=13
13

{2?+2 2 5)1

stride=4, 3x3,
96 kernels stride=2
(227 1154 +1 (55 3;:2 +1
Overlapping O O
g%”“' - Max POOL
XJ,pa 3x3, 256 O
384 kemels 256 kernels stride=2 O O
(13 21N (13 +2*1-3)1 {13.3;r2 +1 FC . FC . .
=13 1 13 . '
s ol |10 ©

9216 O O 1000
Softmax

4096 4096

13

https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

37

https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

ResNet

ResNet is designed by Kaiming He et al. in 2015, which is the most cited paper in
all areas in Google Scholar Metrics 2020.

Authors proposed skip connections, or shortcuts to jump over some layers.

¥

Layer I-2

Layer |-1)

v/

Layer |

https://arxiv.org/pdf/1512.03385.pdf

38

https://scholar.google.com/citations?view_op=top_venues&hl=en
https://arxiv.org/pdf/1512.03385.pdf

Multi-class classification

e Binary classification sigmoid

1

0s , 0 (not cat)
1 (cat)

v

e Multi-class classification

0000060080000 0
VNV Y2204 L) 20
22222023 222229

3333333533333333 Sigmoid is not suitable for multi-class.
HAMY s QEYIY S 444
S5 s5 5038558585688
666L66ELLGHLG6EEE
72?2%127712177727
§£88389887%88%8¢
9797993798949 979

Data & Labels

v
©Ooo~NOOUL A~ WDNEO

Meet Softmax

8 “ew Linear

Scores (Logits)

o(z); =

Probabilities

40

Conclusion

1. We usually need high level features extracted by deep neural networks to
solve complex computer vision tasks.

2. Parameter initialization and normalization are helpful to fasten your training.

3. Convolutions are able to extract local features from a patch and keep spatial
correspondence, which are more suitable to vision tasks.

41

Practice-2

Digit recognition with LeNet-5.

In this practice, you don’t have to worry about gradients for back-propagation. You
will need to

1. get familiar with Pytorch
2. Implement LeNet-5 under pytorch
3. train your network on MNIST dataset

42

