Object Detection: Lecture 3

Ujjwal ujjwal.ujjwal@inria.fr

Previous Lectures

- Faster-RCNN
- SSD
- Feature Pyramid Networks

This Lecture

- Mask-RCNN
- Practical View of Object Detection

Mask-RCNN

- Object Detection.
- Instance Segmentation.
- KeyPoint Detection.

Instance Segmentation

Semantic Segmentation

Instance Segmentation

Instance Segmentation

Semantic Segmentation

Class aware but **NOT** instance aware

Instance Segmentation

Class aware AND instance aware

Keypoint Detection

Why Mask-RCNN ?

- Often multiple tasks are desired at the same time.
 - With instance segmentation one can analyze each object individually.
 - With keypoint detection one can analyze poses of people individually.

Then Why not only Mask-RCNN ?

- Overkill is a dangerous habit.
- Practical problems must be solved practically.
 - Sometimes when only bounding box detection is needed why one would go for Mask-RCNN.

Understanding Mask-RCNN

convolutional network

Some Professionally Good Implementations

• Best

- <u>TensorFlow Object Detection API</u> (For FRCNN, SSD, FPN, Mask-RCNN)
 - Very useful for professional usage.
- MatterPort Mask-RCNN
 - Very good for Mask-RCNN implementation.
 - Professionally very useful

Which Framework to Use ?

- TensorFlow
 - **Pros**
 - Very well written.
 - Very well maintained.
 - Professionally complete.
 - Cons
 - Slightly complex to use and learn.
- PyTorch
 - Pros
 - Python like interface.
 - Easy to use.
 - Cons
 - Not very consistent.
 - Not well-maintained.

Useful Professional Tips

- Study your data.
 - What classes are there ?
 - How different are they ?
 - What data augmentations make sense ?
- Study the constraints
 - How much memory is available ?
 - Any speed requirements ?
- Experiment Slowly
 - Write a basic implementation first.
 - If using any other implementation, understand it first.
 - Experiment with hyperparameters (e.g: Learning rate, optimizer etc.)

A Basic CoLab Experiment

Beginning Steps

- Open the Git Repo <u>here</u>.
- Clone the repo on your system.
- Open Google CoLab and upload the Ipython notebook in it.
- Upload dog_dataset.zip (in the repo) to your Google Drive.
- Get the FileID of the above zip file in your google drive.
 - To get the file id, get a sharable link to the zip file.
 - The part of the link after "id=" is the file ID.
- In the ipython notebook in the CoLab, under the section "Download and extract dataset", replace fileID with the ID you received in the last step.

Run the cells

• Here Detection of a dog is being done using TensorFlow Object Detection API.

AMA: Ask Me Anything

• Use the remainder of this class to ask me any sort of question or queries about object detection or deep learning in general.